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1. Introduction 

All spaces in this paper are assumed to be regular and all maps are continuous. 

We recall that a surjective mapf: X + Y of topological spaces is said to be inductively 

perfect if there is a closed set F c X such that f(F) = Y and f IF is perfect. 

Triquotient maps were introduced by Michael in [7], and generalize the concepts 

of open and inductively perfect maps. The question of when open maps are 

inductively perfect has been considered in [l, 5, 7, 141. The question of when 

compact covering and s-covering maps are inductively perfect have been considered 

in [7, 8, 12, 13, 161 (see also [4, Corollary to Theorem 11). 

Definition [7]. A map f: X + Y of topological spaces is said to be triquotient if for 

each y E Y there is a family ny of open subsets of X such that X E r], and 

(a) if U E ny and y is an open cover of U n f -l(y) by open subsets of X then 

there exists a finite number of elements CJi E y, 1 s i =G k, such that l_)f,, CJ, E n,,, 

(b) if U E Q, then y E Int f( U), 

(c) if U E TV, then there is a neighbourhood O(y) such that U E 71~ for every 

5E O(Y). 

The above definition of a triquotient map is slightly different from that of Michael 

[7], but obviously is equivalent to it (put U* = {y E Y: there is OE qy such that 

0~ U} and qy={UcX: YE U*}). 
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Our main results are: 

Theorem 1. Let f: X -+= Y be a triquotient map onto a paracompact space Y. If there 

exists a perfect extension f * : X* + Y off such that X is a Gs-set in X*, then f is 

inductively perfect. 

Theorem 2. If f: X + Y is a triquotient map of a metric space (X, d) onto a metric 

space Y such that every jiber f -l(y) IS a complete metric space with respect to d and, 

for every open U c X, f( U) is a G,-set in Y, then f is inductively perfect. 

The proof of Theorem 1 is, to some extent, similar to the proof of a theorem of 

Pasynkov [ 14, Theorem 81. The idea of the proof of Lemma 1 for the case of subsets 

of the real line is due to Novikov [3, Section 14, Lemma 11. Theorem 2 is based on 

Lemma 1 and Theorem 1. Corollaries to these results give further partial answers 

to the question of when triquotient maps are inductively perfect. 

It should be remarked that Theorem 1 yields Theorem 1.6 of [7] but not the more 

general Theorem 6.6 of [7], and that Theorem 2 strengthens Corollary 1.2 in [lo]. 

2. Proofs and corollaries 

Proof of Theorem 1. Let X = niew Oi where Oi is open in X”, i E w. Let us choose 

for each y E Y some Ui E 7y and for each point x E U{ choose a neighbourhood 

U(x)c Ui such that clx* U(x) c OO. There are finitely many U(x,), i = 1,2,. . . , k, 

such that UT = IJF=, U(xi) E TV. Obviously, clx* Ufc O,,. Now y E Int f( U:) and 

there is a neighbourhood O(y) of y such that U:E Q for each [E O(y). Let us 

consider the open cover {(Int f( UT)) n O(Y)},,~ Y of Y and let y = { Ua}oCA be a 

locally finite open refinement. For every LY E A we can choose (((Y) E Y such that 

U, c O([( a)) n Int f( Uf’“‘). Let us consider the family 6 of sets W$‘“’ = U:‘“‘n 

f*-‘(Ua), and put XO=clX*(UatA WiCa’). Then XO=UatAclX* W$“‘c O,, and 

fo=f *Ix” is perfect. Since for each y E Y there is some WiCa) E v,,, we may consider 

O,, X,,, f0 instead of 00, X*, f * and repeat the construction and so on. Thus we 

have Oi 2 Xi 1 Xi+, , i E o, where Xi is closed in X* and J; : Xi + Y is perfect. Let 

F = ni,, Xi. It is obvious that F c X and F is closed in X”, hence f IF = f *IF is 

perfect and f(F) = Y q 

Corollary 1 [7, Theorem 1.61. A triquotient map f: X + Y of a eech-complete space 

X onto a paracompact space Y is inductively perfect. 

