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We give some conditions under which triquotient maps are inductively perfect.
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1. Introduction

All spaces in this paper are assumed to be regular and all maps are continuous.
We recall that a surjective map f: X - Y of topological spaces is said to be inductively
perfect if there is a closed set F < X such that f(F)=Y and f}r is perfect.

Triquotient maps were introduced by Michael in [7], and generalize the concepts
of open and inductively perfect maps. The question of when open maps are
inductively perfect has been considered in [1, 5, 7, 14]. The question of when
compact covering and s-covering maps are inductively perfect have been considered
in [7, 8, 12, 13, 16] (see also [4, Corollary to Theorem 1]).

Definition [7]. A map f: X > Y of topological spaces is said to be triquotient if for
each ye Y there is a family 7, of open subsets of X such that X € 5, and

(a) if Ue 7, and vy is an open cover of U nf7'(y) by open subsets of X then
there exists a finite number of elements U; € y, 1 <i<k, such that U',;, U e,

(b) if Uen,, then yelnt f(U),

(¢) if Uen,, then there is a neighbourhood O(y) such that Ue n, for every
£€0(y).

The above definition of a triquotient map is slightly different from that of Michael
[7], but obviously is equivalent to it (put U*={ye Y: there is O€ n, such that
Oc U} and ,={Uc X:yec U*}).
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Our main results are:

Theorem 1. Let f: X > Y be a triquotient map onto a paracompact space Y. If there
exists a perfect extension f*: X* Y of f such that X is a Gs-set in X*, then f is
inductively perfect.

Theorem 2. If f: X - Y is a triquotient map of a metric space (X, d) onto a metric
space Y such that every fiber f “'(y) is a complete metric space with respect to d and,
Sfor every open U< X, f(U) is a Gs-set in Y, then f is inductively perfect.

The proof of Theorem 1 is, to some extent, similar to the proof of a theorem of
Pasynkov [14, Theorem 8]. The idea of the proof of Lemma 1 for the case of subsets
of the real line is due to Novikov [3, Section 14, Lemma 1]. Theorem 2 is based on
Lemma 1 and Theorem 1. Corollaries to these results give further partial answers
to the question of when triquotient maps are inductively perfect.

It should be remarked that Theorem 1 yields Theorem 1.6 of [7] but not the more
general Theorem 6.6 of [7], and that Theorem 2 strengthens Corollary 1.2 in [10].

2. Proofs and corollaries

Proof of Theorem 1. Let X =(),_ O, where O; is open in X*, i € w. Let us choose
for each ye Y some Ujem, and for each point x € Uy choose a neighbourhood
U(x)< U} such that cly*U(x) = O,. There are finitely many U(x;), i=1,2,...,k,
such that U{zULl U(x;) € 3,. Obviously, clxy*Uj < Oy. Now yelInt f(U7) and
there is a neighbourhood O(y) of y such that Uj e 5, for each £€ O(y). Let us
consider the open cover {(Int f(U}))n O(y)},cy of Y and let y={U,},ca be a
locally finite open refinement. For every o € A we can choose é(a)€ Y such that
U, < O(&(@)) nInt f(UE®). Let us consider the family & of sets W5* = U{*’
*7Y(U,), and put X,=clx *(,_ . W5&). Then X,=J,_, clx * Wi < O, and
fo=1"*|x, is perfect. Since for each y € Y there is some W5 e n,, we may consider
O,, Xo, fo instead of Oy, X*, f* and repeat the construction and so on. Thus we
have O, > X; > X,.,, i€ w, where X is closed in X* and f;: X;> Y is perfect. Let
F=(,., X:. It is obvious that F< X and F is closed in X*, hence f|r=f* is
perfect and f(F)=Y. O

Corollary 1[7, Theorem 1.6]. A triquotient map f: X > Y of a Cech-complete space
X onto a paracompact space Y is inductively perfect.

