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Abstract In this paper we survey the recent advances and mathematicalfoun-
dations of gene-environment networks. We explain their interdisciplinary implica-
tions with special regard to human and life sciences as well as financial sciences.
Special attention is paid to applications in Operational Research and environmen-
tal protection. Originally developed in the context of modeling and prediction of
gene-expression patterns, gene-environment networks have proved to provide a
conceptual framework for the modeling of dynamical systemswith respect to er-
rors and uncertainty as well as the influence of certain environmental items. Given
the noise-prone measurement data we extract nonlinear differential equations to
describe and investigate the interactions and regulating effects between the data
items of interest and the environmental items. In particular, these equations re-
flect data uncertainty by the use of interval arithmetics andcomprise unknown
parameters resulting in a wide variety of the model. For an identification of these
parameters Chebychev approximation and generalized semi-infinite optimization
are applied. In addition, the time-discrete counterparts of the nonlinear equations
are introduced and their parametrical stability is investigated by a combinatorial
algorithm which detects the region of parameter stability.Finally, we analyze the
topological landscape of the gene-environment networks interms of structural sta-
bility and we conclude by a discussion of the structural frontiers, challenges and
an outlook.
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1 Introduction

In this paper we survey recent advances ongene-environment networks, a new and
pioneering research area of Operational Research in the fields of life and human
sciences. Gene-environmentnetworks, originally introduced in the context of mod-
eling and prediction of gene-expression patterns, providea conceptual framework
for the mathematical analysis of highly interconnected systems. In the last decade,
the development of high-throughput technologies resultedin an accelerated gen-
eration of massive quantities of technical, financial, environmental and biological
data. The availability of large data sets now allows to gain deeper insights in the
dynamic behaviour of complex systems and opens promising avenues for further
scientific progress in medicine, health care, technology and life sciences. We will
demonstrate this on the important issue of environmental protection andCO2-
emission control in Section 8 where we study theTechnology-Emissions-Means
modelof S. Pickl[55], developed for a mathematical analysis of Joint Implemen-
tation Programs in the framework of the Kyoto protocol.

Achieving such a deep understanding of real-world problemsnecessitates the
development of advanced mathematical and computational methods that allow to
reveal the dynamics of the system under consideration. Suchcomplex systems for
example arise in computational biology in the context of theprediction of gene-
expression patterns based on microarray measurements. At early stages of model-
ing so-calledgenetic networkshave been used for an investigation of the dynamic
relationships between the genes. Then, it turned out that a reasonable modeling
could not be done without a consideration of the environment. Therefore, we and
our colleagues further enhanced and mathematically improved the genetic net-
works and developed the concept ofgene-environment networks. Recently, it has
been shown that this approach offers a conceptual frameworkfor a wide range of
OR applications and that led to the development of thesocio-econo-environment
networks.

To give the reader an impression of how this approach works wewill shortly
recall genetic networks and gene-environment networks, always bearing in mind,
that we will put this in a general framework for modeling of phenomena in OR.

Genetic networksin the classical sense are defined by weighted directed graphs
composed of nodes representing genes, and of arcs with functional weights stand-
ing for the influences between the genes; moreover, each nodecan be equipped
with a (level) function of the other genes’ combined effectson it. For each gene
we wish to predict how it influences the other genes. Various analytic and nu-
merical tools have been developed for the construction and understanding of such
networks [1,13,15,25,22–24,27,34,52,54,66,68,76,84–87,89,90].
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In [76,77,84–87], we firstly extended genetic networks togene-environment
networks. Here, the new nodes are environmental items, such as toxinsand ra-
diation, that often exercise effects in mutually catalyzing or multiplicative ways.
When we turn to modeling and prediction of gene-expression patterns, two quan-
tities have to be coupled: thestates(concentration levels) of gene-expressions,
and theirdynamics(rates of change). In addition, environmental effects haveto
be observed resulting in to a certain kind of duality and bilevel problems [84,86].
Indeed, we are concerned with two classes. One class of variables contains param-
eters under perturbation that lead to a response by the variables of the remaining
second class.

Although gene expression data on a genomic scale is nowadaysavailable in a
standardized form according to theMinimum Information About a Microarray Ex-
periment(MIAME) [11], it is nevertheless affected by imprecision. Therefore, we
have to include noise-prone data into our model and have to beaware of measure-
ment and reliability problems. As introduced in [77,84,87], we represent various
kinds of errors byintervalsanderror terms[43].

To specify the (nonlinear) dynamics of our gene-environment networks we use
a matrix representation of the relevant systems under uncertainty. This constitutes
the basis for both a testing of thegoodness of data fittingandprediction base.
The concerted effect of our matrices, each of them standing for a linear transfor-
mation, can be expressed in terms of equilibrium, expansion, contraction, cyclic-
ity or mixed asymptotic properties; these behaviours contribute tostability or in-
stability. Differently from the stepwise or time-discrete dynamics which can be
called aforward problem, the problem of parameter estimation is aninverseone.
Those discrete “forward” orbits are yielded by the matrix multiplication, itera-
tively performed; we can analyze them by the combinatorial procedure of Brayton
and Tong [10,76]. This algorithm generates and observes a sequence of compact
neighbourhoods of the origin. Choosing these neighbourhoods as polytopes allows
a translation into the combinatorial language of their vertices; on them the con-
struction principle step by step executes a finite number of matrix multiplications.
We note thatstabilityclassically has a positive interpretation in terms of a local or-
der, a coming to a rest (recovering) or as the robustness of a system against small
perturbations [29]. But there is also a negative meaning: any biosystem which is
unable to adapt to a changing environment, is in a serious danger caused by bacte-
ria, viruses, radiation and other attacks. A stability analysis can also serve for the
acceptance or rejection of a mathematical model, i.e., to a testing of the goodness
of data fitting and, if needed, for a model improvement. In fact, if any state dimen-
sion of the model behaves unbounded under slight parametricvariations, then this
contradicts the natural-technical limitation of the genetic and environmental levels
by bounded intervals.

Complexityis a central property of gene-environment networks and of any ap-
proach to investigate them. Hence, we impose upper bounds into the parameter
estimation problem and, by this, force the number of edges todiminish and make
the parameter estimation become amixed continuous-discrete programming prob-
lem. Because of the modeling deficiencies of that problem and foralgorithmical
reasons, we relax the inequality constraints to become continuous and depend-
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ing on the environmental items, maybe also on time and, very importantly, on
errors and uncertainties located in intervals, the problembecomes one fromsemi-
infinite programming(SIP). In addition, by allowing dependence of the domain of
combined external effects on the unknown environmental parameters, we obtain
a generalized semi-infinite programming(GSIP) problem. Herewith, we permit
regulation of the network’s edge density in a more refined andsoft way, and we
can more confidently guarantee existence and tractability of genetic and metabolic
processes. In [77,84–87] we connected the discrete mathematics of networks with
GSIP, by this introducing a new and pioneering scientific approach into computa-
tional biology. GSIP is an advancing wide problem class withmany motivations,
results, future challenges and practical applications [65,62,81].

2 Gene-Expression and Environmental Data, Modeling and Dynamics

2.1 Modeling by Intervals

Gene-environment networks and their inherent informationwere primarily mod-
eled by time-continuous systems in form of autonomous ordinary differential equa-
tions (ODEs):

Ẋ = F(X).

Here, thed-vectorX = (X1, X2, . . . , Xd)
T comprises the positive concentration

levels of proteins (or mRNAs, or small components) and certain levels of the envi-
ronmental factors, whereasẊ (= dX

dt
) represents a continuous change in the gene-

expression data, andF : Xd → Xd is composed of nonlinear coordinate functions
Fi : Xd → X (i = 1, 2, . . . , d) (cf. [13,33,63,76] for different dimensions). As
the nonlinear functionF is determined by primarily unknown parameters we have
to deal with identification based on noise-prone data vectors X̄ obtained from mi-
croarray and environmental measurements. For this we have [77]

Xi = X̄i ± Erri (i = 1, 2, . . . , d),

where Erri > 0 denotes the maximal error to be made at the measurements of the
gene- or environmental expression levelXi. This measurement error leads us to
assume that the stateX has to lie in the interval[X̄i − Erri, X̄i + Erri] and, hence,
the state vectorX = (X1, X2, . . . , Xd)

T has to be in the parallelpipe

d∏

i=1

[X̄i − Erri, X̄i + Erri].

Here, we can speak of confidence intervals and a confidence parallelpipe. Those
parallelpipes and intervals usually come from a perspective where functional de-
pendencies among any two of the errors made in the measurements of the gene-
expression environmental levelsXi are not taken into account explicitly [8]. More-
over, they are usually smaller than the ellipsoides and their orthogonal projections
into the 2-dimensional Cartesian planes, respectively [8]. Indeed, those confidence



A Survey on OR and Mathematical Methods for Gene-Environment Networks 5

ellipsoids are obtained with respect to stochastic dependencies of the error vari-
ables. Those dependencies are the case in reality, e.g., in microarray experiments
and in environmental studies as well. In reverse, any ellipsoid can be inscribed into
a sufficiently large parallelpipe which, in addition, couldbe suitably located and
directed in space around its eigenaxes. According to his/her experience and wish
for confidence (trust region), the modeler can enforce a certain size of the paral-
lelpipe by additional constraints on the interval limits, which are the variables in
our parameter estimation. We underline that a direct modeling with ellipsoides and
corresponding parameters is possible, too. Our work is a pioneering one, demon-
strating a basic approach with the help of intervals. The size of the intervals and,
by this, the amount of error in real networks, is an outcome ofour parameter esti-
mation which we do by optimization theory based on real data given. The follow-
ing subsections provide closer explanations and motivations about intervals. The
reader may skip them on first reading and directly turn to Subsection 2.2.