Proof. Let us extend f to f: pX+ PY and put X* =f-‘( Y), f * =flx*. 0 

Remark 1. Let f: X + Y be a triquotient map onto a countable, hence paracompact, 

space Y, and let f * : X* + Y be a perfect extension of f such that all the fibers 

f-‘(y), y E Y, are G,-sets in f *-l(y). Then X = f -‘( Y) is also a Gs-set in X* and, 

by Theorem 1, f is inductively perfect. 
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Corollary 2. A triquotient map f : X + Y of a subspace X of a perfectly normal Cl‘ech- 

complete space Z onto a countable space Y with tech-complete fibers is inductively 

perfect. 

Proof. Let X* = (PZ) x Y, where Z is Tech-complete and perfectly normal and 

X c Z, and let f * : X + Y be the projection. Then f * is perfect. We may identify X 

with the graph off and assume Xc X x Y c (PZ) x Y. By Remark 1 it is sufficient 

to show that every fiber f -l(y) is a G,-set in PZ. Now pZ\Z = Uiaw Fi, where Fj 

is compact, and Z\cl,f -l(y) = Uiew T,, where T, is closed in Z, i E W. Since f -l(y) 

is Tech-complete, clpz(f -‘(y))\f -l(y) = UiCw B,, where B, is compact, iE w. It is 

easily seen that pZ\f -l(y) = IJiew (F, u clpz( 7;) u Bi), and so f -l(y) is a G&-set in 

pZ. q 

Remark 2. Taking the completion of X, we see that every metrizable space X satisfies 

the condition of Corollary 2, thus Corollary 2 generalizes Theorem 1.4 from [7]. 

Lemma 1. Let h : Z + Y be a map of a metric space Z with a u-discrete open base 

U,,, {H,,,: a E A} onto a topological space Y. If X c Z and h(X) = Y, then 

UytY T, = Z\U,,,_, UatA K,,, where T, = cL(hm’(y) n Xl and Tn,a = 
K,,\hp’h(Hn,, n W. 
Proof. (1) Let x E lJ,, y T,, then x E 7; for some y E Y. It is clear that h(x) = y and 

x E Z. If x E T,,, then x E H,,, andxch-‘h(H,,,nX).Hence H,,,nXnh-l(y)=0 

and x& T,,. 

(2) Let x E Z and x @ T,,, (n E w, LY E A). This implies that if x E H,,,, then x E 

h-‘h(H,,, nX). Hence xEclz(h-‘(h(x))nX), so XE T,+‘. 0 

Proof of Theorem 2. Let X and ? be the completions of X and Y, respectively, 

and let i: X,+i(X,) be an extension off; where X0 is a G8-set in X. Let g : px,+ 
/37(X,,) be the extension of 7 and let X* = g-‘( Y). It is clear that g* = g],+ : X* + Y 

is perfect. Since X0 is a G,-set in /3X,,, the set Z = X,, n X* is a G,-set in X”. We 

shall show that X is a G&-set in Z and hence in X*. Let h = gl,. Since the fibers 

f-‘(y) are complete with respect to d, they are closed in Z and, by Lemma 1, 

U ytY Ty =X = Z\U,,,, UatA T,,,. Since for each n E w the set lJatA T,,, is an 

F,-set in 2, X is a G,-set in Z. 0 

We conclude with several rather specialized remarks. 

Recall that a subset Y c [w is called a a-set provided every F, subset of Y is a 

G,-set in Y [6, Section 40, VI]. The continuum hypothesis implies the existence of 

uncountable a-sets. It is known [6, Section 40, VI, Theorem l] that any Bore1 subset 

of a a-set is simultaneously an F, and a Gs. Thus Theorem 2 remains valid for a 

a-set Y provided the map f satisfies the following property: 

(*) For each open set U c X, f( U) is a Bore1 subset of Y. 

We note that a continuous map f: X + Y satisfies (*) if X, Y c Iw, X is a Bore1 

set and f-‘(y) is compact for each y E Y [3, Section 14, Theorem 3.51. 
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Under the assumption of Martin’s Axiom, for each Y = R with 1 YI < 2” each subset 

of Y is Gs-set [15, Chapter 6, Theorem 121. This and Theorem 2 imply: 

Corollary 3 [lo]. Let X be a separable metric space, and Yc R with 1 YI < 2“‘. If 

f: X + Y is a triquotient map such that for every y E Y the$ber f -l(y) is complete in 

the metric induced by X, then f is inductively perfect. 

It should be noted that under the hypothesis of Corollary 3, the class of triquotient 

maps coincides with the class of s-covering and compact covering maps. 
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