Proof. Let us extend f to f:BX - BY and put X*=f_1(Y),f*=f|x*. O

Remark 1. Let f: X - Y be a triquotient map onto a countable, hence paracompact,
space Y, and let f*: X* > Y be a perfect extension of f such that all the fibers
(), ye Y, are Gs-sets in f*7'(y). Then X =f"'(Y) is also a G,-set in X* and,
by Theorem 1, f is inductively perfect.
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Corollary 2. A triquotient map f: X ~ Y of a subspace X of a perfectly normal Cech-
complete space Z onto a countable space Y with Cech-complete fibers is inductively
perfect.

Proof. Let X*=(BZ)x Y, where Z is Cech-complete and perfectly normal and
X c Z, and let f*: X > Y be the projection. Then f* is perfect. We may identify X
with the graph of f and assume X < X X Y < (B8Z)x Y. By Remark 1 it is sufficient
to show that every fiber f '(y) is a Gs-set in BZ. Now BZ\Z = J,_, Fi, where F;
is compact, and Z\clzf '(y)=J,_, T, where T; is closed in Z, i € . Since f'(y)
is Cech-complete, cly(f '(y))\f "(y)=..., Bi, where B; is compact, i€ w. It is
easily seen that BZ\ f'(y) =, (F:uclgz(T;)U B,), and so f ~'(y) is a Gs-set in
Bz. O

Remark 2. Taking the completion of X, we see that every metrizable space X satisfies
the condition of Corollary 2, thus Corollary 2 generalizes Theorem 1.4 from [7].

Lemma 1. Let h:Z > Y be a map of a metric space Z with a o-discrete open base
Upew {Huo: @€ A} onto a topological space Y. If X< Z and h(X)=Y, then
Uy T,=2\U,co Usca Tna, where  T,=cl,(h'(y)nX) and T,,=
H, \h 'h(H, . X).

Proof. (1) Let x€ Uyey T,, then x e T, for some y € Y. It is clear that h(x)=y and
xeZIfxeT,, thenxeH,,andxg h"'h(H,,n X). Hence H,, n X nh™'(y)=90
and x¢ T,.

(2) Let xe Z and x¢ T, .(ne w, « € A). This implies that if xe€ H, ,, then xe
h™'h(H, ., X). Hence xecl(h™'(h(x))n X), s0 x€ Tyr). [

Proof of Theorem 2. Let X and Y be the completions of X and Y, respectively,
and letf:XO»f(Xo) be an extension of f, where X, is a Gs-set in X. Let g:BX,~>
Bf(X,) be the extension of f and let X* = g '(Y). Itis clear that g*=g|x«: X*> Y
is perfect. Since X, is a G;-set in BX,, the set Z=X,n X™ is a G;-set in X*. We
shall show that X is a Gs-set in Z and hence in X*, Let h = g|. Since the fibers
S '(y) are complete with respect to d, they are closed in Z and, by Lemma 1,
Uyey T, =X =2\U,.., U.ca Tna- Since for each ne w the set | J,_, T,. is an
F,-setin Z, X is a Gs-setin Z. [

We conclude with several rather specialized remarks.

Recall that a subset Y =R is called a o-set provided every F, subset of Y is a
G;-set in Y [6, Section 40, VI]. The continuum hypothesis implies the existence of
uncountable o-sets. It is known [6, Section 40, VI, Theorem 1] that any Borel subset
of a o-set is simultaneously an F, and a G;s. Thus Theorem 2 remains valid for a
o-set Y provided the map f satisfies the following property:

(*) For each open set U< X, f(U) is a Borel subset of Y.

We note that a continuous map f: X » Y satisfies (*) if X, YR, X is a Borel
set and f '(y) is compact for each ye Y [3, Section 14, Theorem 3.5].
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Under the assumption of Martin’s Axiom, for each Y < R with | Y| <2 each subset
of Y is Gs-set [15, Chapter 6, Theorem 12]. This and Theorem 2 imply:

Corollary 3 [10]. Let X be a separable metric space, and Y <R with |Y|<2“. If
f1X - Y is a triquotient map such that for every y€ Y the fiber f ~'(y) is complete in
the metric induced by X, then f is inductively perfect.

It should be noted that under the hypothesis of Corollary 3, the class of triquotient
maps coincides with the class of s-covering and compact covering maps.
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