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Abstract In this paper we survey the recent advances and mathemfatical
dations of gene-environment networks. We explain thearifisciplinary implica-
tions with special regard to human and life sciences as wdihancial sciences.
Special attention is paid to applications in Operationadech and environmen-
tal protection. Originally developed in the context of miaig and prediction of
gene-expression patterns, gene-environment networks py@wed to provide a
conceptual framework for the modeling of dynamical systevitk respect to er-
rors and uncertainty as well as the influence of certain envmirental items. Given
the noise-prone measurement data we extract nonlinearelitial equations to
describe and investigate the interactions and regulafiiegts between the data
items of interest and the environmental items. In particuteese equations re-
flect data uncertainty by the use of interval arithmetics eahprise unknown
parameters resulting in a wide variety of the model. For amiification of these
parameters Chebychev approximation and generalizediséinite optimization
are applied. In addition, the time-discrete counterpdrti® nonlinear equations
are introduced and their parametrical stability is ingsteéd by a combinatorial
algorithm which detects the region of parameter stab#itgally, we analyze the
topological landscape of the gene-environment networkerins of structural sta-
bility and we conclude by a discussion of the structural fiens, challenges and
an outlook.
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1 Introduction

In this paper we survey recent advancegene-environment networksnew and
pioneering research area of Operational Research in this féllife and human
sciences. Gene-environment networks, originally inteelin the context of mod-
eling and prediction of gene-expression patterns, proaidenceptual framework
for the mathematical analysis of highly interconnectedesys. In the last decade,
the development of high-throughput technologies resutftezh accelerated gen-
eration of massive quantities of technical, financial, vinental and biological
data. The availability of large data sets now allows to gaapkr insights in the
dynamic behaviour of complex systems and opens promisiaguses for further
scientific progress in medicine, health care, technologllida sciences. We will
demonstrate this on the important issue of environmentateption andCO,-
emission control in Section 8 where we study fezhnology-Emissions-Means
modelof S. Pickl[55], developed for a mathematical analysis of Joint Impam
tation Programs in the framework of the Kyoto protocol.

Achieving such a deep understanding of real-world probleetessitates the
development of advanced mathematical and computationlads that allow to
reveal the dynamics of the system under consideration. Surtiplex systems for
example arise in computational biology in the context of phediction of gene-
expression patterns based on microarray measurementatipseéages of model-
ing so-calledjenetic networkbave been used for an investigation of the dynamic
relationships between the genes. Then, it turned out thaasonable modeling
could not be done without a consideration of the environniEmerefore, we and
our colleagues further enhanced and mathematically ingofdkie genetic net-
works and developed the conceptgene-environment networkRecently, it has
been shown that this approach offers a conceptual framefwoekwide range of
OR applications and that led to the development ofgheio-econo-environment
networks

To give the reader an impression of how this approach worksilveshortly
recall genetic networks and gene-environment networksya bearing in mind,
that we will put this in a general framework for modeling ofgslomena in OR.

Genetic networks the classical sense are defined by weighted directed graph
composed of nodes representing genes, and of arcs withdnattweights stand-
ing for the influences between the genes; moreover, each cardbe equipped
with a (level) function of the other genes’ combined effemtsit. For each gene
we wish to predict how it influences the other genes. Varimuaydic and nu-
merical tools have been developed for the construction adénstanding of such
networks [1,13,15,25,22-24,27,34,52,54,66,68, 76, 88% 90].
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In [76,77,84-87], we firstly extended genetic networkgéme-environment
networks Here, the new nodes are environmental items, such as terithsa-
diation, that often exercise effects in mutually catalgzor multiplicative ways.
When we turn to modeling and prediction of gene-expressattems, two quan-
tities have to be coupled: th&tates(concentration levels) of gene-expressions,
and theirdynamics(rates of change). In addition, environmental effects have
be observed resulting in to a certain kind of duality andvalgroblems [84, 86].
Indeed, we are concerned with two classes. One class oblesiaontains param-
eters under perturbation that lead to a response by theblesiaf the remaining
second class.

Although gene expression data on a genomic scale is nowagailable in a
standardized form according to thénimum Information About a Microarray Ex-
periment{MIAME) [11], it is nevertheless affected by imprecisiorhdrefore, we
have to include noise-prone data into our model and have tovaee of measure-
ment and reliability problems. As introduced in [77,84,8¥¢ represent various
kinds of errors byntervalsanderror terms[43].

To specify the (nonlinear) dynamics of our gene-environimetworks we use
a matrix representation of the relevant systems under taiosr. This constitutes
the basis for both a testing of tigodness of data fittingnd prediction base.
The concerted effect of our matrices, each of them standing finear transfor-
mation, can be expressed in terms of equilibrium, expansiomtraction, cyclic-
ity or mixed asymptotic properties; these behaviours doutie tostability or in-
stability. Differently from the stepwise or time-discrete dynamidsiet can be
called aforward problem, the problem of parameter estimation israerseone.
Those discrete “forward” orbits are yielded by the matrixltiplication, itera-
tively performed; we can analyze them by the combinatoratedure of Brayton
and Tong [10, 76]. This algorithm generates and observequesee of compact
neighbourhoods of the origin. Choosing these neighboutfase polytopes allows
a translation into the combinatorial language of their iced; on them the con-
struction principle step by step executes a finite numberaifimmultiplications.
We note thastability classically has a positive interpretation in terms of aloca
der, a coming to a rest (recovering) or as the robustnessysitars against small
perturbations [29]. But there is also a negative meaning:aosystem which is
unable to adapt to a changing environment, is in a seriougataaused by bacte-
ria, viruses, radiation and other attacks. A stability gsialcan also serve for the
acceptance or rejection of a mathematical model, i.e., ésting of the goodness
of data fitting and, if needed, for a model improvement. In,fdk@ny state dimen-
sion of the model behaves unbounded under slight paranvatiations, then this
contradicts the natural-technical limitation of the gémahd environmental levels
by bounded intervals.

Complexityis a central property of gene-environment networks and pign
proach to investigate them. Hence, we impose upper bounalthia parameter
estimation problem and, by this, force the number of edgesninish and make
the parameter estimation becomeixed continuous-discrete programming prob-
lem Because of the modeling deficiencies of that problem andlfprrithmical
reasons, we relax the inequality constraints to becomerams and depend-
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ing on the environmental items, maybe also on time and, vaportantly, on
errors and uncertainties located in intervals, the prolldlecomes one frorsemi-
infinite programmindSIP). In addition, by allowing dependence of the domain of
combined external effects on the unknown environmentarpaters, we obtain
a generalized semi-infinite programmif@SIP problem. Herewith, we permit
regulation of the network’s edge density in a more refined softlway, and we
can more confidently guarantee existence and tractabflggoetic and metabolic
processes. In [77,84-87] we connected the discrete mathsménetworks with
GSIP, by this introducing a new and pioneering scientificrapph into computa-
tional biology. GSIP is an advancing wide problem class wwimy motivations,
results, future challenges and practical applicationsg831].

2 Gene-Expression and Environmental Data, Modeling and Dyamics
2.1 Modeling by Intervals

Gene-environment networks and their inherent informatiene primarily mod-
eled by time-continuous systems in form of autonomous argidifferential equa-
tions (ODESs):

X = F(X).