2.1.1 Interval Analysis and Arithmetic

As we are interested in modeling measurement errors and uncertainty by in-
tervals we will now have a closer look on interval analysis. Let us refer to any
intervalsI, J ⊆ X recalling that also points (and thus exact data) may be consid-
ered as intervals, and let somea ∈ X be given; we define [77]:

• I + J := {x + y|x ∈ I, y ∈ J },

• I − J := {x − y|x ∈ I, y ∈ J },

• I · J := {xy|x ∈ I, y ∈ J },

• I/J := {x/y|x ∈ I, y ∈ J }, if 0 /∈ J ,

• a + J := {a + x|x ∈ I},

• a · J := {ax|x ∈ I},

• If K is a scalar- or vector-valued function onX (or Xd), then, the set-valued
mappingĨ 7→ K(Ĩ) of intervals (orP̃ 7→ K(P̃) of parallelpipes fromXd) is

defined byK(Ĩ) :=
{
K(x)|x ∈ Ĩ

}
(andK(P̃) likewise).

If I,J ,K are intervals, then the following holds by [45]:

• commutativity:I + J = J + I andI · J = J · I,

• associativity:(I + J ) + K = I + (J + K) and(I · J ) · K = I · (J · K),

• subdistributivity:I · (J +K) ⊆ I ·J +I ·K andα · (I +J ) = α · I +α · J ,
whereα ∈ X (the distributive law doesnotalways hold).
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In addition, we briefly describe the comparison of “orders” (“placements”) of in-
tervals in the real line [14,19,77]. For this, letI = [u−, u−](u− ≤ u−) and
J = [v−, v−] (v− ≤ v−) be closed intervals inX. Then, we say that

• I < J (or equivalently,J > I), if u− < v−,

• I = J , if I ⊆ J andI ⊇ J ,

• I ≤ J (or equivalently,J ≥ I), if for all x ∈ I \ J we havex < J (or,
equivalently,I ∩ J 6= ∅ and for ally ∈ J \ I we havey > I).

We can restate our interval arithmetics by turning tointerval numbersand inter-
val matrices. Here, we define aninterval numberas an ordered pair of real num-
bers[u, v], whereu ≤ v. Two interval numbers[u−, u−] and[v−, v−] areequal,
[u−, u−] = [v−, v−], if and only if u− = v− and u− = v−. If [u−, u−] =
[v−, v−], thenu− ≥ v− andu− ≤ v−.

Referring to any basic operation◦ ∈ {+,−, ·, /}, the arithmetic operations on
intervals can be represented by

[u, v] ◦ [w, t] = {x ◦ y | u ≤ x ≤ v, w ≤ y ≤ t} .

Now, we can state:

• addition:[u, v] + [w, t] = [u + w, v + t];

• subtraction:[u, v] − [w, t] = [u − t, v − w];

• multiplication:[u, v] · [w, t] = [min{uw, ut, vw, vt}, max{uw, ut, vw, vt}];

• division: [u, v]/[w, t] = [u, v] · [1/t, 1/w], where0 /∈ [w, t].

We additionally note that in the presence of uncertaintyinterval matricesbecome
important. The entries of the respective matrix are closed intervals and the matrix
can be represented in the form




[
a11, a11

]
. . .
[
a1m, a1m

]
[
a21, a21

]
. . .
[
a2m, a2m

]

... . . .
...[

an1, an1

]
. . .
[
anm, anm

]




.

For more notions and details of interval algebra and comparison, including binary
fuzzy operator and membership values, we refer to [14,9,19,31,45,46,61].
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2.1.2 A Note on Linear Programming

In most of the optimization problems when a model is built, itis assumed
that certain data are used. The values obtained are exact, but in the real world
this is seldomly true. The data known and the values obtainedare in some certain
ranges, because there the assumptions are approximately true. For that reason,
in LP programmodels, data uncertainty is unavoidable. We note that in an LP
program withinterval coefficientsthe solutions can be found by using simplex
method [64,61].

2.2 Continuous Differential Equations on Gene-Environment-Expressions

Let us now return to our gene-environment networks and assume that the gene-
environmental patterns may be represented by continuous differential equations.
With respect to different stages of modeling we will distinguish two situations:

(I) Networks withn genes (by neglecting the environmental items)
(II) Networks withn genes as well asd − n environmental items.

For this, we divide the vectorX of concentration levels into two parts and obtain

X = (X1, . . . , Xn, Xn+1, . . . , Xd)
T ,

whereX1, . . . , Xn refer to then genes andXn+1, . . . , Xd to thed − n environ-
mental items, respectively. When we are concerned with models of type (I),Xi

denotes the expression level of genei andX stands for the firstn coordinates of
thed-vectorX. Prepared by this notation and the interval arithmetics of the previ-
ous sections we can now introduce the continuous models.

2.2.1 Gene-Networks

A dynamical system ofn genes (without any environmental items) can be
given by the continuous differential equation

(CE)gene Ẋ = A(X)X,

where the (interval) matrixA may depend onX (cf. [77,86]). From this equation
we may obtain the following discrete-time equation and dynamics:

(DE)gene X(k+1) = A(k)X(k) (k ∈ N0).

Here,A(k) can be taken as interval matrices and the stability can be investigated
by Brayton and Tong’s algorithm [4,86].
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2.2.2 Example for a Gene-Network

For an example in dimensionn, we mention the following system of differen-
tial equations [26,27,87]:

Ẋi = −δiXi +

αi∑

α=1

(regf+)α +

βi∑

β=1

(regf−)β + ci (i = 1, 2, . . . , n).

In this system, real- or interval-valued synthesis or degradation of genei is repre-
sented byci ≥ 0 andδi ≥ 0, whereas activation and inhibition are determined by
the sums. We note that the activation and inhibition functions regf+ and regf−

have been shown to possess a sigmoid shape [88]. The resulting (n × n)-matrix
A(E) has the entries

aii(X) =
ci

Xi

− δi + kii

Xaii−1
i

Xaii

i + θaii

ii

(i = 1, 2, . . . , n),

aij(X) = kij

X
aij−1
j

X
aij

j + θ
aij

ij

(i, j = 1, 2, . . . , n; i 6= j)

with kij and θij , aij(X) being any nonnegative reals or intervals, respectively.
Then, all or some of the parameters can be estimated with the help of the data
from DNA-microarray experiments.

2.2.3 Gene-Environment Networks

In order to incorporate environmental items into our continuous model un-
der the presence of noise and uncertainty we extended in [76,77,86] the model
from [23,27] and provided the continuous equation

(CE) Ẋ = A(X)X, X(t0) = X
(0).

The associated system matrixA(X) is a (d×d)-matrix whose entries are intervals,
defined by a family of functions which include unknown parameters. Now, inter-
vals represent uncertainty with respect to the interactions between the genes, to the
effects between the environment and the genes, or between environmental items.
The initial valueX(0) = (X

(0)
1 , X

(0)
2 , . . . , X

(0)
d )T consists of the interval-valued

levels obtained by the first measurementX̄(t0) = X̄(0). As this may result in a
large and highly interconnected network we will later on restrict on an approxi-
mate model and network. For this we will improve our model by imposing bounds
on the admissible number of regulating effects exercised per gene and also on the
effects of the environment onto the genes.



A Survey on OR and Mathematical Methods for Gene-Environment Networks 9

2.2.4 Example for a Gene-Environment Network

To provide a simple example for a gene-environment network under uncer-
tainty we introduce an interval-valued2-vectorX = (X1, X2)

T denoting the data.
The interval-valued system matrixA(X) may be influenced by nine unknown real
parametersa1, a2, . . . , a9 [84]:

Aa1,a2,a3,a4,a5,
a6,a7,a8,a9

(X) :=

(
[a1, a2]X1 [a3X2

2, a4X1X2] + a5

a6 cos(X2) + [a1, a8] sin(X1) [a7, a8] exp(a9X2
1)

)
.

Here, polynomial, trigonometric, exponential but otherwise logarithmic, hyper-
bolic, spline, etc., entries represent any kind ofa priori information, observation
or assumption in terms of growth, cyclicity, piecewise behaviour, etc. [22]. In [70,
71], we studied the case of approximation by splines.

2.2.5 Identification and Stability

With regard to the parametrized entries of the model(CE) we have to examine
the respectiveoptimizationand must provide astability analysis. Both issues will
lead tobilevel problems[25,23,38,65,77,81,86]. In case of optimization we have

to deal with the problemminy

l−1∑
κ=0

∥∥∥Ay

(
X̄(κ)

)
X̄(κ) − ˙̄X(κ)

∥∥∥
2

∞
and by this with

approximation based on squared errors. The vectory comprises a subset of all
the parameters and the vector˙̄X(κ) consists of interval-valueddifference quotients
raised on theκth experimental datāX(κ) and on step lengths̄hκ := t̄κ+1 − t̄κ
between neighbouring samplings times [22,27,77]. As we make use of intervals
we insertedChebychevor maximum norm‖·‖

∞
generating the topology of uni-

form convergence (cf. Section 5). Until now we have only referred to a certain
class of parameters, but, as we have mentioned earlier, our problems bears some
”duality”. Indeed, the remaining parameters not comprisedin the vectory permit
a stability analysis. For this, we can capitalize on the structure of(CE) that al-
lows a time-discretization represented by a sequence of matrix multiplications. A
combinatorial algorithm on polyhedra sequences can then beapplied to detect the
regions of stability. In Section 4 we will see that this recursion admits a stability
analysis of combinatorial and geometrical type with polytope series [23].

