Language Menu
  • de
Search Intern
Main Navigation
 
  • The Institute
    • Team
    • News
    • Challenges
    • Contact and Directions
  • Equipment
  • Research
    • LiDAR
    • Computer Vision
    • Dynamic Object Tracking
    • Multimodal Environment Model
    • Navigation/Planning
    • Road Detection and Tracking
    • Control
    • Egomotion Estimation
  • Publications
  • Jobs

Universität der Bundeswehr München

Breadcrumbs
  1. Home
  2. News
  3. TAS presents two papers at the IROS 2017

TAS presents two papers at the IROS 2017

16 June 2017

Hanno Jaspers and Dennis Faßbender will present their papers "Visual Navigation with Efficient ConvNet Features" and "An Optimization Approach to Trajectory Generation for Autonomous Vehicle Following"at IROS 2017 (September 24-28 in Vancouver, Canada).

Aktuelles

Paper "A Fine-Grained Dataset and its Efficient Semantic Segmentation for Unstructured Driving Scenarios" accepted at the ICPR 2020

"Best Paper Award 1st runner up" for Jakob Dichgans at the MFI

Philipp Berthold and Jakob Dichgans present at MFI 2020

FUSION 2020: Paper "Extended Object Tracking with an Improved Measurement-to-Contour Association" accepted

ITSC 2020: Paper "Fast Object Classification for Autonomous Driving Using Shape and Motion Information Applying the Dempster-Shafer Theory" accepted

Paper "Deriving Spatial Occupancy Evidence from Radar Detection Data" accepted at the IV 2020

ICRA 2020: Paper "Determining and Improving the Localization Accuracy of AprilTag Detection" accepted

Contact

Universität der Bundeswehr München

Institut f. Technik Autonomer Systeme (LRT 8)

Werner-Heisenberg-Weg 39

85579 Neubiberg

Shipping Address

Universität der Bundeswehr München

Gebäude 55

Werner-Heisenberg-Weg 39

85579 Neubiberg

Important Links

  • Contact and Directions
  • The Department of Aerospace Engineering
  • Bundeswehr University Munich
Meta-Navigation Tools
  • Contact
  • Impressum – Legal Disclosure
  • Privacy Statement
  • Press
  • Webmail
  • Login
Zum Seitenanfang springen