Here, thed-vectorX = (X;,Xo,...,X,)? comprises the positive concentration
levels of proteins (or mMRNAS, or small components) and aehtaels of the envi-
ronmental factors, where&s(= %) represents a continuous change in the gene-
expression data, arfdl: X¢ — Xfis composed of nonlinear coordinate functions
F; : X4 - X (i = 1,2,...,d) (cf. [13,33,63,76] for different dimensions). As
the nonlinear functioif is determined by primarily unknown parameters we have
to deal with identification based on noise-prone data vecfarbtained from mi-

croarray and environmental measurements. For this we ffaje [
Xlleﬂ:En} (i:1,2,...,d),

where Erf > 0 denotes the maximal error to be made at the measuremenss of th
gene- or environmental expression leXel This measurement error leads us to
assume that the stakehas to lie in the intervdlX; — Err;, X; + Err;] and, hence,
the state vectoX = (X1, Xo, ..., Xy)” has to be in the parallelpipe

[X; — Ermr, X; + Err;).

d
=1

K2

Here, we can speak of confidence intervals and a confidenafighipe. Those
parallelpipes and intervals usually come from a perspedtiiere functional de-
pendencies among any two of the errors made in the measuteofehe gene-
expression environmental leves are not taken into account explicitly [8]. More-
over, they are usually smaller than the ellipsoides and tr&iogonal projections
into the 2-dimensional Cartesian planes, respectivelyf@leed, those confidence
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ellipsoids are obtained with respect to stochastic depwmids of the error vari-
ables. Those dependencies are the case in reality, e.giclioarray experiments
and in environmental studies as well. In reverse, any @iipsan be inscribed into
a sufficiently large parallelpipe which, in addition, coudd suitably located and
directed in space around its eigenaxes. According to higkgerience and wish
for confidence (trust region), the modeler can enforce atesize of the paral-
lelpipe by additional constraints on the interval limitshieh are the variables in
our parameter estimation. We underline that a direct mog@lith ellipsoides and
corresponding parameters is possible, too. Our work is mggnng one, demon-
strating a basic approach with the help of intervals. The eizthe intervals and,
by this, the amount of error in real networks, is an outcomeuwfparameter esti-
mation which we do by optimization theory based on real datang The follow-
ing subsections provide closer explanations and motinatabout intervals. The
reader may skip them on first reading and directly turn to Sciisn 2.2.

2.1.1 Interval Analysis and Arithmetic

As we are interested in modeling measurement errors andtairdg by in-
tervals we will now have a closer look on interval analysist Us refer to any
intervalsZ, J C X recalling that also points (and thus exact data) may be densi
ered as intervals, and let some X be given; we define [77]:

o 7T+ 7 := {x+y|x€I,y€J},

o I—J:={zx—ylzelye T}

o 7T-J:={aylzel,ye T},

o I)J ={x/ylx €T,y J} if0¢ T,

e a+J:={a+zx|lxel}

e a-J:={ax|x €T},

e If K is a scalar- or vector-valued function &n(or X%, then, the set-valued
mappingZ — K (Z) of intervals (orP — K (P) of parallelpipes fronX9) is
defined byk () := {K(x)| = i} (andK (P) likewise).

If Z, 7, K are intervals, then the following holds by [45]:

o commutativityZ+J =J +ZandZ-J =J -Z,

e associativity(Z+ 7))+ K=Z+(J+K)and(Z-TJ) - K=Z-(J -K),

e subdistributivityZ - (7+K) CZ-J+Z-Kanda-(Z+J)=a-T+a-J,
wherea € X (the distributive law doesotalways hold).
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In addition, we briefly describe the comparison of “ordefgldcements’) of in-
tervals in the real line [14,19,77]. For this, Et= [u_,u ](u—- < u~) and
J =[v—,v"] (v— <v~) be closed intervals i&. Then, we say that

e 7 < J (orequivalently,7 > 7), if u= < v_,
e 7T=7J,f7T CJandZ DO 7,

e 7 < J (or equivalently,7 > 7),ifforall x € 7\ J we havex < J (or,
equivalentlyZ N7 # 0 and forally € 7 \ Z we havey > 7).

We can restate our interval arithmetics by turningrterval numbersandinter-
val matrices Here, we define amterval numberas an ordered pair of real num-
bers|u, v], whereu < v. Two interval numbergu_, v~ ] and[v_,v~] areequal
[u—,u”] = [v_,v7],ifand only ifu_ = v_ andu™ = v=. If [u_,u"] =
[v_,v"], thenu™ > v_ andu_ <wv~.

Referring to any basic operatiane {+, —,-, /}, the arithmetic operations on
intervals can be represented by

[u,v]o[w,t] ={zoylu<z<vw<y<t}.

Now, we can state:

e addition:[u, v] + [w,t] = [u + w,v + ¢];

e subtractionfu, v] — [w,t] = [u —t,v — w];

e multiplication:[u, v] - [w, t] = [min{uw, ut, vw, vt}, max{uw, ut, vw, vt}];
o division: [u, v]/[w, t] = [u,v] - [1/t,1/w], where0 ¢ [w, t].

We additionally note that in the presence of uncertaintgrval matriceshecome
important. The entries of the respective matrix are closéatvals and the matrix
can be represented in the form

lan, @] - [a1m, Tiw]
a1, 1] - .. [a2m, Tam]
(a1, @] - [anm, Tom]

For more notions and details of interval algebra and corspariincluding binary
fuzzy operator and membership values, we refer to [14, 31,95, 46, 61].
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2.1.2 A Note on Linear Programming

In most of the optimization problems when a model is builiisiassumed
that certain data are used. The values obtained are exddn the real world
this is seldomly true. The data known and the values obtaneih some certain
ranges, because there the assumptions are approximatelyFor that reason,
in LP programmodels, data uncertainty is unavoidable. We note that inRn L
program withinterval coefficientghe solutions can be found by using simplex
method [64,61].

2.2 Continuous Differential Equations on Gene-Environtvexpressions

Let us now return to our gene-environment networks and asghat the gene-
environmental patterns may be represented by continudigsetitial equations.
With respect to different stages of modeling we will distiigh two situations:

() Networks withn genes (by neglecting the environmental items)
(I1) Networks withn genes as well a¢ — n environmental items.

For this, we divide the vectdX of concentration levels into two parts and obtain
X=(X1,...,. X0, Xps1,.. ., X)),

whereXy, ..., X, refer to then genes an&,,; 1, ..., Xy to thed — n environ-
mental items, respectively. When we are concerned with teaafetype (1), X;
denotes the expression level of gerend X stands for the first coordinates of
thed-vectorX. Prepared by this notation and the interval arithmetichefgdrevi-
ous sections we can now introduce the continuous models.

2.2.1 Gene-Networks

A dynamical system of. genes (without any environmental items) can be
given by the continuous differential equation

(CE)gene X = A(X)X,

where the (interval) matriXd may depend oX (cf. [77,86]). From this equation
we may obtain the following discrete-time equation and dyita:

(DE)gene X1 = AW X®) (k€ Ny).

Here, A®%) can be taken as interval matrices and the stability can kestigated
by Brayton and Tong’s algorithm [4, 86].
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2.2.2 Example for a Gene-Network

For an example in dimension we mention the following system of differen-
tial equations [26,27,87]:

(7} ﬁl
Xi=—6;X; + Z(regf+)a + Z(regf_)ﬁ +ea (=12,...,n).
p=1

a=1

In this system, real- or interval-valued synthesis or degtian of gene is repre-
sented by; > 0 andd; > 0, whereas activation and inhibition are determined by
the sums. We note that the activation and inhibition fumsticegf ™ and regf —
have been shown to possess a sigmoid shape [88]. The rgdultin n)-matrix
A(FE) has the entries

i Xt )
au(X):;(__(sz‘i‘kuW (121,2,...,71),
Xt
aij (X) = kij—g2 (i,j=1,2,....,n; i % 7)

1] N aij aij
X710

with k;; and6;;,a,;(X) being any nonnegative reals or intervals, respectively.
Then, all or some of the parameters can be estimated withehedi the data
from DNA-microarray experiments.

2.2.3 Gene-Environment Networks

In order to incorporate environmental items into our cambims model un-
der the presence of noise and uncertainty we extended ii7 {7/86] the model
from [23,27] and provided the continuous equation

CE)  X=AXX, X() =X,

The associated system matfixX) is a (d x d)-matrix whose entries are intervals,
defined by a family of functions which include unknown parteng Now, inter-
vals represent uncertainty with respect to the interastimiween the genes, to the
effects between the environment and the genes, or betwe@mommental items.
The initial valuex© = (X{ x© . . X7 consists of the interval-valued
levels obtained by the first measuremfiit,) = X(©). As this may result in a
large and highly interconnected network we will later ontiieson an approxi-
mate model and network. For this we will improve our modelposing bounds
on the admissible number of regulating effects exercisedpee and also on the
effects of the environment onto the genes.
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2.2.4 Example for a Gene-Environment Network

To provide a simple example for a gene-environment netwadken uncer-
tainty we introduce an interval-valu@evectorX = (X;, X3)7 denoting the data.
The interval-valued system matri(X) may be influenced by nine unknown real
parameters, as, . .., aq [84]:

Aai,a0,a5,a4,a5 (X) = [al’QQ]Xl [Q3X%7Q4X1X2] + as
1d6 ,2&7?158?&907 . ag COS(XQ) + [al, ag] Sin(Xl) [a77 as] exp(agxi) .

