Anisotrope druckrobuste Diskretisierungen von inkompressiblen Strömungen


 Leitung: 

  • Thomas Apel


 Bearbeiter: 

  • Volker Kempf


 Ziele: 

  • A priori Fehlerabschätzungen für druckrobuste Navier-Stokes Diskretisierungen auf anisotropen Netzen
  • Verifizierung der Untersuchungen durch numerische Testrechnungen


 Studentische Arbeiten aus dem Projekt: 

  • Böhme, W.: Finite-Elemente-Netze ohne Maximalwinkelbedingung in dreidimensionalen Gebieten, Masterarbeit, UniBw München 2020.
  • Böhme, W.: Implementierung eines a-posteriori Fehlerschätzers für die Stokes Gleichungen, Projektarbeit, UniBw München, 2019.
  • Böhme, W.: Finite-Elemente-Lösung einer Randwertaufgabe mit nichtglatter Randbedingung, Bachelorarbeit, UniBw München, 2019.


 Veröffentlichungen aus dem Projekt: 

  • Apel, T.; Kempf, V.: Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading, Calcolo, 58(2):15, DOI: 10.1007/s10092-021-00402-zdoi.pngarXiv web-logo.png
  • Apel, T.; Kempf, V.; Linke, A.; Merdon, C.: A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, accepted by IMA Journal of Numerical Analysis, DOI: 10.1093/imanum/draa097doi.png arXiv web-logo.png
  • Apel, T.; Kempf, V.: Brezzi--Douglas--Marini interpolation of any order on anisotropic triangles and tetrahedra, SIAM Journal on Numerical Analysis, 58(3):1696-1718, DOI: 10.1137/19M1302910doi.png arXiv web-logo.png