Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel

Bachelorprüfung

Prüfungsfach: Werkstoffe und Bauchemie am: 28.03.2018

Die	Aufgaben	sind	nachvollziehbar	(mit	Rechengang)	zu	lösen.	Die	Antworten	sind	ZU
begi	ründen.										
Hilfs	mittel: aus	schlie	ßlich Taschenred	hner	!						

NAME: MATRNR.:	
Mögliche Punktzahl: 100 Erreichte Punktzahl:	Prozentsatz:

Note:

Allgemeine Grundlagen: (17 Punkte)

Aufgabe 1: (1 Punkt)

Welche Baustoffeigenschaften können in Folge von Wasseraufnahme verändert werden? Geben Sie zwei Eigenschaften an.

Aufgabe 2: (2 Punkte)

Leiten Sie die Einheit MPa von ihren SI-Basiseinheiten ab.

Aufgabe 3: (5 Punkte)

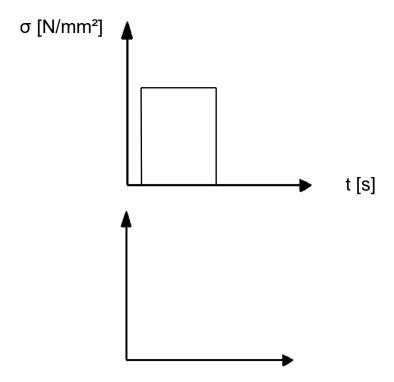
Ein Stabstahl mit der Länge I_0 und dem Querschnitt A erfährt bei einer Temperaturänderung ΔT und gleichzeitig angreifender Kraft F eine Längenänderung ΔI . Wie groß ist die Temperaturänderung ΔT ?

Gegeben sind:

 $I_0 = 200 \text{ cm}$

 $A = 6 \text{ cm}^2$

 $\Delta I = 0.12 \text{ m}$


F = 40 kN

 $\alpha_T = 12*10^{-6} 1/K$

Hinweis: Wählen Sie für den E-Modul von Stahl einen sinnvollen Wert und achten Sie auf einen nachvollziehbaren Rechenweg!

Aufgabe 4: (5 Punkte)

- a) Aus welchen rheologischen Grundmodellen setzt sich das Kelvin-Modell zusammen?
- b) Wie sind die rheologischen Elemente im Kelvin-Modell geschaltet?
- c) Zeichnen Sie den Verformungsverlauf bei gegebener Spannung des Kelvin-Modells in das unten gegebene Diagramm. Achten Sie auf eine vollständige Beschriftung des Diagramms!

Aufgabe 5: (4 Punkte)

- a) Was wird unter dem Sättigungswassergehalt von Luft verstanden?
- b) Wie ist die relative Luftfeuchte definiert?
- c) Wie ändert sich die relative Luftfeuchte in einem abgeschlossenen System bei Temperaturabnahme? Begründen Sie Ihre Antwort.

Chemie: (12 Punkte)

Aufgabe 6: (1,5 Punkte)

Aus welchen Elementarteilchen setzt sich im Bohr'schen Atommodell ein Atom zusammen?

Aufgabe 7: (3 Punkte)

Nennen Sie die drei Grenztypen der chemischen Bindung und geben Sie jeweils ein Beispiel an!

Aufgabe 8: (5 Punkte)

Im Praktikum wurde die Entfärbung einer Kaliumpermanganat-Lösung durch Oxalsäure demonstriert.

a) Um welche chemische Reaktion handelt es sich dabei? Welche Übergänge sind hierfür charakteristisch?

Vervollständigen Sie entsprechende Reaktionsgleichungen:

b)
$$5 C_2O_4^{2-} + \rightarrow \underline{\qquad} CO_2 + \underline{\qquad} e^{-}$$

c) ___MnO₄⁻ + ___e⁻ + ___H⁺
$$\rightarrow$$
 2 Mn²⁺ + ___H₂O

d) Welche Oxidationszahlen weisen die Kohlenstoffatome im C₂O₄²⁻ und CO₂ auf?

Aufgabe 9: (2,5 Punkte)

- a) Nennen Sie die Lowry-Brönsted-Definition für Säuren und Basen!
- b) Geben Sie folgender Reaktion einen Namen:

$$HCI + NaOH \rightarrow NaCI + H_2O$$

- c) Welchen pH Wert hat die entstehende Lösung?
- d) Wie wird die Reaktion zwischen Alkalien des Zementsteins im Beton und der Gesteinskörnung mit alkalilöslicher Gesteinskörnung genannt?

Eisen und Stahl: (23 Punkte)

Aufgabe 10: (4 Punkte)

- a) Zu welchen Zwecken (zwei) wird Stahl kalt verformt?
- b) Nennen Sie zwei Möglichkeiten der Kaltverformung von Stahl?

Aufgabe 11: (2 Punkte)

Warum wird beim Stahlzugversuch für kaltverformten Stahl die Streckgrenze bei einer Dehnung von 0,2 % bestimmt?

Aufgabe 12: (3 Punkte)

Beschreiben Sie folgende Begriffe der Wärmebehandlung von Stahl stichpunktartig:

- a) Glühen
- b) Härten
- c) Vergüten

Aufgabe 13: (6 Punkte)

- a) Beschreiben Sie die auftretenden Unterschiede bei einem Verformungsbruch und einem Sprödbruch! Wie äußern sich die Unterschiede im Bruchbild?
- b) Nennen Sie drei Ursachen, durch die Sprödbrüche auftreten können!