Here, polynomial, trigonometric, exponential but othessviogarithmic, hyper-
bolic, spline, etc., entries represent any kindagdriori information, observation
or assumption in terms of growth, cyclicity, piecewise babar, etc. [22]. In [70,
71], we studied the case of approximation by splines.

2.2.5 ldentification and Stability

With regard to the parametrized entries of the mddél) we have to examine
the respectiveptimizationand must provide atability analysisBoth issues will
lead tobilevel problemg25,23,38,65,77,81,86]. In case of optimization we have

-1 ~ B .
to deal with the problemmin, HAy (X)X () — X(®)
xk=0

approximation based on squared errors. The vegtoomprises a subset of all
the parameters and the veckt*) consists of interval-valuedifference quotients
raised on thesth experimental datX(*) and on step length,. := ... — t,
between neighbouring samplings times [22,27,77]. As weansade of intervals
we insertedChebychewr maximum normj|-|| . generating the topology of uni-
form convergence (cf. Section 5). Until now we have only nefd to a certain
class of parameters, but, as we have mentioned earlier,roblepns bears some
"duality”. Indeed, the remaining parameters not compriseithe vectory permit

a stability analysis For this, we can capitalize on the structure(6f) that al-
lows a time-discretization represented by a sequence abomatiltiplications. A
combinatorial algorithm on polyhedra sequences can theppked to detect the
regions of stability. In Section 4 we will see that this restan admits a stability
analysis of combinatorial and geometrical type with pgbgaeries [23].

2
and by this with

2.2.6 The Influence of the Environment

The interaction between the genes and the environmentjsdrely character-
ized asepigenetic This refers to stable changes of gene expression patteras i
sponse to environmental factors without any mutationsélINA sequence [83].
DNA methylatioris one of the most common epigenetic factors, but alsety-
lation, ethylationand phosphorylatiorprovide important epigenetic regulations.
Studies on identical twins showed that although they hagesttime genomic se-
guences and genes, but no epigenetic difference duringatthe stages of life,
adult twins possessed very different epigenetic pattdfastang their genetic por-
trait [21]. Moreover, nutritional conditions of grandpats can have phenotypic
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consequences in their grandchildren [18,40]. Lifestylgritional supplementa-
tion, and environmental conditions can have a very impoitapact on inheri-
tance by changing the DNA sequence with mutations and alsaffegting epi-
genetic pattern of DNA through methylation, ethylatiorg.etvithout changing
the DNA sequence. Hence, for a better explanation of the tmiitp of nature,
genetic networks cannot be studied solely without takirtg sonsideration the
environmental factors which affect epigenetic patterrts #imus, gene expression
patterns [86].

3 Extended Dynamics of Gene-Expression and Environmentaldterns

As we have mentioned above, the continuous m¢@g) provides a convenient
multiplicative structure. We note, that the gene-mddel)geneexhibits the same
structure, that provides the basis of the recursive it@naitlea [23]. In [89,90]
a model extension has been proposed that emphasized rarhteractions and
introduced affine linear shift terms which provide a moreusate data fitting.
In order to maintain the multiplicative recursion propeofy(CE)gene We shall
reconstruct the form ofC&)gene by a dimensional model extension. This will
even allow to represent our followiraffinecontinuous equation which includes a
variable shift vector [66—68, 76, 86]:

(AC€)gene X = A(X)X +C(X).

We call this decomposition mormal form anunfolding[7,12,30, 38] or ggen-
eralized) additive moddB0, 70-72]. Here, the vecta? (X ) represents environ-
mental perturbations and contributions and may be, e.gqrential, logarithmic,
trigonometric or piecewise polynomial (splines). In aduit it displays special
effects on each gene emanated from any environmental isedh dr cumulatively
by all or several items working together or catalyzing eatteo This cumulative
effect might not be further divisible or quantifiable by thegle effects.

With (ACE)genewe included the disturbances and genetic changes caused by
the environment, in long and in short term, but we lost theveaient recursive
idea of matrix multiplication first of all. This drawback cée overcome by in-
creasing the dimension of the state spacé t& m + 2n such that we reconstruct
that product structure. This reconstruction was originatesented in [86] and has
been modified by interval-valued entries in [77]. By spiigtithe shift vecto€'(X)
of (ACE)geneinto the sum WX )X + V(X) we obtain the decomposition

(ACE) X = A(X)X +W(X)X + V(X).
Here, them-vector (of intervals)
X(t) = (X1(t), Xa(t), ..., Xm(1)) "

comprises the levels of thew environmental factors that can affect the gene-
expression levels and their variation.
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The single effectof the factorsX, on the gene-expression dakg can be
incorporated by the weight matrix \A# (er) =1 into the system, and by this

then genes and the: environmental factors are |nd|V|duaIIy matched. In aduiti
the column vector YX') = (v;);=1,...» gene-wisely comprises all the cumulative
effects of all (or several) environmental items influending genes together. We
represent thisumulation effedby a new,(m + 1)st environmental item, taken into
account for each gene.

We note that theotal effectof the environment on the expression levgl of
genei is given by

m
ZWM(X)XZ =+ V;.
Now, we overcome the more additive form of the affine-cordimti model

(ACE) by an idea worked out and improved in [66-68,76,77,86]. R, twe
define thegene-environmemhatrix

A(X) = (W(X)|diagV (X)),

where the second block representstyj as a diagonal matrix with intervals on the
diagonal. In addition, we set

XVi= (X7, 0"
with then-vector e:= (1, 1,...,1)T and with
W(X)X +V(X) = A(X)XY,
we obtain the following representation QACE):
X = AX)X + AX)XV
Finally, by introducing théd = m + 2n)-vector

e (X))

A(X) A(X) ) _
O(ern) xXn O(ern) X (m+n)

and the(d x d)-matrix
X)|W(X) diag V(X))

OmX’ﬂ

Ome Om><n I

A(X) = <

0n><n On><7n On><n

we arrive at the extended (mutliplicative) systéi€') together with an extended
initial value as follows:

€&  X=AXX, X@—mm—<§%>-

We note tha{C€&) and the corresponding initial value problem fotC&) can be
considered agquivalent[77]. From microarray experiments we obtain the ini-
tial expression valueg_’(o), whereas the initial state of the special or cumulative
environmental factor&¥-° come from environmental observations.
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The/th environmental factoX, permits "gene-switching”, i.e., if théth spe-
cific environmental factoX, is regarded as affecting any gene-expression level,
then, initially, the/th component ofX () is considered to bé, otherwise). Here,
1(0)in X Z(O) means that théth environmental factor is “switched on” (or “off”,
respectively). In contrast, the cumulative environmeettgct is considered to be
“switched on” always.