2.2.6 The Influence of the Environment

The interaction between the genes and the environment is frequently character-
ized asepigenetic. This refers to stable changes of gene expression patterns in re-
sponse to environmental factors without any mutations in the DNA sequence [83].
DNA methylationis one of the most common epigenetic factors, but alsoacety-
lation, ethylationandphosphorylationprovide important epigenetic regulations.
Studies on identical twins showed that although they have the same genomic se-
quences and genes, but no epigenetic difference during the early stages of life,
adult twins possessed very different epigenetic patterns affecting their genetic por-
trait [21]. Moreover, nutritional conditions of grandparents can have phenotypic



10 Gerhard-Wilhelm Weber et al.

consequences in their grandchildren [18,40]. Lifestyle, nutritional supplementa-
tion, and environmental conditions can have a very important impact on inheri-
tance by changing the DNA sequence with mutations and also byaffecting epi-
genetic pattern of DNA through methylation, ethylation, etc., without changing
the DNA sequence. Hence, for a better explanation of the complexity of nature,
genetic networks cannot be studied solely without taking into consideration the
environmental factors which affect epigenetic patterns and, thus, gene expression
patterns [86].

3 Extended Dynamics of Gene-Expression and Environmental Patterns

As we have mentioned above, the continuous model(CE) provides a convenient
multiplicative structure. We note, that the gene-model(CE)geneexhibits the same
structure, that provides the basis of the recursive iteration idea [23]. In [89,90]
a model extension has been proposed that emphasized nonlinear interactions and
introduced affine linear shift terms which provide a more accurate data fitting.
In order to maintain the multiplicative recursion propertyof (CE)gene, we shall
reconstruct the form of(CE)gene by a dimensional model extension. This will
even allow to represent our followingaffinecontinuous equation which includes a
variable shift vector [66–68,76,86]:

(ACE)gene Ẋ = A(X)X + C(X).

We call this decomposition anormal form, anunfolding[7,12,30,38] or a(gen-
eralized) additive model[30,70–72]. Here, the vectorC(X) represents environ-
mental perturbations and contributions and may be, e.g., exponential, logarithmic,
trigonometric or piecewise polynomial (splines). In addition, it displays special
effects on each gene emanated from any environmental item itself or cumulatively
by all or several items working together or catalyzing each other. This cumulative
effect might not be further divisible or quantifiable by the single effects.

With (ACE)genewe included the disturbances and genetic changes caused by
the environment, in long and in short term, but we lost the convenient recursive
idea of matrix multiplication first of all. This drawback canbe overcome by in-
creasing the dimension of the state space tod := m + 2n such that we reconstruct
that product structure. This reconstruction was originally presented in [86] and has
been modified by interval-valued entries in [77]. By splitting the shift vectorC(X)
of (ACE)geneinto the sum W(X)X̌ + V(X) we obtain the decomposition

(ACE) Ẋ = A(X)X + W(X)X̌ + V(X).

Here, them-vector (of intervals)

X̌(t) =
(
X̌1(t), X̌2(t), . . . , X̌m(t)

)T

comprises the levels of them environmental factors that can affect the gene-
expression levels and their variation.
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The single effectsof the factorsX̌ℓ on the gene-expression dataXi can be
incorporated by the weight matrix W= (wiℓ) i=1,...,n

ℓ=1,...,m
into the system, and by this

then genes and them environmental factors are individually matched. In addition,
the column vector V(X) = (vi)i=1,...,n gene-wisely comprises all the cumulative
effects of all (or several) environmental items influencingthe genes together. We
represent thiscumulation effectby a new,(m+1)st environmental item, taken into
account for each gene.

We note that thetotal effectof the environment on the expression levelXi of
genei is given by

m∑

ℓ=1

wiℓ(X)X̌ℓ + vi.

Now, we overcome the more additive form of the affine-continuous model
(ACE) by an idea worked out and improved in [66–68,76,77,86]. For this, we
define thegene-environmentmatrix

Ǎ(X) :=
(

W(X) | diag(V(X))
)
,

where the second block represents V(X) as a diagonal matrix with intervals on the
diagonal. In addition, we set

X̌∨ :=
(
X̌T , eT

)T

with then-vector e:= (1, 1, . . . , 1)T and with

W(X)X̌ + V(X) = Ǎ(X)X̌∨,

we obtain the following representation of(ACE):

Ẋ = A(X)X + Ǎ(X)X̌∨.

Finally, by introducing the(d = m + 2n)-vector

X :=

(
X
X̌∨

)
,

and the(d × d)-matrix

A(X) =

(
A(X) Ǎ(X)

0(m+n)×n 0(m+n)×(m+n)

)
=




A(X) W(X) diag(V(X))
0m×n 0m×m 0m×n

0n×n 0n×m 0n×n


 ,

we arrive at the extended (mutliplicative) system(CE) together with an extended
initial value as follows:

(CE) Ẋ = A(X)X, X
(0) = X(t0) =

(
X(0)

X̌∨,0

)
.

We note that(CE) and the corresponding initial value problem for(ACE) can be
considered asequivalent[77]. From microarray experiments we obtain the ini-
tial expression values̄X(0), whereas the initial state of the special or cumulative
environmental factors̄̌X∨,0 come from environmental observations.
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Theℓth environmental factořXℓ permits ”gene-switching”, i.e., if theℓth spe-
cific environmental factořXℓ is regarded as affecting any gene-expression level,
then, initially, theℓth component of¯̌X(0) is considered to be1, otherwise0. Here,
1 (0) in ¯̌X

(0)
ℓ means that theℓth environmental factor is “switched on” (or “off”,

respectively). In contrast, the cumulative environmentaleffect is considered to be
“switched on” always.

In case of(CE), equipped with the initial valuěX∨(t0) = ¯̌X(0), the time-
dependent variablěX∨(t) is constant:X̌∨ ≡ ¯̌X∨,0. Indeed, we have not included
any environmental dynamics, but our modeling framework allows us to do this. In
fact, by turning the0 matrices in the second and the third (block) columns ofA(X)
to matrices which are different from0, we can permit variable and interacting
factors of the environment. Allowing also the0 matrices in the first column to have
nonzero entries, then this would express that the genes influence various items of
the environment. In addition, the vector V(X) and the weight matrix W(X) could
also depend on the variablĕX or evenX̆∨. This higher generality of(CE) could
also be implied into the parameter estimation from Section 5.

4 The Time-Discretized Model and Stability Analysis

4.1 Time-Discretization

With regard to a numerical analysis of our time-continuous modeling of gene-
expression patterns we introducedRunge-Kutta methods(RK) in [17]. Later on, a
different RK method calledHeun’s methodwas applied in some extended model
space in [66–68]. This method constitutes a modification of Euler’s method; it is
a more illustrative, explicit and the simplest RK approach [16,17,66–68]. When
we apply Heun’s method on the extended system(CE) we obtain the following
time-discrete equation:

X
(k+1)

= X
(k) +

hk

2
A
(
X

(k)
)
X

(k) +
hk

2
A
(
X

(k) + hkA
(
X

(k)
)
X

(k)
)

×
(

X
(k) + hkA

(
X

(k)
)
X

(k)
)

=

[
I +

hk

2
A
(
X

(k)
)

+
hk

2
A
(
X

(k) + hkA
(
X

(k)
)
X

(k)
)(

I + hkA
(
X

(k)
))]

X
(k)

= A
(k)

X
(k) (k ∈ N0).

For this equation, but also in the Eulerian case and some other methods [17,23],
we can find a representation ”multiplication-form”:

(DE) X
(k+1) = A

(k)
X

(k).
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With this model we can now calculate predictions of future expression values. For
this we introduce the data vector

X̄
(κ) :=

(
(X̄(κ))T , (X̌∨,κ)T

)T

(κ = 0, 1, . . . , l − 1),

which comprises the results from DNA microarray experiments and environmental
measurements. The approximations (predictions) are denoted bŷX(κ) and we set

X̂
(0) = X

(0).

Thekth approximation (prediction) is then calculated by

X̂
(k) (:= X

(k)) = A
(k−1)(A(k−2) · · · (A(1)(A(0)

X
(0))) · · · ) (k ∈ N0).

We note that the quality of prediction, both theoretically and by numerical exam-

ples, was investigated in [66–68,89,90].

4.2 Discrete and Continuous Gene-Environment Networks

Equipped with the discrete model(DE) and the continuous model(CE), we can
introduce ourgene-environment networksas an extension and improvement of the
genetic networks.

In the case of the time-discrete dynamics of(DE), we can define the(discrete)
gene-environment networkin the following way: Theverticesof this network rep-
resent the genes and environmental items, whereas theweighted edgesdisplay their
interactions.

