HIERARCHICAL CONDITIONAL RANDOM FIELD FOR
MULTI-CLASS IMAGE CLASSIFICATION

Michael Ying Yang, Wolfgang Förstner
Department of Photogrammetry, Bonn University, Bonn, Germany
michaelyangying@uni-bonn.de, wf@ipb.uni-bonn.de

Martin Drauschke
Institute for Applied Computer Science, Bundeswehr University Munich, Munich, Germany
martin.drauschke@unibw.de

Keywords: Multi-class image classification, hierarchical conditional random field, image segmentation, region adjacency graph, region hierarchy graph.

Abstract: Multi-class image classification has made significant advances in recent years through the combination of local and global features. This paper proposes a novel approach called hierarchical conditional random field (HCRF) that explicitly models region adjacency graph and region hierarchy graph structure of an image. This allows to set up a joint and hierarchical model of local and global discriminative methods that augments conditional random field to a multi-layer model. Region hierarchy graph is based on a multi-scale watershed segmentation.

1 INTRODUCTION

In recent years an increasingly popular way to solve various image labeling problems like object segmentation, stereo and single view reconstruction is to formulate them using image regions obtained from unsupervised segmentation algorithms. These methods are inspired from the observation that pixels constituting a particular region often have the same label. For instance, they may belong to the same object or may have the same surface orientation. This approach has the benefit that higher order features based on all the pixels constituting the region can be computed and used for classification. Further, it is also much faster as inference now only needs to be performed over a small number of regions rather than all the pixels in the image.

Classification of image regions in meaningful categories is a challenging task due to the ambiguities inherent to visual data. On the other hand, image data exhibit strong contextual dependencies in the form of spatial interactions among components. It has been shown that modeling these interactions is crucial to achieve good classification accuracy, (cf. Section 2).

Conditional random fields (CRFs) have been proposed as a principled approach to modeling the interactions between labels in such problems using the tools of graphical models (Lafferty et al., 2001). A conditional random field is a model that assigns a joint probability distribution over labels conditioned on the input, where the distribution respects the independence relations encoded in a graph. In general, the labels are not assumed to be independent, nor are the observations conditionally independent given the labels, as assumed in generative models such as hidden Markov models. The CRF framework has already been used to obtain promising results in a number of domains where there are interactions between labels, including tagging, parsing and information extraction in natural language processing (McCallum et al., 2003) and the modeling of spatial dependencies in image interpretation (Kumar and Hebert, 2003).

One problem with the methods using low-level features in image classification is that it is often difficult to generalize these methods to diverse image data beyond the training set. More importantly, they lack semantic image interpretation that is valuable in determining the class labeling. Contents such as the presence of people, sky, grass, etc., may be used as cues for improving the classification performance obtained by low-level features alone.

This paper presents a proposal of a CRF that simultaneously models the region adjacency graph and the region hierarchy graph structure. This allows to
set up a joint and hierarchical model of local and
global discriminative methods that augments CRF to
a multi-layer model.

The contributions of this paper are the following.
First, we extend classical one-layer CRF to multi-
layer CRF while restricting to second-order cliques.
Second, this work shows how to integrate local and
global information in a powerful model. The paper
is organized as follows: Section 2 introduces related
work. Section 3 gives the basic theory of CRF. Sec-
tion 4 presents pairwise CRF model by incorporating
novel hierarchical pairwise potentials.

2 RELATED WORK

There are many recent works on multi-class image
classification that address the combination of global
and local features (He et al., 2004; Yang et al., 2007;
Reynolds and Murphy, 2007; Gould et al., 2008; Toy-
oda and Hasegawa, 2008; Plath et al., 2009; Schnitz-
span et al., 2009). They showed promising results and
specifically improved performance compared to mak-
ing use of only one type of features - either local or
global.

He et al. (2004) proposed a multi-layer CRF to ac-
count for global consistency and due to that showed
improved performance. The authors introduce a
global scene potential to assert consistency of local
regions. Thereby, they were able to benefit from inte-
grating the context of a given scene. However, their
model works with global priors set in advance and
only uses learned local classifiers. Rather than to rely
on priors alone, in our work, all parameters of the lay-
ers are trained jointly. Yang et al. (2007) proposed
a model that combines appearance over large con-
tiguous regions with spatial information and a global
shape prior. The shape prior provides local context for
certain types of objects (e.g., cars and airplanes), but
not for regions representing general objects (e.g., an-
imal, building, sky and grass). In contrast to this, we
explicitly model hierarchical graph structure of an im-
age, capturing long range dependencies. Gould et al.
(2008) proposed a method for capturing global infor-
mation from inter-class spatial relationships and en-
coding it as a local feature. Toyoda and Hasegawa
(2008) presented a proposal of a general framework
that explicitly models local and global information in
a conditional random field. Their method resolves lo-
cal ambiguities from a global perspective using global
image information. It enables locally and globally
consistent image recognition. But their model needs
to train on the whole training data simultaneously
to obtain the global potentials, which results in high
computational time.