In case of(CE), equipped with the initial value&lV (ty) = X, the time-
dependent variabl& ¥ (t) is constantX ¥ = X V-0 Indeed, we have not included
any environmental dynamics, but our modeling frameworbved! us to do this. In
fact, by turning thé matrices in the second and the third (block) column& @f)
to matrices which are different fromh, we can permit variable and interacting
factors of the environment. Allowing also thenatrices in the first column to have
nonzero entries, then this would express that the genesendftuvarious items of
the environment. In addition, the vectof X ) and the weight matrix WX ) could
also depend on the variah® or evenX V. This higher generality ofC&) could
also be implied into the parameter estimation from Section 5

4 The Time-Discretized Model and Stability Analysis
4.1 Time-Discretization

With regard to a numerical analysis of our time-continuowsdeling of gene-
expression patterns we introdudednge-Kutta method&K) in [17]. Later on, a
different RK method calletHeun’s methodvas applied in some extended model
space in [66—68]. This method constitutes a modificationwdéEs method; it is

a more illustrative, explicit and the simplest RK approat8,[L7,66—68]. When
we apply Heun’s method on the extended syst€ifi) we obtain the following
time-discrete equation:

X(k+l)

= L %A(X(’“))X(k) + %A(X(’“) + hip A (XK X ™)

X (X(k) + hkA(X(k))X(k))
_ {1 A KO 4 A KO i (XO)KO) (74 i (X)) | KO
= APX® (ke Np).

For this equation, but also in the Eulerian case and some otbthods [17,23],
we can find a representation "multiplication-form”:

(DE) xE+D) — AR (k)
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With this model we can now calculate predictions of futurpression values. For
this we introduce the data vector

_ _ . T
X .= ((X(’”"))T, (XV”‘”")T) (k=0,1,...,01— 1),

which comprises the results from DNA microarray experins@mtd environmental
measurements. The approximatiopggictiong are denoted bX(*) and we set

O — x(0)
The kth approximation (prediction) is then calculated by
X®) (= X®) = AG-DAFE=2) . (ADAOXO))..) (ke Ny).

We note that the quality of prediction, both theoreticaliyldy numerical exam-

ples, was investigated in [66—68, 89, 90].

4.2 Discrete and Continuous Gene-Environment Networks

Equipped with the discrete mod@P£) and the continuous modéfE), we can
introduce ougene-environment networks an extension and improvement of the
genetic networks

In the case of the time-discrete dynamicgDE ), we can define th&discrete)
gene-environment netwoitk the following way: Theverticesof this network rep-
resent the genes and environmental items, whereasdighted edgedisplay their
interactions.

When we look at the time-continuous dynamics, representéd ), we can
introduce thgcontinuous) gene-environment netwoirke similar way. Here, the
vertices stand again for the genes and environmental it@hexeas the edges are
now weighted with functional values.

Since the problems related with these gene-environmentswiorks ardarge-
scaleones, they are very costly to solve. Even in case where tHagois solv-
able in polynomial time, the huge data set lets the solutiecone very expen-
sive. We acknowledge this problem by simplifying the regardene-environment
network and, herewith, all its substructures, in a selecéimd robust way. This
networkrarefactionwill be introduced in Section 5 and continued in Section 6.

4.3 Matrix Arithmetics

We briefly recall some elements of the interval-valued war$v 7] of our matrix
algebra and, in particular, multiplication [67,68]. Letre$er to thecanonicalform

of matrix partitioning presented for the time-continuousdal in Section 3. The
product of two canonical matrices®), which are the foundation of our networks,
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is a canonically formed matrix again. After some reorgamzeand notation we

get
A<k>zﬂ+@(A(X““’)A(X"“’)P?) h_i(@@)
2 k)

0 0 00 2 \00
with
P=A (XU“) + hy (A(X(k))X(k) + A(X(k))Xv,k)) ’
P=A (XW + by, (A(X(k))X(k) " A(X(k))Xv,k)) ’
Q= A4 (X" 4 by (AGXP)XE 4 A(XP)XH) ) AXD)
@ =A (X(k) + hy (A(X(k))X(k) + A(X(k))Xv,k)) A(X(k))

such thatA(*) has its finakcanonicalblock form, too:

AXPR)) A(X0)
0 Iy '

About the form of two or more multiplications of such matsae(*) and the
spectral theory which is important for our stability theorg refer to [84,86,87].

4.4 Stability Analysis

In this subsection we will turn to a stability analysis. Foistthe finite setd :=
{Ag,Aq,..., A1} of matrices with interval-entries be obtained from the time
continuous mode(CE) with a sufficiently fine discretization ofl, W and V and
entry-wise optimization [66—68, 77] (without any confusisith the previous mean-
ing of A(®) askth iterate). In addition, the matrix set of all the finite niamnulti-
plications of elements fromdl be denoted byd’. Now we can state the following
definition of stability that was first given in [10] and has hestended by us di-
mensionally and by interval-valuedness in [87].

Definition 1 ([77]) The matrix setd (herewith,(D¢)), is calledstableif for ev-
ery neighbourhood ift? (or relative neighbourhood i€ x {0/,,.}), U, of the
origin 04 (or affine origin0’;, given from0, by shifting tol some of the middlex
coordinates and all of the last coordinates), there exists a (relative) neighbour-

hoodV of the origin0, (or 0,) such that for eaclh € A’ it holds: AV C U.

In case of constant time shifts, i.&,, = h (t € R{), there is a continuous orbit
piecewisely defined along all the intervéils:, (k 4 1)h) for the time-continuous
system(C&). If, in addition, the initial sectiorE(t), ¢ € [0, h) is a constant paral-
lelpipe, then the dynamics is piecewise constant. By théscan define atability
condition analogously as in the previous definition. Fort tese and when we
concentrate on Euler discretization, having turned froensttalar- to our interval-
valued model framework, if the functiah of the right-hand side ofC€) is Lips-
chitzian, we learn the following theorem from [84,87]. Itemds the real-valued
case where it even holds for some Runge-Kutta discretizatoesented [86].
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Theorem 1 ([87]) Let the mapr — A(z) (x € X?) be Lipschitzian. If the Eu-
lerian time-discrete systedi**! = AFXF (k € Np), X° € X4, as in(D¢€),
some appropriaté,,., > 0 being given, is stable for all valués, € [0, k),
then the time-continuous dynamics defined by the syiteni\ (X)X (with & > 0
sufficiently small) is also stable.

After some dilatation, the parallelpipés can be embedded into neighbour-
hoods of0,. Multiplying our matrices and vectors (over intervals) aixberving
the resulting discrete orbits can be characterized by th&aisealued case that
was introduced and investigated in, e.g., [10,23,86]. éndeach member in an
orbit of our set-valued products is representable as theesohull of the corre-
sponding common matrix products that we obtain by focusimglbof the finitely
many combinations of the involved interval endpoints. Bgneng to these end-
point combinations, we actually reduced the stability dbodto the classical one
for the scalar-valued case [77,84,86]. Herewith, we hameezhover the stability
theory and algorithmic methods of our and our colleaguashér investigations,
e.g., the previous condition of parametric stability cancharacterized analyti-
cally, spectrally and by Lyapunov functions.

4.5 Modeling Metabolic Gene Networks

With this subsection we very briefly introduce into anothexaaof networks in
computational biology where our mathematical methods @maplied. In the
paper [84] gene-environment networks and metabolic nddsvbecome treated
by a unified approach given by our matrix-valued concept aldutus. Those
genetic networks which are callegetaboliccan also be modeled via its pathways
by a dynamical modeling as studied in [53,54]. If there Areeactions, ifv;(E)

is the rate of theth gene in the reaction netwotk = 1,2,..., N) andS is the
matrix whose elements are the coefficients (weights) of #reeg in the network,
then the dynamical model can be viewed as

(Cg)metabolic G = SV(G).

Here, G denotes the vector consisting of (metabolic) conceninatiof the
genes, and’ (G) is the vector which comprises the ratgs The matrixs is de-
fined as follows [54]:

+a;j, if the reaction; — j “produces” gene,
—a;j;, if the reactioni — j “consumes” metabolitg
0, if the reactioni — j neither produces nor consumes géne

with ¢, j being the genes where the reaction emanates or terminaspgatively,
anda;; are coefficients (or weights) of the genes in the metabadictien scheme.
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Let us look at a small example of a network with 3 genes, 3 ir@astind with
the concentrations of the metabolit@s(: = 1,2, 3). Here, the reactions may be
encoded be the following stoichiometric matrix:

3G1 E) G27
Ga & 2Gs,
Gy + 202 2 qs.