When we look at the time-continuous dynamics, represented by (CE), we can
introduce the(continuous) gene-environment networksin a similar way. Here, the
vertices stand again for the genes and environmental items,whereas the edges are
now weighted with functional values.

Since the problems related with these gene-environmentsubnetworks arelarge-
scaleones, they are very costly to solve. Even in case where the problem is solv-
able in polynomial time, the huge data set lets the solution become very expen-
sive. We acknowledge this problem by simplifying the regarded gene-environment
network and, herewith, all its substructures, in a selective and robust way. This
networkrarefactionwill be introduced in Section 5 and continued in Section 6.

4.3 Matrix Arithmetics

We briefly recall some elements of the interval-valued version [77] of our matrix
algebra and, in particular, multiplication [67,68]. Let usrefer to thecanonicalform
of matrix partitioning presented for the time-continuous model in Section 3. The
product of two canonical matricesA(k), which are the foundation of our networks,
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is a canonically formed matrix again. After some reorganization and notation we
get

A
(k) = I +

hk

2

(
A(X(k)) Ǎ(X(k))

0 0
P P̃
0 0

)
+

h2
k

2

(
Q Q̃
0 0

)
,

with

P = A
(
X(k) + hk

(
A(X(k))X(k) + Ǎ(X(k))X̌∨,k

))
,

P̃ = Ǎ
(
X(k) + hk

(
A(X(k))X(k) + Ǎ(X(k))X̌∨,k

))
,

Q = A
(
X(k) + hk

(
A(X(k))X(k) + Ǎ(X(k))X̌∨,k

))
A(X(k)),

Q̃ = A
(
X(k) + hk

(
A(X(k))X(k) + Ǎ(X(k))X̌∨,k

))
Ǎ(X(k)),

such thatA(k) has its finalcanonicalblock form, too:
(

Â(X(k)) ˇ̂A(X(k))
0 Id

)
.

About the form of two or more multiplications of such matrices A(k) and the
spectral theory which is important for our stability theorywe refer to [84,86,87].

4.4 Stability Analysis

In this subsection we will turn to a stability analysis. For this the finite setA :=
{A0, A1, . . . , Aℓ−1} of matrices with interval-entries be obtained from the time-
continuous model(CE) with a sufficiently fine discretization ofA, W and V and
entry-wise optimization [66–68,77] (without any confusion with the previous mean-
ing of A(k) askth iterate). In addition, the matrix set of all the finite matrix multi-
plications of elements fromA be denoted byA′. Now we can state the following
definition of stability that was first given in [10] and has been extended by us di-
mensionally and by interval-valuedness in [87].

Definition 1 ([77]) The matrix setA (herewith,(DE)), is calledstableif for ev-
ery neighbourhood inCd (or relative neighbourhood inCn × {0′n+m}), U , of the
origin 0d (or affine origin0′d, given from0d by shifting to1 some of the middlem
coordinates and all of the lastn coordinates), there exists a (relative) neighbour-
hoodV of the origin0d (or 0′d) such that for eachA ∈ A′ it holds: AV ⊆ U .

In case of constant time shifts, i.e.,ht ≡ h (t ∈ R
+
0 ), there is a continuous orbit

piecewisely defined along all the intervals[kh, (k + 1)h) for the time-continuous
system(CE). If, in addition, the initial sectionE(t), t ∈ [0, h) is a constant paral-
lelpipe, then the dynamics is piecewise constant. By this, we can define astability
condition analogously as in the previous definition. For that case and when we
concentrate on Euler discretization, having turned from the scalar- to our interval-
valued model framework, if the functionA of the right-hand side of(CE) is Lips-
chitzian, we learn the following theorem from [84,87]. It extends the real-valued
case where it even holds for some Runge-Kutta discretizations presented [86].
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Theorem 1 ([87]) Let the mapx 7→ A(x) (x ∈ Xd) be Lipschitzian. If the Eu-
lerian time-discrete systemXk+1 = AkXk (k ∈ N0), X0 ∈ Xd, as in (DE),
some appropriatehmax > 0 being given, is stable for all valueshk ∈ [0, hmax],
then the time-continuous dynamics defined by the systemẊ = A(X)X (with h > 0
sufficiently small) is also stable.

After some dilatation, the parallelpipesX can be embedded into neighbour-
hoods of0d. Multiplying our matrices and vectors (over intervals) andobserving
the resulting discrete orbits can be characterized by the scalar-valued case that
was introduced and investigated in, e.g., [10,23,86]. Indeed, each member in an
orbit of our set-valued products is representable as the convex hull of the corre-
sponding common matrix products that we obtain by focusing on all of the finitely
many combinations of the involved interval endpoints. By referring to these end-
point combinations, we actually reduced the stability condition to the classical one
for the scalar-valued case [77,84,86]. Herewith, we have carried over the stability
theory and algorithmic methods of our and our colleagues’ former investigations,
e.g., the previous condition of parametric stability can becharacterized analyti-
cally, spectrally and by Lyapunov functions.

4.5 Modeling Metabolic Gene Networks

With this subsection we very briefly introduce into another area of networks in
computational biology where our mathematical methods can be applied. In the
paper [84] gene-environment networks and metabolic networks become treated
by a unified approach given by our matrix-valued concept and calculus. Those
genetic networks which are calledmetaboliccan also be modeled via its pathways
by a dynamical modeling as studied in [53,54]. If there areN reactions, ifvi(E)
is the rate of theith gene in the reaction network(i = 1, 2, . . . , N) andS is the
matrix whose elements are the coefficients (weights) of the genes in the network,
then the dynamical model can be viewed as

(CE)metabolic Ġ = SV (G).

Here,G denotes the vector consisting of (metabolic) concentrations of the
genes, andV (G) is the vector which comprises the ratesvi. The matrixS is de-
fined as follows [54]:

+aij , if the reactioni → j “produces” genei,
−aij , if the reactioni → j “consumes” metabolitei,

0, if the reactioni → j neither produces nor consumes genei,

with i, j being the genes where the reaction emanates or terminates, respectively,
andaij are coefficients (or weights) of the genes in the metabolic reaction scheme.
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Let us look at a small example of a network with 3 genes, 3 reactions and with
the concentrations of the metabolitesGi (i = 1, 2, 3). Here, the reactions may be
encoded be the following stoichiometric matrix:

3G1
V1→ G2,

G2
V2↔ 2G3,

G1 + 2G2
V3→ G3.

Then, the dynamical model of the above system can be written as




Ġ1

Ġ2

Ġ3



 =




−3 +1 0

0 −1 +2
−1 −2 +1








v1

v2

v3



 .

By including the external effects of the environment, the system(CE)metabolic
of ODEs becomes more realistically fitting to our general biological situation and
data. This leads us to the metabolic model

(ACE)metabolic Ġ = SV (G) + C(G).

Here,C(G) comprises all the external effects, e.g.,

C(G) = W(G)Ğ + V(G)

and one special case is given by the formV (G) = M(G)G.

As the system(ACE)metabolic can be extended into an interval-valued set-
ting again we can speak ofmetabolism-environment networks. Therefore, time-
discretizations, matrix algebra and stability can be studied as well as parameter
estimation by optimization made, likewise we are going to present it now for gene-
environment networks.

5 Extracting and Optimizing Gene-Environment Networks in the Presence
of Intervals

5.1 Our Hybrid Model

Many technical, financial and biological systems exhibit switching behaviour. In
the context of genetic networks ahybrid approachhas been presented in [27]
which offers a complete dynamical description of the expression levels ofn genes.
This approach has been modified in [77,86] by additionally matching then genes
with m special items and the cumulative item of the environment. Inaddition, this
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contributions turned to the interval-valued (noise-prone) setting, and introduced
the followinghybrid model:

(HE)

Ẋ(t) = As(t)X(t) + Ws(t)X̌(t) + Vs(t),

wheres(t) := S(Q(X(t))) with

Q(X(t)) = (Q1(X(t)), Q2(X(t)), . . . , Qn(X(t))), where

Qi(X(t)) :=






0, Xi(t) < θi,1

1, θi,1 ≤ Xi(t) < θi,2

...
di, θi,di

≤ Xi(t) (i = 1, 2, . . . , n).

In (HE) thresholds of the expression levelsare given by

θi,1 < θi,2 < . . . < θi,di
.

At these thresholds instantaneous changes of the parameterconstellation can occur
such that we have to choose a local model by the special selection of the(n × n)-
matrixAs(t), the(n×m)-matrix Ws(t) and then-vector Vs(t) (all three ones over
intervals). The functionQ : Rn → Nn

0 implies the threshold constellation, and
S(Q(X)) indicates where in the state space the system is placed atX , and which
matrices and vectorsA, W, V have to be chosen to specify the system such that
the given data are approximated best. The functionS : Nn

0 → N0 must be injec-
tive, such that a different triplet (A,W,V) is used whenever a threshold is traversed.
Thispiecewise linearapproach provides an approximation of the global nonlinear-
ity of the systems under consideration.

The system(HE) can indeed be generalized such that the matrices and vectors
depend onX ; then, the involved parameters are affected, governed and instanta-
neously changed vias(t).