Aufgabe 14: (5 Punkte)

- a) Benennen und zeichnen Sie die Kristallgitter von Eisen!
- b) Welches der beiden Gitter kann mehr Kohlenstoff aufnehmen?

Aufgabe 15: (1 Punkte)

Nennen Sie zwei Größen, die das Stahlgefüge maßgeblich beeinflussen!

Erklären Sie den Unterschied zwischen Stahlbegleitern und Legierungselementen!

NE-Metalle, Metallkorrosion und Schweißen: (15 Punkte)

Aufgabe 17: (2 Punkte)

Ordnen Sie folgende Metalle in die zutreffende Spalte der unten stehenden Tabelle ein: Magnesium, Kupfer, Aluminium, Zink

Leichtmetalle	Schwermetalle			

Aufgabe 18: (2 Punkte)

- a) Was geschieht beim sogenannten Feuerverzinken?
- b) Bei welcher Temperatur findet dieser Prozess statt?

Aufgabe 19: (4 Punkte)

- a) Was wird unter chemischer Korrosion verstanden?
- b) Welche Stoffe können eine chemische Korrosion verursachen? Nennen Sie drei.

Aufgabe 20: (4 Punkte)

- a) Beschreiben Sie stichpunktartig den Ablauf während des Lichtbogen-Handschweißens.
- b) Wo findet es in der Praxis Anwendung?
- c) Wie bezeichnet man den Bereich um eine Schweißnaht?

Aufgabe 21: (3 Punkte)

Von welchen drei Parametern hängt die Schweißbarkeit ab?

Holz: (17 Punkte)

Aufgabe 22: (3 Punkte)

- a) Erklären Sie den Begriff Ausgleichsfeuchte.
- b) Wie hoch ist die Ausgleichsfeuchte von Holz in geschlossenen, beheizten Räumen?
- c) Welche Folgen hat ein Einbau bei Feuchtegehalten ober- oder unterhalb der Ausgleichfeuchte?

Aufgabe 23: (5 Punkte)

Um die Feuchte eines Vollholzbalkens b/h = 80/160 mm zu bestimmen, wird eine 100 mm lange und 601,6 g schwere Probe bei 105 °C bis zur Gewichtskonstanz getrocknet. Es wird eine Holzfeuchte von 12 M.-% ermittelt. Das Volumen schwindet um 5 %.

- a) Berechnen Sie die Masse der getrockneten Probe.
- b) Berechnen Sie die Darrdichte der Probe.
- c) Eine identische Probe wird unter Wasser gelagert, wodurch die Feuchte von 12 auf 30 M.-% zunimmt. Berechnen Sie die Massezunahme und nennen Sie den Fachbegriff für diesen Feuchtebereich, ausgehend von europäischen Hölzern. Wie verhält sich das Volumen bei einer weiteren Wasseraufnahme über 30 M.-%?

Aufgabe 24: (6 Punkte)

- a) Nennen Sie die drei Hauptbestandteile, aus denen Holz aufgebaut wird.
- b) Welcher der Bestandteile ist wesentlich für die Zugfestigkeit und welcher für die Druckfestigkeit verantwortlich?
- c) In welchem Verhältnis stehen die Zugfestigkeiten einer senkrecht und einer parallel zur Faserrichtung geprüften Holzprobe?

Aufgabe 25: (3 Punkte)

- a) Was versteht man unter dem Sammelbegriff Sperrholz?
- b) Welchen Vorteil bietet Sperrholz gegenüber Vollholz? Worauf ist dieser zurückzuführen?

Kunststoffe und Bitumen: (16 Punkte)

Aufgabe 26: (6 Punkte)

Kunststoffe können nach ihrer Molekularstruktur eingeteilt werden. Beschreiben Sie den Ordnungszustand der Makromoleküle in Thermoplaste, Duroplaste und Elastomere! Geben Sie auch jeweils ein Beispiel für einen solchen Kunststoff!

Aufgabe 27: (2 Punkte)

- a) Wie nennt man das von Goodyear entwickelte Verfahren, um Kautschuke zu Elastomeren zu verarbeiten?
- b) Welches chemische Element ist dafür notwendig?

Aufgabe 28: (4 Punkte)

Kunststoffe werden des Öfteren mit anorganischen Stoffen (z.B. Quarzmehl, Sand etc.) verfüllt. Wie wirkt sich diese Maßnahme auf folgende Eigenschaften der Kunststoffe aus?

	Nimmt zu	Nimmt ab
Schwinden		
Zugfestigkeit		
Zeitstandfestigkeit bei Druckbelastung		
Kriechverhalten bei Druckbelastung		

Aufgabe 29: (2 Punkte)

- a) Nennen Sie eine spektroskopische Methode zur schnellen und zerstörungsfreien Bestimmung von Kunststoffen!
- b) Nennen Sie eine Möglichkeit, halogenhaltige Verbindungen in Kunststoffen (z.B. Flammschutzmittel in Polystyrolschaum) nachzuweisen!

Aufgabe 30: (2 Punkte)

a) Warum besitzt Bitumen keinen festen Schmelzpunkt?

b) Warum ist Bitumen zur Herstellung von Bodenbefestigungen von Tankstellen ungeeignet?