Besides the above approaches, there are more
popular methods to solve multi-class classification
problem using higher order conditional random fields
(Kohli et al., 2007, 2009; Ladicky et al., 2009). Kohli
et al. (2007) introduced a class of higher order clique
potentials called \(P^n \) Potts model. Higher order clique
potentials have the capability to model complex in-
teractions of random variables, making them able to
capture better the rich statistics of natural scenes. The
higher order potential functions proposed in Kohli
et al. (2009) take the form of the Robust \(P^n \) model,
which is more general than the \(P^m \) Potts model.
Ladicky et al. (2009) generalized Robust \(P^n \) model to
\(P^n \) based hierarchical CRF model. Inference in these
models can be performed efficiently using graph cut
based move making algorithms. However, the work
on solving higher order potentials using move making
algorithms has targeted particular classes of potential
functions. Developing efficient large move mak-
ing for exact and approximate minimization of gen-
eral higher order energy functions is a difficult prob-
lem. Parameter learning for higher order CRF is also a
challenging problem.

Recent work by Plath et al. (2009) comprises
two aspects for coupling local and global evidences
both by constructing a tree-structured CRF on im-
age regions on multiple scales, which largely fol-
lows the approach of Reynolds and Murphy (2007),
and using global image classification information.
Thereby, Plath et al. (2009) neglects direct local
neighborhood dependencies, which our model learns
jointly with long range dependencies. Most similar
to us is the work of Schnitzspan et al. (2008) who
explicitly attempt to combine the power of global
feature-based approaches with the flexibility of lo-
cal feature-based methods in one consistent frame-
work. Briefly, Schnitzspan et al. (2008) extend clas-
cical one-layer CRF to multi-layer CRF by restrict-
ing pairwise potentials to 4-neighborhood model and
introducing higher-order potentials between different
layers. There are several important differences with
respect to our work. First, rather than 4-neighborhood
graph model in Schnitzspan et al. (2008), we build re-
region adjacency graph based on watershed image par-
tition, which leads to a irregular graph structure. Sec-
ond, we apply an irregular pyramid to represent dif-
ferent layers, while Schnitzspan et al. (2008) use a
regular pyramid structure. Finally, our model only ex-
plots up to second-order cliques, which makes learn-
ing and inference much easier. While Schnitzspan
et al. (2008) introduce higher-order potentials to rep-
resent interactions between different layers.
3 PRELIMINARIES

We start by providing the basic notation used in the paper. Let the image \(X \) be given. It is described by a set of regions with indices \(i \) collected in the set \(R = \{i\} \).

They are possibly overlapping and not necessarily covering the image region. Multi-class image classification is the task of assigning a class label \(l_i \in C \) with \(C = \{1, \ldots, C\} \) to each region \(i \).

Let \(G = (R, E) \) be the graph over regions where \(E \) is the set of (undirected) edges between adjacent regions. Note that, unlike standard CRF-based classification approaches that rely directly on pixels, e.g., (Shotton et al., 2006), this graph does not conform to a regular grid pattern, and, in general, each image will induce a different graph structure.

The conditional distribution of a classification for a given image has the commonly general form

\[
P(L | X) = \frac{1}{Z} \exp \left(\sum_{i \in R} f_i(l_i | X) + \sum_{(i,j) \in N} f_{ij}(l_i, l_j | X) \right)
\]

where \(L = \{l_i\}_{i \in R} \) represent the labeling of all regions, \(N \) is the set of neighbored regions, and \(Z \) is the partition function for normalization. The unary potential \(f_i \) represents relationships between labels and local image features. The pairwise potential \(f_{ij} \) represents relationships between labels of neighboring regions.

The unary potential \(f_i \) measures the support of the image \(X \) for label \(l_i \) of region \(i \). Various local image features are useful to characterize the regions. For example, the CRF in (Shotton et al., 2006) uses shape-texture, color, and location features. The pairwise potential \(f_{ij} \) represents compatibility between neighboring labels given the image \(X \). E.g., if neighboring regions have similar image features, \(f_{ij} \) favors the same class label for them. Then, if the regions have dissimilar features, they might be assigned different class labels. Thus, the pairwise potential \(f_{ij} \) supports data-dependent smoothing.

4 HCRF: HIERARCHICAL CONDITIONAL RANDOM FIELD

While global detectors have been shown to achieve impressive results in image classification for unoccluded image scene, part-based approaches tend to be more successful in dealing with partial occlusion. Since adjacent regions in images are not independent from each other, CRF models these dependencies directly by introducing pairwise potentials.