The gene-expression levels are compact intervals such thatthe vectorsX are
parallelpipes, all of them lying in a sufficiently large parallelpipeP . Via canonical
projections, the thresholds define a partition ofP into subparallelpipes (regimes)
P∗,ρ ⊂ P (ρ ∈ {1, 2, . . . , ℓ}), whereℓ := Πn

i=1(di + 1). Let ℓ# > ℓ be
an integer such that the differenceℓ# − ℓ is the number of combinations where
one or more thresholds are included in the possible intervals of expression. Each
such a combination can be identified with another parallelpipeP∗,ρ ⊂ P (ρ ∈
{ℓ + 1, 2, . . . , ℓ#}) which partially (i.e., in one or several coordinates) consists of
intervals betweennonneighbouring threshold values or are placed at the boundary
∂P . We can reduce the numberℓ# by supposing that all the intervalsXi(t) are
shorter than the differences between any two nonneighbouring thresholds [84,87].

Our understanding of (HE) is in the sense of the placement in the set of in-
tervals (cf. Section 2) and of an extension ofQ when one or more thresholds are
included in the intervalsXi(t). In such a case, this extension can be made by
the arithmetic mean of the correspondingQ values associated with those intervals
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between and besides the thresholds which intersect withXi(t); this averaging is
then followed by a rounding to an integer. Based on this definition of s(t), we
find As(t), Ws(t) and Vs(t) (we could also directly use the averaging technique for
these parameters [77]).

The parameter estimationfor the time-continuous model and for the time-
discrete system works along the following steps [27,77,86]:

1. estimation of thethresholdsθi,j ,

2. calculation of thematricesandvectors, As(t), Ws(t) and Vs(t),
describing the system in between the thresholds.

The thresholds can be defined byAkaike’s Information Criterion[30] as in the
original hybrid model presented in [27] and in the model extensions in [3,5,25,27,
51]. We assume that all the thresholds are known as we are concentrating on the
tasks in continuous optimization.

Now, for any given subparallelpipeP∗ := P∗,ρ we have to extract the para-
metric unknownsAs(t), Ws(t) and Vs(t) from given data. In the subparallelpipe
P∗, the hybrid system (HE) reduces to a system of ordinary linear differential
equations and we can find analytical solutions for the corresponding parts of the
state space. We may assume that for the special environmental factors the times
of sampling are just the genetic sampling times, and the sameindex sets of sam-
plings. The environmental datǎ̄X(κ) (κ = 0, 1, . . . , l − 1) are considered to be
binary and constant, but they could also be variable in a morerefined modeling.

5.2 The Hybrid Model with Delayed Interactions

The hybrid model of the previous section can be further extended with regard to
possible delays in the interaction of variables. Such history dependent problems
have been investigated in [41] and the delays are included inthe state transitions
(threshold crossing):

(HDE)

Ẋ(t) = As(t)X(t) + Ws(t)X̌(t) + Vs(t),

wheres(t) := S(Q(X(t))) with

Q(X(t)) = (Q1(X(t − τ1)), . . . , Qn(X(t − τn))), where

Qi(X(t)) :=





0, Xi(t) < θi,1

1, θi,1 ≤ Xi(t) < θi,2

...
di, θi,di

≤ Xi(t) (i = 1, 2, . . . , n).

For further details on time-delay hybrid models and a stability analysis we refer
to [41].
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5.3 Mixed-Integer Parameter Estimation

For an estimation of parameters we have to minimize the quadratic error between
the difference quotientṡ̄X(κα) and the right-hand side of the differential equa-
tions evaluated at the finitely many measurement intervalsX̄(κα) ∈ P∗ (α =
0, 1, . . . , l∗ − 1) which are lying in the regarded regimeP∗ takes the following
form:

(HLS) min
(a∗

ij
),(w∗

iℓ
),(v∗

i
)

l∗−1∑

α=0

∥∥∥A∗X̄(κα) + W∗ ¯̌X(κα) + V∗ − ˙̄X(κα)
∥∥∥

2

∞
.

As discussed above, parallelpipe expression vectors can affect several neighbour-
ing subparallelpipesP∗, such that we get corresponding problems(HLS). Criteria
on which of them to put special emphasis consist in where the data vectors as par-
allelpipes are lying, and on further empirical evidence. In(HLS), ‖·‖

∞
stands for

theChebychev normof the set inserted, i.e., it is the maximum norm with respect
to the vector-valued functions defined by (independent) parametrization which we
get from the interval-valued entries ofM∗, W∗ and V∗ as well as the ones of the
vectorsX̄(κα), ¯̌X(κα) and ˙̄X(κα), respectively. For length measurement we use
the Euclidean norm, such that our squared Chebychev norm is indeed a maximum
over sums of squares, but we could also use the maximum or the sum (l1) vector
norm instead of the Euclidean (l2) one. This reconsideration turns our least-squares
or Gaussian approximation problem of earlier studies (cf.,e.g., [86]) to some gen-
eralized Chebychev approximation problem.

The classical “scalar” version of (HLS), i.e., Gaussian approximation, can be
canonically treated by building the partial derivatives with respect to the unknowns
and equating them to0. Then, one has to solve the resultingnormal equations,
which are linear in the unknown parametersa∗

ij , w∗
iℓ and v∗i , e.g., by Gaussian

elimination method algorithm. But (HLS) is a generalized Chebychev approxima-
tion problem; since it can equivalently be written as a semi-infinite optimization
problem (cf. [87]), we get access to the applicable methodology of SIP.

As nowadays high-throughput technologies are available, gene-environment
networks are very large. Therefore, for practical reasons we have to rarefy them by
diminishing the number of arcs [77,86]. Here, upper bounds on the outdegrees of
nodes are introduced firstly; then, these constraints are further weakened by a con-
tinuous way of model improvement. In this section and in Section 6, we shortly re-
call this process in our interval-valued generalized Chebychevian way [84]. Firstly,
we define the Boolean matrices and vectors,

χ = (χij)i,j=1,...,n, Ξ = (ξiℓ) i=1,...,n

ℓ=1,...,m
, and Z = (ζi)i=1,...,n,
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by

χij :=

{
1, provided genej regulates genei
0, if genej doesnot regulate genei,

ξiℓ :=

{
1, provided environmental itemℓ regulates genei
0, if environmental itemℓ doesnot regulate genei,

and

ζi :=

{
1, provided the environment cumulatively regulates genei
0, if the environment doesnotcumulatively regulate genei.

Theoutdegrees

n∑

i=1

χij ,
n∑

i=1

ξiℓ and
n∑

i=1

ζi

count the numbers of genes regulated by genej, by environmental itemℓ or by
the cumulative environment, respectively. Our network rarefaction by bounding
the outdegrees obeys the principles of least-squares. We also imply any helpfula
priori knowledge into the problem, especially, about degradationrates, and what is
empirically known about the connectedness structure. Often, a lower boundδi,min

on the degradation of genei is known or there are requests given about the feasi-
bility of special genetic or metabolic processes [27,86]. Herewith, our parameter
estimation task becomes a (generalized)mixed-integer Chebychev approximation
problem

(MICP)

min
(a∗

ij
),(w∗

iℓ
),(v∗

i
),(χij),(ξiℓ),(ζi)

l∗−1∑

α=0

∥∥∥A∗X̄(κα) + W∗ ¯̆
X(κα) + V∗ − ˙̄X(κα)

∥∥∥
2

∞

subject to





∑n

i=1 χij ≤ αj (j = 1, 2, . . . , n)∑n

i=1 ξiℓ ≤ βℓ (ℓ = 1, 2, . . . , m)∑n
i=1 ζi ≤ γ

aii ≥ δi,min (i = 1, 2, . . . , n).

The connectivity of the network could be strongly restricted by the loss of the
edges emanating at a few genes which are considered to play a very important role
in regulation, i.e., to have very high outdegrees. This can the result of perturbations
caused by the environment and affecting the problem(MICP) with its rigid (ex-
clusive) binary constraints. We therefore replace them by continuous constraints
in Section 6.
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5.4 On Spline Regression

For a good exposition of a dynamics with strong local and lessglobal or asymptotic
features of the data, piecewise polynomial orspline [16] functions may be used
based on observed dataX̄. For the sake of simplicity the following explanation on
spline regression will concentrate on thescalar-valued framework. However, the
entire modeling and optimization can be generalized into the interval-valued case,
especially, with interval-valued integrals.

Splines may be described as linear combinations of basis functions; determin-
istic or statistical spline estimation approximates the gene expression datā̇X by a
smooth curve. However, the main difficulty when working withsplines lies in the
selection of the number and position of the knots and in the choice of the basis
functions for a given data set. We use the data of DNA microarray experiments
and environmental observations(t̄κ, ˙̄X(κ)) as our spline knots. In time sense, the
knots can be given or selected equidistantly, but also very irregularly. Then, in
(ACE)genewe can use spline functionsfα(Xα) insideA(E), W(X) and V(X),
respectively. Taking into account separation of variables(gene expression levels),
the entries of the matricesA(X), W(X) and V(X) are represented by spline func-
tions; e.g.,

aij(x) = β1,i,j
0 +

n∑

α=1

f1,i,j
α (Xα)

= β1,i,j
0 +

n∑

α=1

pij∑

γ=1

θ1,i,j
α,γ h1,i,j

α,γ (Xα) (i, j = 1, 2, . . . , n).

Here,h1,i,j
α,γ (Eα) are base splines evaluated at the expression levels of theαth gene.