Then, the dynamical model of the above system can be wrigen a

Gh —3+1 0] [w
GQ = 0-1 +2 V2
G'3 —1 —2 +1 VU3

By including the external effects of the environment, thetein(CE) metabolic
of ODEs becomes more realistically fitting to our generaldgiaal situation and
data. This leads us to the metabolic model

(ACE)metabolic G = SV(G) +C(G).

Here,C'(G) comprises all the external effects, e.g.,
C(G) = W(G)G + V(G)

and one special case is given by the faritG) = M (G)G.

As the systemACE)metabolic €an be extended into an interval-valued set-
ting again we can speak ofietabolism-environment networkeherefore, time-
discretizations, matrix algebra and stability can be &ddis well as parameter
estimation by optimization made, likewise we are going tsgnt it now for gene-
environment networks.

5 Extracting and Optimizing Gene-Environment Networks in the Presence
of Intervals

5.1 Our Hybrid Model

Many technical, financial and biological systems exhibiitsiing behaviour. In
the context of genetic networkshybrid approachhas been presented in [27]
which offers a complete dynamical description of the exgieslevels ofr genes.
This approach has been modified in [77,86] by additionallyamiag thern genes
with m special items and the cumulative item of the environmeradiutition, this
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contributions turned to the interval-valued (noise-piosetting, and introduced
the followinghybrid model

X(t) = Ay X (1) + Wy X (8) + V),
wheres(t) := S(Q(X (¢))) with

QIX(1) = (Q1(X (1)), Q2(X (1)), ..., Qu(X(t))), where

)
(HE) 0, 1(t) < 9 1
1, 6;1 < X;(t) < 0;2

Qi(X(1) =9 .
diy 0,0, < Xi(t) (i=1,2,....n).
n (HE) thresholds of the expression levale given by
0i1 <Bi2<...<bigq,.

At these thresholds instantaneous changes of the paracoetellation can occur
such that we have to choose a local model by the special melaftthe (n x n)-
matrix A, ), the(n x m)-matrix W,y and then-vector V, ) (all three ones over
intervals). The functior) : R” — N{ implies the threshold constellation, and
S(Q(X)) indicates where in the state space the system is plac¥d and which
matrices and vectord, W, V have to be chosen to specify the system such that
the given data are approximated best. The funcianNj — Ny must be injec-
tive, such that a different tripled,W,V) is used whenever a threshold is traversed.
Thispiecewise lineaapproach provides an approximation of the global nonlinear
ity of the systems under consideration.

The systen{HE) can indeed be generalized such that the matrices and vectors
depend onX; then, the involved parameters are affected, governedrestdrita-
neously changed vi&(t).

The gene-expression levels are compact intervals sucthbatectorsX are
parallelpipes, all of them lying in a sufficiently large plelpipe P. Via canonical
projections, the thresholds define a partitiorfointo subparallelpipes (regimes)
PP C P (p € {1,2,...,¢}), where! := I (d; + 1). Let {# > ¢ be
an integer such that the differenéé — ¢ is the number of combinations where
one or more thresholds are included in the possible intefaéxpression. Each
such a combination can be identified with another parapel@** C P (p €
{0+1,2,...,¢#}) which partially (i.e., in one or several coordinates) cetssof
intervals betweenomeighbouring threshold values or are placed at the boundary
OP. We can reduce the numbét by supposing that all the intervals; (t) are
shorter than the differences between any two nonneighbgthiresholds [84,87].

Our understanding ofHE) is in the sense of the placement in the set of in-
tervals (cf. Section 2) and of an extension(@fvhen one or more thresholds are
included in the intervalsY;(t). In such a case, this extension can be made by
the arithmetic mean of the correspondiyalues associated with those intervals
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between and besides the thresholds which intersect Mjth); this averaging is
then followed by a rounding to an integer. Based on this defimiof s(¢), we
find Ay1), W) and V() (we could also directly use the averaging technique for
these parameters [77]).

The parameter estimatiofior the time-continuous model and for the time-
discrete system works along the following steps [27,77,86]

1. estimation of théhreshold9; ;,

2. calculation of thenatricesandvectors A, ), Wy and Vy(y),
describing the system in between the thresholds.

The thresholds can be defined Bkaike’s Information Criterior[30] as in the
original hybrid model presented in [27] and in the model egiens in [3,5, 25,27,
51]. We assume that all the thresholds are known as we areotating on the
tasks in continuous optimization.

Now, for any given subparallelpip* := P** we have to extract the para-
metric unknownsA, ), W, and V() from given data. In the subparallelpipe
P*, the hybrid system ) reduces to a system of ordinary linear differential
equations and we can find analytical solutions for the cpoeding parts of the
state space. We may assume that for the special environnfecttars the times
of sampling are just the genetic sampling times, and the sadex sets of sam-
plings. The environmental datd(®) (x = 0,1,...,1 — 1) are considered to be
binary and constant, but they could also be variable in a medieed modeling.

5.2 The Hybrid Model with Delayed Interactions

The hybrid model of the previous section can be further ede¢drwith regard to

possible delays in the interaction of variables. Such hystiependent problems
have been investigated in [41] and the delays are includddkirstate transitions
(threshold crossing

X(t) = Ay X (t) + Wy X () + Vo),
wheres(t) = S(Q(X (£))) with

QX(1)) = (Ql( (t=m71))- -+, Qn(X(t —75))), where

()<911
1791SX()<91',2

(HDE)

Qux @) =1 .
diy 6 < Xo(t) (i=1,2,...n).

For further details on time-delay hybrid models and a sitgbéinalysis we refer
to [41].
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5.3 Mixed-Integer Parameter Estimation

For an estimation of parameters we have to minimize the @iadsrror between
the difference quotientX ("~) and the right-hand side of the differential equa-
tions evaluated at the finitely many measurement inter¥dls:) ¢ P* (o =
0,1,...,1* — 1) which are lying in the regarded reginf&" takes the following
form:

"—1 . 2

HLS HA*XW L WX (Ra) g yr g (a)

min
(a7;),(W3p),( 0o
As discussed above, parallelpipe expression vectors ¢act aEveral neighbour-
ing subparallelpipe®*, such that we get corresponding problgfHS). Criteria
on which of them to put special emphasis consist in where dite wbctors as par-
allelpipes are lying, and on further empirical evidencegAMLS), ||-|| ., stands for
the Chebychev norrof the set inserted, i.e., it is the maximum norm with respect
to the vector-valued functions defined by (independengipatrization which we
get from the interval-valued entries 8f*, W* and V' as well as the ones of the

vectorsX (ve) - X (5a) and X (v«) respectively. For length measurement we use
the Euclidean norm, such that our squared Chebychev nomdégd a maximum
over sums of squares, but we could also use the maximum outhée/§g) vector
norm instead of the Euclideaik] one. This reconsideration turns our least-squares
or Gaussian approximation problem of earlier studies écf., [86]) to some gen-
eralized Chebychev approximation problem.

The classical “scalar” version of{LS), i.e., Gaussian approximation, can be
canonically treated by building the partial derivativegfwispect to the unknowns
and equating them t6. Then, one has to solve the resultingrmal equations
which are linear in the unknown parameters, w;, and \, e.g., by Gaussian
elimination method algorithm. BuHLS) is a generalized Chebychev approxima-
tion problem; since it can equivalently be written as a senfinite optimization
problem (cf. [87]), we get access to the applicable metraglobf SIP.