However, standard CRF works on a very local level and long range dependencies are not addressed explicitly in simple CRF models. Therefore, our approach tries to set up a joint and hierarchical model of local and global information which explicitly models region adjacency graph (RAG) and region hierarchy graph (RHG) which is derived from a multi-scale image segmentation.

4.1 Proposed Model

Standard CRF acts on a local level and represents a single view on the data typically represented with unary and pairwise potentials. In order to overcome those local restrictions, we analyze the image at multiple scales \(s \in \{1, \ldots, S\} \) with associated scale-specific unary potentials \(f_{is} \) and pairwise potentials \(f_{ij}^s \), to enhance the model by evidence aggregation on local to global level. Furthermore, we integrate pairwise potentials \(g_{ik}^s \) to regard the hierarchical structure of the regions, i.e. if \(i \in R^s \) and \(k \in R^{s+1} \). In Fig. 1, we present a segmented image at three scales and the corresponding connectivity between the regions of successive scales. We see that regions that are too small to be classified accurately can inherit the labels of their parents. E.g. region 11 and 12 may be too small to reliably classify in isolation, but when they inherit a message from their parent region 5, they may possibly be correctly classified as ’cow’.

The proposed method explicitly models region adjacent neighborhood information within each scale or layer with \(f_{ij}^s \) and region hierarchical information between the scales with \(g_{ik}^s \), using global image features as well as local ones for observations in the model. It
has a distribution of the form
\[
P(L | X) = \frac{1}{Z} \exp \left(\sum_{s=1}^{S} \sum_{l_s \in R_s} f_s^l(l_i | X) \right)
\]
\[
+ \sum_{s=1}^{S} \sum_{(i,j) \in N_s} f_{ij}^l(l_i, l_j | X) + \sum_{s=1}^{S} \sum_{(i,k) \in H_s} g_{ik}^l(l_i, l_k | X) \right)
\]

where \(R_s \) is the indexing set for regions corresponding to scale \(s \), \(N_s \) is the set of neighboring regions at scale \(s \), and \(H_s \) is the set of parent child relations between regions in neighboring scales \(s \) and \(s+1 \). Note that we use the same \(Z \) as the partition function for normalization as in standard CRF, although the value is different. We denote this model as Hierarchical Conditional Random Field (HCRF).

The proposed full graphical model is illustrated in Fig. 2. Note that this model only exploits up to second-order cliques, which makes learning and inference much easier. This model combines different views on the data by scale-specific potentials and the hierarchical structure accounting for longer range dependencies.

4.1.1 Unary Potentials

The local unary potentials \(f_s^l \) independently predict the label \(l_i \) based on the image \(X \):
\[
f_s^l(l_i | X) = \log P^l(l_i | X).
\]

The label distribution \(P^l(l_i | X) \) is calculated by using a classifier. We employ the multiple logistic regression model:
\[
P^l(l_i = c | u_{ic}) = \exp(u_{ic}) / \sum_c \exp(u_{ic}),
\]

where \(u_{ic} = w_c^T h_i, \ w_c = [w_{0c}, w_{1c}, ..., w_{Mc}] \) are \(M+1 \) unknown parameters per class, and the feature vector \(h_i = [h_{i0}, ..., h_{im}, ..., h_{iM}]^T \) contains \(M \) features for each region \(i \) derived from the image \(X \). The weights \(w = \{w_c\}_{c=1,...,C} \) are the model parameters.

4.1.2 Pairwise Potentials

The local pairwise potentials \(f_{ij}^l \) describe category compatibility between neighboring labels \(l_i \) and \(l_j \) given the image \(X \), which take the form of a contrast sensitive Potts model:
\[
f_{ij}^l(l_i, l_j | X) = v_i^T \mu_j^l \delta(l_i \neq l_j)
\]

where the feature function \(\mu_j^l \) relate to the pair of regions \((i,j)\), and the weights \(v_i \) again are the model parameters.

The hierarchical pairwise potentials \(g_{ik}^l \) also describe category compatibility between hierarchically neighboring labels \(l_i \) and \(l_k \) given the image \(X \), which take the form of a contrast sensitive Potts model:
\[
g_{ik}^l(l_i, l_k | X) = r_i^T \eta_k^l \delta(l_i \neq l_k)
\]

where the feature function \(\eta_k^l \) relate to the hierarchical pairs of regions \((i,k)\), and the vector \(r_i \) contains the model parameters. We denote the unknown HCRF model parameters by \(\theta = \{w, v, r\}_{s=1,...,S} \).

4.2 Generating Multi-scale Segmentations

We now explain how we realized the multi-scale image segmentation and how we generate the region adjacency graphs (RAG) and region hierarchy graph (RHG).