By the parametersβ1,i,j
0 we denote partial intercepts depending of the output data

Ẋ(κ) (κ = 0, 1, . . . , l−1) (percentages of their averaged data). By this an additive
separation of the variables is realized. However, this linear kind of interaction is
not always given but can be imaginated as an approximation. Instead, below, we
will come to a different interpretation of ouradditive functional structure by a
clustering of the input data. This additivity may be regarded as a model richness
which is intermediate in-between both affine linearity and anonlinearity that takes
into account more complex interactions and correlations between the variables or
data clusters, respectively. Firstly, we choose splines degrees individually for each
entryaij(X). Likewise, we represent the entries of W(X) and V(X) by splines.
The entries wil(X) and vi(X) can be written as

wil(X) = β2,i,l
0 +

n∑

α=1

f2,i,l
α (Xα) = β2,i,l

0 +
n∑

α=1

qil∑

ϕ=1

θ2,i,l
α,ϕ h2,i,l

α,ϕ (Xα),

vi(X) = β3,i
0 +

n∑

α=1

f3,i
α (Xα) = β3,i

0 +

n∑

α=1

ri∑

ν=1

θ3,i
α,νh3,i

α,ν(Xα)
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with i = 1, . . . , n; l = 1, . . . , m, where for alli, j, l : qil, ri ≤ pij , or : ≤
maxj pij . Indeed, when using spline functions for the entries wil(X) and vi(E)
we must be careful since they are environmental effects influencing the gene ex-
pression levels and their approximation. Since we considerthese effects to be very
small, they have a restricted effect represented by the selected spline degrees for
wil(X) and vi(X) not larger than those ofaij(X). Otherwise, the approximated
gene expression levels can become affected and this may imply instability in the
parameter estimation [71].

To quantify that possible instability, we refer to the second order derivatives
(curvature) of the model functions. Then, looking at the equation(ACE)gene, our
model becomes fitted by minimizing the criterionpenalized sum of squares[30]:

PRSS(A, W, V)

=

l−1∑

κ=0

∥∥∥ ˙̄X(κ) − A(x̄(κ))X̄(κ) − W(X̄(κ))
¯̆
X(κ) − V(X̄(κ))

∥∥∥
2

2

+ Penalty Term

=

l−1∑

κ=0

n∑

i=1



 ˙̄X
(κ)
i −

n∑

j=1

aij(X̄
κ)X̄

(κ)
j −

m∑

l=1

wil(X̄
(κ)

¯̆
X

(κ)
l − vi(X̄

(κ))




2

+ Penalty Term.

Here,‖·‖2
2 stands for the Euclidean norm. If we use our additive model approxi-

mations foraij(X), wil(X) and vi(X), then PRSS has the following form where
(·)

′′

Xα
denotes differentiation with respect toXα:

Penalty Term=

n∑

i=1

n∑

j=1

n∑

α=1

[
λ1,i,j

α

∫ XU
α

XL
α

(
f1,i,j

α (Xα)Xj

)′′2
Xα

dXα

]2

+

n∑

i=1

m∑

l=1

n∑

α=1

[
µ2,i,l

α

∫ XU
α

XL
α

(
f2,i,l

α (Xα)X̆l

)′′2

Xα

dXα

]2

+

n∑

i=1

n∑

α=1

[
ς3,i
α

∫ XU
α

XL
α

(
f3,i

α (Xα)
)′′2
Xα

dXα

]2

,

whereλ1,i,j
α , µ2,i,ℓ

α , ς3,i
α ≥ 0 are penalty parameters, andXL

α , XU
α are lower and

upper bounds with levelsXα. Here,X̆l are the constant environmental factors and
not depending on the gene expression levels ofXα; we may uniformly replace

them by the averaged datăXℓ := 1
l

∑l−1
κ=0

¯̆
X

(κ)
l .
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Then, denotingφ2,i,l
α := µ2,i,l

α X̆2
l , the penalty term can be written as

Penalty Term=
n∑

i=1

n∑

j=1

n∑

α=1

[
λ1,i,j

α

∫ XU
α

XL
α

(
f1,i,j

α (Xα)Xj

)′′2
Eα

dXα

]2

+

n∑

i=1

m∑

ℓ=1

n∑

α=1

[
φ2,i,l

α

∫ XU
α

XL
α

(
f2,i,ℓ

α (Xα)
)′′2
Xα

dXα

]2

+

n∑

i=1

n∑

α=1

[
ς3,i
α

∫ XU
α

XL
α

(
f3,i

α (Xα)
)′′2
Xα

dXα

]2

and further evaluated. Using spline functions inside PRSS,putting

G(M, W, V)

:=

l−1∑

κ=0

n∑

i=1


 ˙̄X

(κ)
i −

n∑

j=1

aij(X̄
(κ))Ē

(κ)
j −

m∑

l=1

wil(X̄
(κ))

¯̆
X

(κ)
l − vi(X̄

(κ))




2

=:
∥∥U(θ1, θ2, θ3)

∥∥2

2

and using the discretized form [71] for all members in the integral terms, then we
can write each of them as

∥∥Vij(θ
1)
∥∥2

2
,
∥∥Wiℓ(θ

2)
∥∥2

2
and

∥∥Zi(θ
3)
∥∥2

2
. Now, turning

to a constrained rather than a penalized program, PRSS can beinterpreted as an
optimization problem of the following form:

min
t,θ1,θ2,θ3

t,

where
∥∥U(θ1, θ2, θ3)

∥∥2

2
≤ t2

∥∥Vij(θ
1)
∥∥2

2
≤ Aij (i, j = 1, 2, . . . , n)

∥∥Wil(θ
2)
∥∥2

2
≤ Nil (i = 1, 2, . . . , n; l = 1, 2, . . . , m)

∥∥Zi(θ
3)
∥∥2

2
≤ Ri (i = 1, 2, . . . , n)

t ≥ 0.

Such an optimization program is a typicalconic quadratic programming(CQP)
problem, which can be solved byinterior points method(IPM) [48–50,71]. Except
for very large-scale problems with dense matrices, these problems have a moder-
ate complexity. As learned in [71], CQP and IPM are much more convenient than
penalty methods connected with backfitting algorithm [30].Conic programming
is also helpful in clustering theory, especially, in computational biology [6]. We
point out our work [73] on ”nonsmooth” spline regression called MARS [30].

The preceding outline on spline regression focussed on thescalar-valued frame-
work, but it can also be extended to ourinterval-valued model. While this can be
widely done straightforward, there is one single difficulty: spline interpolation in
a multivalued setting. This obstacle and how we overcome it in a meaningful way
will be explained in a future paper.
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6 Improved Modeling by GSIP Extension

6.1 The GSIP Extension

Themixed-integer Chebychev approximation problem(MICP) includes rigid bi-
nary constraints. To alleviate the effects of these constraints we replace the bi-
nary variablesχij , ξiℓ andζi by real variablespij , qiℓ, ri ∈ [0, 1] which linearly
depend on the elements ofaij , wiℓ and vi (also interpretable as probabilities)
and assume some reasonable box constraints. By this, the values

∑n
j=1 pij(a

∗
ij),∑m

i=1 qiℓ(w∗
iℓ) and

∑m

i=1 ri(v∗i ) have become interval-valued approximations of
the numbers of genes regulated by genej, environmental itemℓ and cumulative en-
vironment, respectively. All this leads us to acontinuous optimization problem[77,
84,86,87]. Having solved the continuous optimization problem, we could return
the binary variables and, hence, network rarefaction, by rounding or staying below
some small prescribed valuesεij , εiℓ, εi ∈ [0, 1), respectively [86].

The environment can affect the connectedness between the genes or destroy
some of the connecting paths but also cycles among the genes (“knockout”; [24])
and an external stimulus can activate a higher regulation among the genes. For
those reasons, the papers [77,86] implied all the possible convex combinations
of the environmental effects into the inequalities about the bounded outdegrees.
Theset of combined environmental effectsis defined as the convex hull of all the
vectors w∗iℓea(i−1)+ℓ and v∗i emn+i:

Y (V∗, W∗) := conv
({

w∗
iℓem(i−1)+ℓ

∣∣ i = 1, 2, . . . , n; ℓ = 1, 2, . . . , m
}

∪
{

v∗i σi,m+1emn+i

∣∣ i = 1, 2, . . . , n
})

=






∑

i=1,...,n,
ℓ=1,...,m

σiℓw∗
iℓem(i−1)+ℓ +

∑

i=1,...,n

σi,m+1v∗i emn+i

∣∣∣∣

σiτ ≥ 0 (i = 1, 2, . . . , n; τ = 1, 2, . . . , m + 1),

∑

i=1,...,n

τ=1,...,m+1

σiτ = 1





,

with eη denoting theηth ((m + 1)n)-dimensional unit vector(0, . . . , 1, . . . , 0)T .
Formally, we can writeY (V∗, W∗) as a parallelpipe [83]

Y (V∗, W∗) =
∏

i=1,...,n

ℓ=1,...,m

[0, w∗
iℓ] ×

∏
i=1,...,n

[0, v∗i ].