As nowadays high-throughput technologies are availal@eggenvironment
networks are very large. Therefore, for practical reasambave to rarefy them by
diminishing the number of arcs [77,86]. Here, upper boundthe outdegrees of
nodes are introduced firstly; then, these constraints atledfuweakened by a con-
tinuous way of model improvement. In this section and in Bed, we shortly re-
call this process in our interval-valued generalized Clobkyian way [84]. Firstly,
we define the Boolean matrices and vectors,

.....
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by
~._ | 1, provided geng regulates genge

Xiji ==Y 0, if genej doesnotregulate gene,

€ m 1, provided environmental itefiregulates geng

=7 0, if environmental iten? doesnotregulate gene,
and

G = 1, provided the environment cumulatively regulates gene

* 10, if the environment doesotcumulatively regulate gene
Theoutdegrees

ZXija Z&'z and ZQ‘
i=1 i=1 i=1

count the numbers of genes regulated by ggngy environmental itend or by

the cumulative environment, respectively. Our networlefaetion by bounding
the outdegrees obeys the principles of least-squares. $6araply any helpfub
priori knowledge into the problem, especially, about degradatites, and what is
empirically known about the connectedness structure nQ&dower bound; in

on the degradation of geriés known or there are requests given about the feasi-
bility of special genetic or metabolic processes [27,8&]rétvith, our parameter
estimation task becomes a (generalizeied-integer Chebychev approximation
problem

-1 ) : A )
min HA*X(“Q) F WX () oy X (e
(@7;),(W7,), (V) (xis)5 (8ie),(Gi) =0 oo
(MICP) %;1 Xij <o (1=1,2,...,n)
. 7»1_ i S 64 (é =1 2 . m)
subject to lﬁlgz PE
: Zi:l G <~
ai; > 6imin (1 =1,2,...,n)

The connectivity of the network could be strongly restrichy the loss of the
edges emanating at a few genes which are considered to ptay anportant role
in regulation, i.e., to have very high outdegrees. This banésult of perturbations
caused by the environment and affecting the prokl&dZCP) with its rigid (ex-
clusive) binary constraints. We therefore replace themdmtinuous constraints
in Section 6.
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5.4 On Spline Regression

For a good exposition of a dynamics with strong local anddésisal or asymptotic
features of the data, piecewise polynomialkptine[16] functions may be used
based on observed dafa For the sake of simplicity the following explanation on
spline regression will concentrate on thealarvalued framework. However, the
entire modeling and optimization can be generalized inédrterval-valued case,
especially, with interval-valued integrals.

Splines may be described as linear combinations of baswifurs; determin-
istic or statistical spline estimation approximates theegexpression daté by a
smooth curve. However, the main difficulty when working wattiines lies in the
selection of the number and position of the knots and in thacehof the basis
functions for a given data set. We use the data of DNA miceyaexperiments
and environmental observatiofis., X *)) as our spline knots. In time sense, the
knots can be given or selected equidistantly, but also weegularly. Then, in
(ACE)genewe can use spline functions, (X, ) inside A(E), W(X) and V(X),
respectively. Taking into account separation of varialdese expression levels),
the entries of the matrice$(X ), W(X) and V(X) are represented by spline func-
tions; e.g.,

eulw) = B+ 3 A X
a=1

n  Pij

1 3SR (G =12

a=1~v=1

Here,h "/ (E,) are base splines evaluated at the expression levels aftirgene.

By the parameterﬁé"i’j we denote partial intercepts depending of the output data
X" (k=0,1,...,1—1) (percentages of their averaged data). By this an additive
separation of the variables is realized. However, thisdliriénd of interaction is
not always given but can be imaginated as an approximatstead, below, we
will come to a different interpretation of owdditive functional structure by a
clustering of the input data. This additivity may be regards a model richness
which is intermediate in-between both affine linearity ambalinearity that takes
into account more complex interactions and correlations®en the variables or
data clusters, respectively. Firstly, we choose splingsadss individually for each
entrya;; (X). Likewise, we represent the entries of W) and V(X)) by splines.
The entries w (X) and v(X) can be written as

n o qi

Wil( 21l+zf21l 21l+229(2¥zwl leal )7

a=1p=1

D WU NI LES 9) S TIIe:
a=1

a=1lv=1
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with ¢ = 1,...,n; I = 1,...,m, where for allé, j,! : qu, 7 < p;j, or: <
max; p;;. Indeed, when using spline functions for the entrigg ) and v(E)
we must be careful since they are environmental effectsanfling the gene ex-
pression levels and their approximation. Since we considese effects to be very
small, they have a restricted effect represented by thetselespline degrees for
w;; (X)) and v (X) not larger than those af;; (X ). Otherwise, the approximated
gene expression levels can become affected and this may ingthbility in the
parameter estimation [71].

To quantify that possible instability, we refer to the setamder derivatives
(curvature) of the model functions. Then, looking at theaiun (ACE)gene oOur
model becomes fitted by minimizing the criteripanalized sum of squarg30]:

PRSSA,W,V)

2

—ZHX(“ AEYX ) WX )X ® _V(X(K))Hg

+ Penalty Term

2
-1 n m ~

=> > (X Z“w X)X —Z Wiy (X)X vy (X0
k=0 i=1 =1

+ Penalty Term

Here,||-|\§ stands for the Euclidean norm. If we use our additive modpt@y-
mations fora;; (X), w;;(X) and v(X), then PRSS has the following form where
(-)')}Q denotes differentiation with respect,:

xU 2
Penalty Term= Z Z Z l)\l i / ’ fivi"j(Xa)Xj);i an]

i=1 j=1a=1

Xa
i=1 =1 a=1 a
n n . Xclx] ) 2
+Z gg-,l ( SZ(XOC))X dXOc ’
XL «
i=1 a=1 a

where\L%7, 244 ¢34 > ( are penalty parameters, aagf, XU are lower and
upper bounds with levelX,. Here, X, are the constant environmental factors and
not depending on the gene expression levels(gf we may uniformly replace
them by the averaged daty := + S/ X[,



A Survey on OR and Mathematical Methods for Gene-Envirortrivetworks 23

Then, denoting®*! := 12! X2, the penalty term can be written as

2
'X "
Penalty Term= Z Z Z [/\1 b / (fhi(x )XJ»)E2 an]

=1 j=1 a=1

cx

i=1 ¢=1 a=1 a

n n X(;] //2 2
eyl [ ) ax

=1 a=1 o

and further evaluated. Using spline functions inside PR&8ing

G(M, W, V)

-1 n n
=S5 XS =S (X EN — ZleW)X(“) vi(X )
k=0 i=1

=1 =1

2

= |U(6,6%,6°);

and using the discretized form [71] for all members in thegnal terms, then we
can write each of them d;;(6") H2 |Wie(62) H2 and||Zi(03)||;. Now, turning
to a constrained rather than a penalized program, PRSS ciantelbgreted as an
optimization problem of the following form:

min  t,
t,0%,62,03
where

||U(01,92,03)||2 < t?
|Vis 91)H2 < Ay (,j=1,2,...,n)
||Wll 92)”2 < Ny; (=12,....n1=1,2,...,m)
1Z@|2 <R (i=1,2,...,n)

t > 0.

Such an optimization programis a typicalnic quadratic programminCQP)
problem, which can be solved lnyterior points methodlPM) [48-50, 71]. Except
for very large-scale problems with dense matrices, theskl@ms have a moder-
ate complexity. As learned in [71], CQP and IPM are much moresenient than
penalty methods connected with backfitting algorithm [Z0dnic programming
is also helpful in clustering theory, especially, in congiittnal biology [6]. We
point out our work [73] on "nonsmooth” spline regression@aMARS [30].

The preceding outline on spline regression focussed osctlarvalued frame-
work, but it can also be extended to antervatvalued model. While this can be
widely done straightforward, there is one single difficukpline interpolation in
a multivalued setting. This obstacle and how we overconreatmeaningful way
will be explained in a future paper.
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6 Improved Modeling by GSIP Extension
6.1 The GSIP Extension

Themixed-integer Chebychev approximation probleZCP) includes rigid bi-
nary constraints. To alleviate the effects of these comgrave replace the bi-
nary variablesy;;, & and(; by real variable®;;, ¢, € [0, 1] which linearly
depend on the elements of;, w;, and v; (also interpretable as probabilities)
and assume some reasonable box constraints. By this, uheS\E[?:l pij(as;),
S qie(wl,) andd " r;(v)) have become interval-valued approximations of
the numbers of genes regulated by ggrenvironmental itend and cumulative en-
vironment, respectively. All this leads us te@antinuous optimization problef#7,
84,86,87]. Having solved the continuous optimization peah we could return
the binary variables and, hence, network rarefaction, bpdong or staying below
some small prescribed valueg, i, ¢; € [0,1), respectively [86].