We determine the image segmentation from the watershed boundaries on the image’s gradient magnitude. Our approach uses the Gaussian scale-space for obtaining regions at several scales. The segmentation procedure has been described in detail by Drauschke et al. (2006). For each scale \(s \), we convolve each image channel with a Gaussian filter and combine the channels when computing the gradient magnitude. Since the watershed algorithm is inclined to produce over-segmentation, we suppress many gradient minima by resetting the gradient value at positions where the gradient is below the median of the gradient magnitude. So, those minima are removed, which are
mostly caused by noise. As a result of the watershed algorithm, we obtain a complete partitioning of the image for each scale s, where every image pixel belongs to exactly one region. Additionally, we determine the scale-specific RAGs on each image partition.

The development of the regions on several scales is used to model the RHG. Drauschke (2009) defined a RHG with directed edges between regions of successive scales (starting at the lower scale). Furthermore, the relation is defined over the maximal overlap of the regions. This definition of the region hierarchy leads to a simple RHG. If the edges would be undirected, the RHG only consists of trees.

4.3 Parameter Learning and Inference

For parameter estimation we take the learning approach (Sutton and McCallum, 2005) assuming the parameters of unary potentials to be conditionally independent of the pairwise potentials’ parameters, allowing separate learning of the unary and the binary parameters. Note this no longer guarantees to find the optimal parameter setting for θ. In fact, the parameters are optimized to maximize a lower bound of the full CRF likelihood function by splitting the model into disjoint node pairs and integrating statistics over all of these pairs. Prior to learning the pairwise potential models we train parameters $\{w_s\}_{s=1,...,S}$ for the unary potentials. Then, the pairwise potentials’ parameter sets $\{v^s\}_{s=1,...,S}$ and $\{r^s\}_{s=1,...,S}$ are learned jointly in a maximum likelihood setting with stochastic meta descent Vishwanathan et al. (2006). We also assume a Gaussian prior on the linear weights to avoid overfitting (Vishwanathan et al., 2006).

We use max-product propagation inference (Pearl, 1988) to estimate the max-marginal over the labels for each region, and assign each region the label which maximizes the joint assignment to the image.

4.4 Feature Functions

To complete the details of our method, we now describe how the feature functions are constructed from low-level descriptors. They link the potentials to the actual image evidence and account for local neighborhood and long range dependencies.

Unary feature function h^s_i is a function of a predefined description vector for each region i at scale s.

Local pairwise potentials are responsible for modeling local dependencies by supporting or inhibiting label propagation to the neighboring regions. Therefore, we define the local pairwise function μ^s_{ij} as

$$\mu^s_{ij} = [1, |h^s_{im} - h^s_{jm}|]$$

Here, we extended each difference by an offset for being capable eliminating small isolated regions.

Hierarchical pairwise potentials act as a link across scale, facilitating propagation of information in our model. Therefore, we define the hierarchical pairwise function η^s_{ik} as

$$\eta^s_{ik} = [1, |\eta^s_{im} - \eta^s_{km}|]$$

where region i is at scale s and region k is at scale $s+1$.

In the following, we give an example of how we build the description vector for each region mentioned above in the context of building facade interpretation.

For each region i at the highest resolution, say, at scale with index 1, we compute a 75-dimensional description vector Φ^1_i incorporating region area and perimeter, its compactness and its aspect ratio. For representing spectral information of the region, we use same 12 color features as Barnard et al. (2003): the mean and the standard deviation of the RGB and the Lab color spaces. We also include features derived from the gradient histograms as it has been proposed by Korč and Förstner (2008). Additionally we use texture features derived from the Walsh transform (Petrou and Bosdogianni, 1999; Lazaridis and Petrou, 2006). Other features are derived from generalization of the region’s border and represent parallelity or orthogonality of the border segments, or they are descriptors of the Fourier transform.

We define this description vector to be the unary feature function h^1_i at scale 1. For the higher scales s, we compute the description vector Φ^s_i and unary feature function h^s_i using the correspondent regions at lower scales.

We have finished the multi-scale image segmentation and feature extraction on eTRIMS database.\footnote{1\url{http://www.ipb.uni-bonn.de/projects/etrims/}} Based on segmented regions, we have generated RAG and RHG. We are currently working on learning and inference issues.

5 SUMMARY

In this paper, we have shown a novel approach called hierarchical conditional random field (HCRF). The proposed method explicitly models region adjacent neighborhood information within each scale and region hierarchical information between the scales, using global image features as well as local ones for observations in the model. This model only exploits up to second-order cliques, which makes learning and
inference much easier. This model combines different views on the data by layer-specific potentials and the hierarchical structure accounting for longer range dependencies.

REFERENCES