The wealth of how the environment is implied bases on and applies any given
a priori knowledge about the genes that helps scientists, practitioners and decision
makers when determining and elaborating the rarefied network. Now, we get our
(generalized)relaxed Chebychev approximation problem:
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(RCP) min
(a∗

ij
),(w∗

iℓ
),(v∗

i
)

l∗−1∑

α=0

∥∥∥A∗X̄(κα) + W∗ ¯̌X(κα) + V∗ − ˙̄X(κα)
∥∥∥

2

∞
,

subject to
∑n

i=1 pij(a
∗
ij , y) ≤ αj(y) (y ∈ Y (V∗, W∗)),∑m

i=1 qiℓ(w∗
iℓ, y) ≤ βℓ(y) (y ∈ Y (V∗, W∗)),∑m

i=1 ri(v∗i , y) ≤ γ(y) (y ∈ Y (V∗, W∗)),
δi,min ≤ a∗

ii (i = 1, 2, . . . , n),
a∗

ij ≤ a∗
ij ≤ a∗

ij (i, j = 1, 2, . . . , n),
w∗

iℓ ≤ w∗
iℓ ≤ w∗

iℓ (i = 1, 2, . . . , n; ℓ = 1, 2, . . . , m),
v∗i ≤ v∗i ≤ v∗i (i = 1, 2, . . . , n).

Now we comparea∗
ii andδi,min and choose the largest of the two values as a sin-

gle lower bound instead (δi,min < a∗
ii provided). As given in the objective function

by generalized Chebychev approximation, this uniform interpretation of the “≤”
conditions amounts to the SIP character of(RCP). By the additional coupling of
our inequality constraint setY (V∗, W∗) with the states(V∗, W∗), (RCP) even
becomes a GSIP problem. In the objective function, the termswith theκth Cheby-
chev norm‖·‖

∞
are nonsmooth max-type functions (κ = 0, 1, . . . , l∗ − 1). By the

following standard technique,(RCP) becomes smoothly modeled. For each max-
type function, we introduce a new coordinateτκ (in addition to the unknowns of
(RCP)), considered as a new coordinate and as a uniform bound for the squared
Euclidean norms of the elements inside the Chebychev norms.Herewith, we mini-
mize the sum of the bounds. As new inequalities we just introduce these bounding
conditions; we write them so that the Euclidean norms of all the elements inside
the Chebychev norms have uniformly to stay below the corresponding bounds.

6.2 GSIP for Gene-Environment Networks

When we apply GSIP for our gene-environment network problem(RCP) we ob-
tain the general program form

PGSI(f, h, g, u, v)






minimizef(x) on MGSI [h, g], where
MGSI [h, g] :=

{
x ∈ Rd|hi(x) = 0 (i ∈ I),

gj(x, y) ≥ 0 (y ∈ Y j(x), j ∈ J)
}
,




 (A1)

with |I|, |J | < ∞, and with setsY j = Y j(x) defined asfinitely constrained(F )
feasible sets [65,62,81]. For eachx ∈ Xd, we have a representation

Y j(x) = MF [uj(x, ·), vj(x, ·)]
:=
{

y ∈ Rq|uk(x, y) = 0 (k ∈ Kj), vℓ(x, y) ≥ 0 (ℓ ∈ Lj) },

}
(A2)

with finite setsKj andLj . The model (A1)-(A2) allows equality constraints on
both the upper (x-) level and lower (y-) level representing, e.g., further metabolic
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restrictions, reactions or balance equations [77,84,86].The outdegree constraints
in (RCP) may be assumed to be of classC2, too. The bounds guarantee that the
feasible setMGSI [h, g] is compact in the projective sense of the original2(n2 +
mn + n) unknowns (with intervals encoded by tuples of endpoints), but not in
the “height” dimensions of the new coordinatesτκ. This noncompactness can be
overcome as shown in [78,81]. Here, the setsY j(x) are compact and fulfill the
Linear Independence Constraint Qualification(LICQ), an appropriate choice of
the overall box constraints provided. The works [65,77,81,86,87] provide more
detailed discussions and generalizations of GSIP.

6.3 Structural Stability for Gene-Environment Networks

In this subsection we state the main theorem onstructural stabilityof our gene-
environment networks.Perturbationsof the form(f, h, g, u, v) 7→ (f̃ , h̃, g̃, ũ, ṽ)
may be caused, e.g., as follows [77,86]:

(I) Outliers of parallelpipes: We can face such outliers by multiplying some
(dampening) factor on the corresponding squared error.

(II) “Perturbed” problems and networks: The data gives rise to one optimization
problem and network so that the data of a subsequent measurement can be
viewed as a problem and network under variation.

(III) Errors, imprecision and uncertainty: They have been included in our model-
ing by the use of intervals.

The strong Whitney topologyC2
S [32,36] serves as a “measure” of perturbations so

that asymptotic aspects are taken into account. For a classification of uncertainty
by five typesof errors, we refer to [20]. The “genetic (and environmental) finger-
print” of (RCP) is given by all the lower level sets of its objective function. If the
perturbed and the arbitrarily slightly unperturbed lower level sets are homeomor-
phic to each other, under some correspondence between the levels, we call(RCP)
structurally stable[36,39,78,81]. Now, we can carry over and state theCharacter-
ization Theorem on Structural Stability for Gene-Environment Networksfrom [77,
86] for (RCP) (for details cf. [37,79–81]). Our main theorem basically states that
structural stability can just becharacterizedby two well-known regularity condi-
tions and a more technical one:

Characterization Theorem on Structural Stability
for Gene-Environment Networks. [84,87]
The optimization problemPGSI(f, h, g, u, v) on gene-environment networks is
structurally stable, if and only if the following triplet ofconditionsC1, 2, 3 is satis-
fied:

C1. EMFCQ holds forMGSI [h, g].
C2. All the G-O Kuhn-Tucker pointsx of PGSI(f, h, g, u, v) are(G-O) strongly

stable.
C3. For each two differentG-O Kuhn-Tucker pointsx1 6= x2 ofPGSI(f, h, g, u, v)

the corresponding critical values are different (separate), too:f(x1) 6= f(x2).
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This characterization theorem helps for a well understanding of the topologi-
cal “landscape” of gene-environment networks, for their perturbational behaviour
and for the development of numerical procedures. For example, we can consider
“mountain paths” (saddle points) between any two candidatenetworks being given
by local minimizers of(RCP). All the points around candidate solutions can be
regarded as potential networks which may be obtained after perturbations, e.g., in-
ward shifts from a genetic or environmental boundary to an interior position [37,
79–81]. They may be outcomes of underlying constellations in the experimental
design which may have to be reconstructed, which is an inverse problem [8].

In terms of testing thegoodness of data fitting, the lower level sets can be in-
terpreted as confidence regions around the parameters estimated. The size of these
regions is basically governed by the steepness of the function around the solution.
In cases where a local or global minimizer is very steep, we can associate this with
stability, whereas flatness is more likely related with instability [87]. For a better
analytical understanding of(RCP) and its solution, we identify possible patholo-
gies in terms of one or more of the conditionsC1, 2, 3 violated.

We point out a relation toconic programming(CP) [48], however, in a GSIP
sense. If in (RCP) all the functions defining the constraints are linear and the
squares on the Chebychev norms deleted, then we obtain such aCP problem. If we
square both the linear constraint functions and the bounds,we arrive at the special
case of CP calledconic quadratic programming(CQP) [48,71]. In CP problems,
interior point methodscan be introduced and efficiently applied.

7 Modeling by Stochastic Differential Equations

A further interesting approach to our modeling is based onstochastic differential
equations(SDE). Such an equation is typically given by

Ẋ(t) = a(X, t) + b(X, t)δt (t ∈ [0,∞))

X(0) = x0,

wherea is the deterministic part,bδt is the stochastic part, andδt denotes a gener-
alized stochastic process [42]. An example for a generalized stochastic process is
white noise. Suppose thatWt is a generalized version of a Wiener process, i.e., a
time-continuous process with the propertyWt ∼ N(0, t) (0 ≤ t ≤ T ). To obtain
our approximate and a smoothed model, we treatWt as differentiable. Then, white
noiseδt is defined asδt = Ẇt = dWt/dt and a Wiener process can be obtained
by smoothing the white noise. If we replaceδtdt by dWt in our SDE, we obtain

dXt = a(Xt, t)dt + b(Xt, t)dWt,

wherea(Xt, t) andb(Xt, t) are drift and diffusion terms, respectively, andXt is a
solution which we try to find based on the experimental data. Since we do not know
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the distribution ofXt, we want to simulate its values. For this reason, we simulate
a discretized version of SDE. We consider theMilstein schemeand obtain the

Xk+1 = Xk + a(Xk, t)(tk+1 − tk) + b(Xk, t)(Wk+1 − Wk)

+
1

2
(b′b)(Xj , t)

((
Wk+1 − Wk

)2
−
(
tk+1 − tk

))

as an approximation forXt (here, we understandXk in the sense of our estima-
tion X̂(k); cf. Subsection 4.1). When we refer to the finitely many sample points(
Xj , t̄j

)
, we get the discrete approximation

Ẋκ = a
(
Xκ, tκ

)
+ b
(
Xκ, tκ

) ∆Wκ

hκ

+
1

2
(b′b)

(
Xκ, tκ

)( (∆Wκ)2

hκ

− 1

)

for κ = 0, 1, . . . , N . Here, the vectoṙXκ represents difference quotients based on
theκth experimental data and on step lengthshκ := tκ+1 − tκ = ∆tκ between
neighbouring sampling times. This relation cannot hold in an exact sense since we
consider real data, but it is satisfied best in theapproximatesense of least squares of
errors. The increments∆Wt are independent on non-overlapping intervals and we
have Var

(
∆W t

)
= ∆tκ. Hence, the increments having a normal distribution can

be simulated by normal distributed random numbersZκ and we obtain a discrete
model:

∆W t = Zκ

√
∆tκ, Zκ ∼ N(0, 1).

