Neuartige Glatte Diskretisierungsansätze für Elastoplastischen Kontakt bei Festkörpern und Dünnen Strukturen

Fördergeber Deutsche Forschungsgemeinschaft (DFG), PO 1883/1-1
im Rahmen des Schwerpunkprogramms SPP 1748
Zeitraum 2014-2017
Partner Lehrstuhl für Numerische Mathematik, TU München (Prof. Wohlmuth)
Kurzbeschreibung This project aimed at introducing a new discretization method for contact of bulky and thin-walled structures exhibiting pronounced geometrical and material nonlinearities. The resulting smooth contact approach goes beyond traditional smoothing procedures with regard to a sound mathematical basis, but at the same time retains the simplicity of low-order finite element discretizations in the bulk of the computational domain. Volume and contact surface discretizations are strictly separated, but interconnected via variationally consistent coupling operators based on generic biorthogonal Lagrange multiplier bases. This new approach promises to offer maximal flexibility with regard to a smooth surface discretization (e.g. using higher-order FEM, Hermite interpolation, splines or NURBS) and a completely independent volume discretization (e.g. using low-order non-conforming FEM, EAS or F-Bar techniques). In addition, an integrated treatment of contact and friction as well as finite strain plasticity based on so-called nonlinear complementarity functions and semi-smooth Newton methods has been developed, which offers a superior robustness as compared with traditional radial return mapping schemes.
Kontakt am IMCS Prof. Dr.-Ing. Alexander Popp

 projects_spp1748.png

 

 

Robuste Simulationsmethoden für Kontakt, Reibung, Abrieb und Verschleiß in Verbindungselementen von Flugtriebwerken

Fördergeber Rolls-Royce Deutschland Ltd & Co KG
im Rahmen des Luftfahrtforschungsprogramms des BMWi
Zeitraum 2007-2017
Partner Rolls-Royce plc (U.K.)
Kurzbeschreibung Long-term industry collaboration (over 10 years) with several sub-projects that were concerned with robust discretization schemes and solution algorithms for contact problems in turbine blade-to-disc joints. New computational methods for domain decomposition, frictional contact, fretting wear and fretting fatigue have been developed, validated and integrated into the industrial partner's in-house finite element code. Consulting on high-performance computing (HPC).
Kontakt am IMCS Prof. Dr.-Ing. Alexander Popp

 projects_rr.png