The environment can affect the connectedness between ttes ge destroy
some of the connecting paths but also cycles among the gémexkout”; [24])
and an external stimulus can activate a higher regulatioongnthe genes. For
those reasons, the papers [77,86] implied all the possililwex combinations
of the environmental effects into the inequalities aboet lounded outdegrees.
Theset of combined environmental effeitslefined as the convex hull of all the
VECLOrs Wy eq(i—1)4¢ @nd Ve i

Y (V¥ W*) = conv( {W,Dem(i_l)_;’_g ’ 1=1,2,....,n; £=1,2,. ..,m}

U{Vi0im+1€mnrti | i=1,2,..., n})

= E Uifwz}em(ifl)JrE + E Ui,m+lvremn+i

i=1,...,n, i=1,...,n
e=1,...,m

oir>006=12,...,n; 7=1,2,....m+1),

with e,, denoting theyth ((m + 1)n)-dimensional unit vecto(o, ..., 1,...,0)7.
Formally, we can writ&” (V*, W*) as a parallelpipe [83]

Y (V5 W) = _ IT [0,wj] x ] [T [0,v;].

i=1,..., n 1=1,..., n

The wealth of how the environment is implied bases on andepphy given
a priori knowledge about the genes that helps scientists, prawiticand decision
makers when determining and elaborating the rarefied nktwow, we get our
(generalizedjelaxed Chebychev approximation probtem
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*—1
(RCP)  min ZHA Klre) W X)Ly — 50|

(a3;),(W5),(V; o
subject to
zi:%m SO merivw),
2icari(Viy) < v(y) (y e Y(V,WY),
5z,m1n§a (i:1,2,...,n),
W;ESW;E SW;FZ (i:1327"'7n;£:172a- am)a
vi<vi <V (i=1,2,...,n).

Now we compare:;; andd; min and choose the largest of the two values as a sin-
gle lower bound instead{ in» < a;; provided). As given in the objective function
by generalized Chebychev approximation, this uniformrjmretation of the X"
conditions amounts to the SIP characte(B{ P). By the additional coupling of
our inequality constraint sé&t (V*, W*) with the stateV*, W*), (RCP) even
becomes a GSIP problem. In the objective function, the tevitisthe «th Cheby-
chev norm|-|| , are nonsmooth max-type functions£ 0,1,...,1* —1). By the
following standard techniquéRCP) becomes smoothly modeled. For each max-
type function, we introduce a new coordinafe(in addition to the unknowns of
(RCP)), considered as a new coordinate and as a uniform bounddmghared
Euclidean norms of the elements inside the Chebychev néterswith, we mini-
mize the sum of the bounds. As new inequalities we just intcedhese bounding
conditions; we write them so that the Euclidean norms oftedl¢lements inside
the Chebychev norms have uniformly to stay below the comedimg bounds.

6.2 GSIP for Gene-Environment Networks

When we apply GSIP for our gene-environment network proli&@7P) we ob-
tain the general program form

minimize f(z) on Mgszlh,g], where
PQSZ(f,h7g7U,U) MQSI[hvg_] = {IGRd|h1(I):O(’L€I>a (Al)
9 (z,y) 20 (y €Y(x), j € J)},

with |1|,]J] < oo, and with set&’? = Y7 (x) defined adinitely constrained.F)
feasible sets [65,62,81]. For eaghe X9, we have a representation

Yi(z) = Mg (z,-), 09 (z,")]
= {y}—e R ug(w,y) =0 (k € K7), ve(z,y) >0 (£ € L) }, } (42)

with finite setsK’ and L?. The model {,)-(A>) allows equality constraints on
both the uppera-) level and lower ¢-) level representing, e.g., further metabolic
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restrictions, reactions or balance equations [77,84,8&. outdegree constraints
in (RCP) may be assumed to be of class, too. The bounds guarantee that the
feasible setVigsz|h, g] is compact in the projective sense of the origin@t? +
mn + n) unknowns (with intervals encoded by tuples of endpointg},rot in
the “height” dimensions of the new coordinates This noncompactness can be
overcome as shown in [78,81]. Here, the sgtgx) are compact and fulfill the
Linear Independence Constraint QualificatiidCQ), an appropriate choice of
the overall box constraints provided. The works [65,7788187] provide more
detailed discussions and generalizations of GSIP.

6.3 Structural Stability for Gene-Environment Networks

In this subsection we state the main theorenstroctural stabilityof our gene-
environment network<erturbationsof the form(f, h, g,u,v) — (f,h,g,a,?)
may be caused, e.g., as follows [77,86]:

(I) Ouitliers of parallelpipesWe can face such outliers by multiplying some
(dampening) factor on the corresponding squared error.

(I “Perturbed” problems and networkd he data gives rise to one optimization
problem and network so that the data of a subsequent measutrean be
viewed as a problem and network under variation.

(111) Errors, imprecision and uncertaintyrhey have been included in our model-
ing by the use of intervals.

The strong Whitney topology/2 [32, 36] serves as a “measure” of perturbations so
that asymptotic aspects are taken into account. For a fitadgin of uncertainty
by five typesof errors, we refer to [20]. The “genetic (and environmerfiager-
print” of (RCP) is given by all the lower level sets of its objective functitithe
perturbed and the arbitrarily slightly unperturbed loweardl sets are homeomor-
phic to each other, under some correspondence betweevéig lwe callRCP)
structurally stablg36, 39, 78,81]. Now, we can carry over and stateGharacter-
ization Theorem on Structural Stability for Gene-EnviramnNetwork$rom [77,
86] for (RCP) (for details cf. [37,79-81]). Our main theorem basicalbtss that
structural stability can just beharacterizedy two well-known regularity condi-
tions and a more technical one:

Characterization Theorem on Structural Stability

for Gene-Environment Networks.[84,87]

The optimization problenPgsz(f, h, g, u,v) on gene-environment networks is
structurally stable, if and only if the following triplet @bnditionsC; », 3 is satis-
fied:

C:. EMFCQ holds forMgsz[h, g].

C,. All the G-O Kuhn-Tucker point& of Pgsz(f, h, g, u, v) are(G-O) strongly
stable.

Cs. For each two differer-O Kuhn-Tucker points! # 72 of Pgsz(f, h, g, u,v)
the corresponding critical values are different (sepdytde: f (') # f(z?).
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This characterization theorem helps for a well understamdf the topologi-
cal “landscape” of gene-environment networks, for thentymbational behaviour
and for the development of numerical procedures. For examy@ can consider
“mountain paths” (saddle points) between any two candideteorks being given
by local minimizers off RC’P). All the points around candidate solutions can be
regarded as potential networks which may be obtained adteuations, e.g., in-
ward shifts from a genetic or environmental boundary to aeriar position [37,
79-81]. They may be outcomes of underlying constellatiornthé experimental
design which may have to be reconstructed, which is an ieyaneblem [8].

In terms of testing thgoodness of data fittinghe lower level sets can be in-
terpreted as confidence regions around the parametersiestinThe size of these
regions is basically governed by the steepness of the famatiound the solution.
In cases where a local or global minimizer is very steep, weasaociate this with
stability, whereas flatness is more likely related with ity [87]. For a better
analytical understanding ¢fRCP) and its solution, we identify possible patholo-
gies in terms of one or more of the conditiahs,, 3 violated.

We point out a relation taonic programmingCP) [48], however, in a GSIP
sense. If in RCP) all the functions defining the constraints are linear arel th
squares on the Chebychev norms deleted, then we obtain ERlpeoblem. If we
square both the linear constraint functions and the bounelgarrive at the special
case of CP calledonic quadratic programmin¢CQP) [48,71]. In CP problems,
interior point methodsan be introduced and efficiently applied.