If we use this in our discretized equation, we obtain

Ẋκ = a
(
Xκ, tκ

)
+ b
(
Xκ, tκ

) Zκ√
hκ

+
1

2
(b′b)

(
Xκ, tκ

)(
Z

2

κ − 1
)
.

We can rewrite this as

Ẋκ = Gκ + Hκcκ +
(
H

′

κHκ

)
dκ,

where

cκ :=
Zκ√
hκ

, dκ :=
1

2

(
Z

2

κ − 1
)
, Gκ := a

(
Xκ, tκ

)
, Hκ := b

(
Xκ, tκ

)
.

The unknownsGκ andHκ can be determined by the optimization problem

min
y

l−1∑

κ=1

∥∥∥∥Ẋκ −
(
Gκ + Hκc +

(
H

′

κHκ

)
d
)∥∥∥∥

2

2

,

where the vectory comprises all the parameters in the Milstein model. As the
data may have a high variation we must use a parameter estimation method which
will give a smoother approximation to the data. In [69]splineswere used to avoid
large oscillations observed for high degree polynomial approximation. In addition,
apenalized residual sum of squaresfor SDE and a relatedTikhonov regularization
problem(that could be solved with MATLAB Regularization Toolbox) have been
proposed. Alternatively to the concept of Tikhonov regularization we can apply
conic quadratic programmingand we refer to [35,69] for further details.
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8 Socio-Econo-Environment Networks

Beside the application in medicine and life sciences our modeling and analysis
provides a conceptual framework for various problems in Operational Research.
We illustrate this with an important example from environmental protection and
CO2-Emissions-Control. By this, our gene-environment networks are extended to
so-calledsocio-econo-environment networks.

We now refer to the so-calledTechnology-Emissions-Means Model(in short:
TEM model), developed byStefan W. Pickl[55] for the mathematical analysis of
international collaborations and joint implementation programs(JI) in the frame-
work of the Kyoto Protocol. The TEM model integrates the simulation of the tech-
nical and financial parameters and describes the economicalinteractions between
several actors (countries, companies) which intend to minimize their emissions by
means of cooperative game theory [74,75]. The players are linked by technical
cooperations and the market, which expresses itself in the nonlinear time discrete
dynamics of the TEM model [44,56–58]. We denote byEi the emissions caused
by technologiesTi using financial meansEi, where the indexi stands for theith
player(i = 1, 2, . . . , N). The relationship between financial means and reduced
emission in a JI program is given by

∆Ei(k) =

N∑

j=1

emij(k)Mj(k),

∆Mi(k) = −λiMi(k)(Mi − Mi(k))(Ei(k) + ϕi∆Ei(k)).

with

∆Ei(k) := Ei(k + 1) − Ei(k) and ∆Mi(k) := Mi(k + 1) − Mi(k),

where the discrete timestk are renamed byk. Furthermore,Mi stands for the
upper bounds for the financial investigations. The first equation describes the time-
dependent behaviour of the emissions reduced so far by each player [2]. These
levelsEi are influenced by financial investigationsMj which are restricted by the
second equation. We understandEi as the reduced emissions of actori in % andMi

as the financial means of actori. The parametersϕi are calledmemory parameters.
Thus, the multiplication of∆Ei with ϕi can be regarded as amemory effect; this
expression stands for the influence of earlier investments.The first part of the
second equation resembles a logistic difference equation,where the proportional
factorλi can be seen as agrowth parameter. Each coefficientemij describes the
effect on the emissions of theith actor if thejth actor invests one unit of money
for his technologies, e.g., devices of filters in energy production of consumption.
This also shows how effective technology cooperations are,what is the kernel of
the JI program. The parametersemij have to be determined empirically.
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The numerical examinations which show that chaotic behaviour can occur, un-
derline the necessity of a control theoretic approach whichis implied by an addi-
tional control term in the second equation of the TEM model:

Ei(k + 1) = Ei(k) +

N∑

j=1

emij(k)Mj(k),

Mi(k + 1) = Mi(k) − λiMi(k)(Mi − Mi(k)) (Ei(k) + ϕi∆Ei(k)) + ui(k),

We note that the TEM model relies on exact data, but this approach aims to
model real-world processes, imprecisions and errors have to be considered. For
this, in [82] an interval-valued reformulation within the framework of our gene-
environment networks has been proposed. For this the TEM model has been struc-
tured in this way:

(ET , MT )T (k+1)
= M (k)((ET , MT )T (k)

)(ET , MT )T (k)
.

Having added the control parameter, we obtain the time-discrete dynamics

(
E
M

)(k+1)

= M (k)

((
E
M

)(k))(
E
M

)(k)

+

(
0

u(k)

)
,

which we can represented by

(DE) X
(k+1) = A

(k)
X

(k).

Here, the matricesA(k) incorporate the control variables. In this extended space
notation, the variableX and entire dynamics(DE) could be enriched by further
environmental and, in particular, genetical items and relations. The shift vector
(0T , (u(k))T )T can be regarded as parametric and as a realization of V(X, X̌∨) in
the sense of Section 3; then, our stability theory could be employed. According to
how those matrices are adjusted, we arrive at different behaviours of stability or
instability of (DE), in the sense of dynamical systems (Section 4) or of parameter
estimation (Section 6.2). As a dual alternative to that feedback-like realization
by the vector V(X, X̌∨) which becomes incorporated into the matrixA(k), the
control vectorsu(k) could also become integrated intoX(k). The time-dependent
parametersem(k)

ij can be treated in similar ways as the controls.

9 Conclusion

In this paper, we surveyed the recent advances in mathematical modeling and
prediction for industrial, economical, financial and medical applications within
the conceptual framework of gene-environment networks. Uncertainties and mea-
surement errors in DNA microarray experiments have been incorporated in our
parameter-dependent model and a matrix algebra based on interval arithmetics has
been provided. This led us to approximation problems of a generalized Cheby-
chevian kind and we investigated them by generalized semi-infinite optimization.
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We stated a characterization result on structural stability and contributed by this
to a better understanding of the topological landscape of gene-environment net-
works. In addition, we pointed out to the relations to conic quadratic program-
ming and spline regression. Furthermore, some related future research directions
in metabolic engineering were established.

All this demonstrated in a dynamical modeling context the importance of dis-
crete and continuous optimization in a modern interdisciplinary approach. We note
that this approach provides a wide framework for various problems affected with
noise and imprecision as they appear in modern industrial, economical and med-
ical applications. In the future, more emphasis has to be given to an extension of
our model to further important real-world applications as the recently introduced
metabolic networks and the socio-econo-environment networks [28,59,60,82,83,
86].

This paper is mainly addressed to colleagues from OR, especially, from op-
timization theory and mathematical modeling, but also computational statistics.
Besides further theoretical improvements within these methods and communities,
other research challenges consist in advances concerning comparability and di-
mensions, aspects of data quality included, probabilisticaspects of modeling re-
fined and in further implementation and comparisons with other methods.

AcknowledgementsThe authors express their cordial gratitude to Prof. Dr. Marion Rauner,
Prof. Dr. Ulrike Leopold-Wildburger and Prof. Dr. Stefan Pickl for their encouragement.

References

1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flow: theory, algorithms and appli-
cations. Prentice Hall, N.J.

2. Ahn H, Moore M, Chen YQ (2004) Stability analysis of iterative learning control sys-
tem with interval uncertainty. College of Engineering, Utah State University
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rithmic computational biology: stability analysis of gene-expression patterns, in: part
1 of common special issue of Journal of Computational Technologies 9 (2004) and of
The Bulletin of Kazakh National University 42, 3 (Mathematics, Mechanics and Infor-
matics Issue; 2004) 10-17, at the occasion of InternationalConferenceComputational
Technologies and Mathematical Models for Research, Engineering and Educationin
Almaty, Kazakhstan, October 2004

5. Akhmet MU, Gebert J,̈Oktem H, Pickl SW, Weber GW (2005) An improved algo-
rithm for analytical modeling and anticipation of gene expression patterns. Journal of
Computational Technologies 10, 4: 3-20

6. Akteke-̈Oztürk B, Weber GW, Kropat E (2008) Continuous optimization approaches
for clustering via minimum sum of squares, submitted to the ISI Proceedings of 20th
Mini-EURO ConferenceContinuous Optimization and Knowledge-Based Technolo-
gies, May 20-23, 2008, Neringa, Lithuania



32 Gerhard-Wilhelm Weber et al.
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matik 5, Augustinus publishing house (now: Mainz publishing house) Aachen

79. Weber GW (1998) Generalized semi-infinite optimization: on iteration procedures and
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87. Weber GW, Uğur̈O, Taylan P, Tezel A, On optimization, dynamics and uncertainty:
a tutorial for gene-environment networks. To appear in the special issueNetworks in
Computational Biologyof Discrete Applied Mathematics

88. Yagil G, Kreinovich V (1971) On the relation between effector concentration and the
rate of induced enzyme synthesis. Biophysical Journal 11: 11-27

89. Yılmaz FB (2004) A mathematical modeling and approximation of gene expression
patterns by linear and quadratic regulatory relations and analysis of gene networks.
Institute of Applied Mathematics, METU, MSc Thesis
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