Prof. Dr. Wolfgang Seiberl

Prof. Dr. Wolfgang Seiberl
Bewegungswissenschaft
Gebäude 41/100, Zimmer 1120
+49 89 6004 4180
wolfgang.seiberl@unibw.de

Prof. Dr. Wolfgang Seiberl

Kurzvorstellung

2011 promovierte Wolfgang Seiberl an der Technischen Universität München mit Auszeichnung im Fachbereich Biomechanik. In seiner Postdoc-Phase, unter anderem mit Forschungsaufenthalten am Human Performance Laboratory (HPL, University of Calgary), widmete er sich der Neuromechanik der menschlichen Muskulatur im Bereich der Exzentrik und des Dehnungs-Verkürzungs-Zyklus. Im Jahr 2019 wurde ihm die Venia Legendi im Fach Sportwissenschaft von der Technischen Universität München verliehen. Aktuell vertritt Wolfgang Seiberl den Lehr- und Forschungsbereich Bewegungswissenschaft an der Universität der Bundeswehr München.

Forschungsinteressen

Neuromuskuläre Funktionsmechanismen des menschlichen Muskel-Sehnen-Komplex

  • „History dependence“ muskulärer Krafteigenschaften
  • Analyse sportlicher Bewegungs- und Belastungsmuster
  • Evaluation präventiver und rehabilitativer Maßnahmen am muskuloskelettalen System

Forschungsprojekte:

  • Kontraktile, elastische und neuronale Mechanismen der muskulären Leistungssteigerung im Dehnungs-Verkürzungs-Zyklus. (Deutsche Forschungsgemeinschaft – DFG)

Publikationen

ORCID iD

Google Scholar

Journals (peer reviewed)

Seiberl, W., Jensen, E., Merker, J., Leitel, M., & Schwirtz, A. (2018). Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. European Journal of Sport Science, 1-10.

Fortuna R, Kirchhuebel H, Seiberl W, Power GA, Herzog W. (2018). Force depression following a stretch-shortening cycle is independent of stretch peak force and work performed during shortening. Scientific Reports. 2018;8:1534.

Windisch S., Hahn D., Seiberl W., Schwirtz A. (2017). "Physiological responses and energy contributions to firefighting in extreme temperatures do not compare to firefighting in temperate conditions". Frontiers in Physiology. doi: 10.3389/fphys.2017.00619

Fortuna R., Groeber M., Seiberl W., Power G.A., Herzog W. (2017). Shortening-induced force depression is modulated in a time- and speed-dependent manner following a stretch–shortening cycle. Physiological Reports, 5(12), e13279-n/a. doi:10.14814/phy2.13279

Paternoster FK, Hahn D., Stöcker F., Schwirtz, A. and Seiberl W. (2017). Oxygen consumption of gastrocnemius medialis muscle during submaximal voluntary isometric contractions with and without preceding stretch. Scientific Reports, 7(1), 4674. doi:10.1038/s41598-017-04068-y

Windisch, S., Seiberl, W., Schwirtz, A., & Hahn, D. (2017). “Relationships between strength and endurance parameters and air depletion rates in professional firefighters”. Scientific Reports, 7, 44590. doi:10.1038/srep44590

Seppel, G., J. E. Plath, C. Völk, W. Seiberl, S. Buchmann, S. Waldt, A. B. Imhoff and S. Braun (2016). "Long-term Results After Arthroscopic Repair of Isolated Subscapularis Tears." The American Journal of Sports Medicine. doi:10.1177/0363546516676261

Seiberl W., Hahn D., Paternoster F. K. (2016). Reduced activation in isometric muscle action after lengthening contractions is not accompanied by reduced performance fatigability. Scientific Reports, 6, 39052; doi:10.1038/srep39052

Fortuna R., Power G. A., Mende E., Seiberl W. & Herzog W. (2016). Residual force enhancement following shortening is speed-dependent. Scientific Reports, 5, 21513; doi:10.1038/srep2151

Paternoster F. K., Seiberl W., Hahn D. & Schwirtz, A. (2016). Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion. Journal of Biomechanics. doi:http://dx.doi.org/10.1016/j.jbiomech.2016.02.015

Seiberl W., Power G.A., Herzog W. and Hahn D. (2015). "The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis." Physiological Reports 3(5): no. e12401.

Seiberl W., Power G.A., Hahn D. (2015). "Residual force enhancement in humans: Current evidence and unresolved issues". Review. Journal of Electromyography and Kinesiology. 25(4): 571-580.

Karg M, Seiberl W, Kreuzpointner F, Haas JP, Kulic D. (2015). „Clinical Gait Analysis: Comparing Explicit State Duration HMMs Using a Reference-Based Index.” IEEE Trans Neural Syst Rehabil Eng. 2015; 23:319-31.

Schmidt S., Seiberl W. & Schwirtz A. (2015). Influence of different shoulder-elbow configurations on steering precision and steering velocity in automotive context. Applied Ergonomics, 46 Pt A, 176-83.

Plath J. E., Seiberl W., Beitzel K., Minzlaff P., Schwirtz A., Imhoff A. B. and Buchmann S. (2014). "Electromyographic activity after latissimus dorsi transfer: testing of coactivation as a simple tool to assess latissimus dorsi motor learning." Journal of shoulder and elbow surgery, 23, 1162-70.

Seiberl W., Paternoster F., Achatz F., Schwirtz A. and Hahn D. (2013). "On the relevance of residual force enhancement for everyday human movement." Journal of Biomechanics 46(12): 1996-2011.

Seiberl W., Hahn D., Herzog W., Schwirtz A. (2012) "Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action”. Journal of Electromyography and Kinesiology. Volume 22, Issue 1, February 2012, Pages 117-123.

Hahn D., Olvermann M., Richtberg J., Seiberl W., Schwirtz A. (2011). Knee and ankle joint torque-angle relationships of multi-joint leg extension. Journal of Biomechanics, 44(11), 2059-65.

Seiberl W., Hahn D., Kreuzpointner F., Schwirtz A., Gastmann U. (2010). Force enhancement of m. quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes. Journal of Applied Biomechanics, 26, 3, August, p. 256-264

Hahn D., Seiberl W., Schmidt S., Schweizer K., Schwirtz A. (2010). Evidence of residual force enhancement for multi‐joint leg extension. Journal of Biomechanics, 43(8), p. 1503-8.

Hahn D., Seiberl W., Schwirtz A. (2007). Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris. European Journal of Applied Physiology 100(6): 701-9.