7 Modeling by Stochastic Differential Equations

A further interesting approach to our modeling is basedtochastic differential
equationg SDFE). Such an equation is typically given by

X(t) = a(X,t) + b(X,t)d; (t € [0,00))
X(0) = o,

wherea is the deterministic parbg, is the stochastic part, ardg denotes a gener-
alized stochastic process [42]. An example for a genedktechastic process is
white noise. Suppose thé#f; is a generalized version of a Wiener process, i.e., a
time-continuous process with the propeity ~ N(0,¢) (0 < ¢t < T'). To obtain

our approximate and a smoothed model, we tV€aas differentiable. Then, white
noised, is defined as;, = W, = dW,/dt and a Wiener process can be obtained
by smoothing the white noise. If we replagelt by dWW; in our SDE, we obtain

dXt = Q(Xt, t)dt + b(Xt, t)th,

wherea(X,, t) andb(X,, t) are drift and diffusion terms, respectively, aid is a
solution which we try to find based on the experimental dateeSve do not know
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the distribution ofX;, we want to simulate its values. For this reason, we simulate
a discretized version of SDE. We consider Migstein schemand obtain the

Xiy1 = Xg + a(Xk,t)(tk+1 — tk) + b(Xk,t)(Wk+1 — Wk)
+ %(b’b)(xj, t)((Wk+1 —Wi)* = (b1 — tk))

as an approximation fok; (here, we understandl, in the sense of our estima-
tion X (*); cf. Subsection 4.1). When we refer to the finitely many sammalints
(X, t;), we get the discrete approximation
= — _ — _ . AW, 1 - _
X = () (T ) S 4 500 (Xt

K

)

fork =0,1,..., N. Here, the vectoX , represents difference quotients based on
the xth experimental data and on step lengths:= 7., — ., = Af, between
neighbouring sampling times. This relation cannot holdriregact sense since we
consider real data, butit is satisfied best indberoximatesense of least squares of
errors. The incrementdW; are independent on non-overlapping intervals and we
have Vaf AW;) = At,. Hence, the increments having a normal distribution can
be simulated by normal distributed random numb&gsand we obtain a discrete
model:
AW, = Zo/ AL, Zo ~ N(0,1).

If we use this in our discretized equation, we obtain

- — - — .\ Z. 1 - -\ =2

X, =a(Xy, b)) +b(X,, ) = + Q(b/b)(xmtﬁ)(zm —1).

K

We can rewrite this as

where

2

where the vectoy comprises all the parameters in the Milstein model. As the
data may have a high variation we must use a parameter eistimma¢thod which
will give a smoother approximation to the data. In [@p]ineswere used to avoid
large oscillations observed for high degree polynomiatagimation. In addition,
apenalized residual sum of squaffies SDE and a relatedikhonov regularization
problem(that could be solved with MATLAB Regularization Toolboxave been
proposed. Alternatively to the concept of Tikhonov regulation we can apply
conic quadratic programmingnd we refer to [35,69] for further details.
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8 Socio-Econo-Environment Networks

Beside the application in medicine and life sciences ouretiog and analysis
provides a conceptual framework for various problems inr@jgenal Research.
We illustrate this with an important example from enviromta protection and
CO2-Emissions-Control. By this, our gene-environment neks@re extended to
so-calledsocio-econo-environment networks

We now refer to the so-calletechnology-Emissions-Means Modiel short:
TEM mode), developed bystefan W. Pick]55] for the mathematical analysis of
international collaborations and jointimplementatioagnamsJI) in the frame-
work of the Kyoto Protocol. The TEM model integrates the dation of the tech-
nical and financial parameters and describes the economiegdctions between
several actors (countries, companies) which intend tommi@ their emissions by
means of cooperative game theory [74,75]. The players akedi by technical
cooperations and the market, which expresses itself indhémrear time discrete
dynamics of the TEM model [44,56-58]. We denoteHythe emissions caused
by technologied'; using financial meang;, where the index stands for theth
player(i = 1,2,..., N). The relationship between financial means and reduced
emission in a JI program is given by

AE;(k) = ZNjemij(k)Mj(k),
AM; (k) = —/\Z—Mi(JI:)EM — M (k) (Ei(k) + 0 AE; (k).
with
AE;(k) == E;(k +1) —Ei(k) and AM;(k) := My(k + 1) — M;(k),

where the discrete timelg, are renamed by:. FurthermoreM; stands for the
upper bounds for the financial investigations. The first §qonalescribes the time-
dependent behaviour of the emissions reduced so far by dagérg2]. These
levelskE; are influenced by financial investigatiokls which are restricted by the
second equation. We understdficas the reduced emissions of actar % andM;
as the financial means of actoiT he parameterg; are callednemory parameters
Thus, the multiplication ofAE; with ¢, can be regarded asmaemory effec¢this
expression stands for the influence of earlier investmdiits. first part of the
second equation resembles a logistic difference equatibare the proportional
factor \; can be seen asgrowth parameterEach coefficienem,; describes the
effect on the emissions of théh actor if thejth actor invests one unit of money
for his technologies, e.g., devices of filters in energy prtin of consumption.
This also shows how effective technology cooperationsvahat is the kernel of
the JI program. The parametens);; have to be determined empirically.
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The numerical examinations which show that chaotic behangan occur, un-
derline the necessity of a control theoretic approach wisiégmplied by an addi-
tional control term in the second equation of the TEM model:

N
Ei(k+1) =E;(k)+ > _em;;(k)M;(k),
j=1

M;(k + 1) = M; (k) — XM, (k) (M; — M;(k)) (Ei(k) + p; AE; (k) + ui(k),

We note that the TEM model relies on exact data, but this agtraims to

model real-world processes, imprecisions and errors @b tconsidered. For
this, in [82] an interval-valued reformulation within theamework of our gene-
environment networks has been proposed. For this the TEMehias been struc-
tured in this way:

(k) 7 (k)

(ETvMT)T (k+1) _ M(k)((ETvMT)T )(ET’MT)

Having added the control parameter, we obtain the timerelisdynamics

() = ((5) ) () (),

which we can represented by
(DE) xE+D) — AR (k)

Here, the matriced (*) incorporate the control variables. In this extended space
notation, the variabl& and entire dynamic6DE) could be enriched by further
environmental and, in particular, genetical items andtieia. The shift vector
(0T, (u*)T)T can be regarded as parametric and as a realizatiofi.df W) in

the sense of Section 3; then, our stability theory could bpleyed. According to
how those matrices are adjusted, we arrive at different\netiss of stability or
instability of (DE), in the sense of dynamical systems (Section 4) or of paramete
estimation (Section 6.2). As a dual alternative to that fiee#t-like realization

by the vector (X, XV) which becomes incorporated into the matti%*), the
control vectorsu(*) could also become integrated if¥d*). The time-dependent

parameteremz(.f) can be treated in similar ways as the controls.

9 Conclusion

In this paper, we surveyed the recent advances in mathahatiedeling and
prediction for industrial, economical, financial and mediapplications within
the conceptual framework of gene-environment networkgedainties and mea-
surement errors in DNA microarray experiments have beeorporated in our
parameter-dependent model and a matrix algebra basedeovaharithmetics has
been provided. This led us to approximation problems of segdized Cheby-
chevian kind and we investigated them by generalized sefimiie optimization.
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We stated a characterization result on structural stglkilitd contributed by this
to a better understanding of the topological landscape négsvironment net-
works. In addition, we pointed out to the relations to conimdratic program-
ming and spline regression. Furthermore, some relatedefuasearch directions
in metabolic engineering were established.

All this demonstrated in a dynamical modeling context thpanmance of dis-
crete and continuous optimization in a modern interdigegsy approach. We note
that this approach provides a wide framework for varioubfmms affected with
noise and imprecision as they appear in modern industéah@mical and med-
ical applications. In the future, more emphasis has to bergig an extension of
our model to further important real-world applications las tecently introduced
metabolic networks and the socio-econo-environment nés\@8, 59, 60, 82,83,
86].

This paper is mainly addressed to colleagues from OR, edhedrom op-
timization theory and mathematical modeling, but also cotatonal statistics.
Besides further theoretical improvements within theseho@s$ and communities,
other research challenges consist in advances conceraingarability and di-
mensions, aspects of data quality included, probabilegjwects of modeling re-
fined and in further implementation and comparisons witleothethods.
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