
Professur für Computergestützte Simulation im Bauingenieurwesen
Gebäude 41/100, Zimmer 5125 | |
+49 89 6004-3788 | |
tarik.sahin@unibw.de |
Tarik Sahin M.Sc.
Werdegang
seit 02/2021 | Wissentschaftlicher Mitarbeiter, Institut für Mathematik und Computergestützte Simulationen, Universität der Bundeswehr München |
10/2017-06/2020 |
Master of Science, Computational Engineering Masterarbeit: Tetrahedral Mesh Refinement, eine Zusammenarbeit von MTU Aero Engines und dem Institut für Statik und Dynamik an der Ruhr-Universität Bochum |
09/2018-10/2019 |
Wissenschaftliche Hilfskraft, Institut für Stahl-, Leicht- und Verbundbau, Ruhr Universität Bochum |
05/2018-10/2019 |
Wissenschaftliche Hilfskraft, Institut für Statik und Dynamik, Ruhr Universität Bochum |
10/2012-06/2017 |
Bachelor of Science, Luft- und Raumfahrttechnik, Middle East Technical University Bachelorarbeit: Design, Analyse und Produktion eines senkrecht startenden und landenden Flugzeugs |
Forschungsschwerpunkt
- Hybrid Digital Twins
- Physics-Informed Neural Networks (PINNs) for solving computational mechanics problems
- Combination of classical simulation methods with Machine Learning and Deep Learning (Data-driven simulations)
- Numerical methods, solvers, optimization
Use case 1: Hertz contact problem FEM vs PINNs
Use case 2: Prediction of beam deflection via PINNs with a wall scenario.
Preprints and Articles Submitted for Publication
- Sahin, T., von Danwitz, M., Popp, A.: Solving Forward and Inverse Problems of Contact Mechanics using Physics-Informed Neural Networks, Preprint, submitted for publication, arXiv
Conference Proceedings and Book Contributions (with Peer-Review)
- von Danwitz M, Kochmann T, Sahin T, Wimmer J, Braml T, Popp A (2023): Hybrid Digital Twins: A Proof of Concept for Reinforced Concrete Beams. Proceedings in Applied Mathematics and Mechanics, 22(1): e202200146, DOI (Open Access)
- Milani, R., Sahin, T., von Danwitz, M., Moll, M., Popp, A., Pickl, S. (2023). Automatic concrete bridge crack detection from strain measurements: A preliminary study. In: Critical Information Infrastructures Security. CRITIS 2022. Lecture Notes in Computer Science, vol 13723, Hämmerli, B., Helmbrecht, U., Hommel, W., Kunczik, L., Pickl, S. (Eds) . Springer, Cham, Germany, DOI (Open Access)
International Conference Contributions with Abstract
- Sahin, T., von Danwitz, M., Popp A.: Physics-Informed Neural Networks for Solid and Contact Mechanics, 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, Aachen, Germany, August 15 - 19, 2022
- Sahin, T., Popp A.: Simulation-assisted deep learning approach for predicting the real contact area and the contact pressure, Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology (MMLDT-CSET), San Diego, California, September 26 - 29, 2021
Teaching
Courses & Exercises
|
Supervised Student Projects / Theses
|