TRIQUOTIENT AND INDUCTIVELY PERFECT MAPS

A.V. OSTROVSKY

Leningrad Shipbuilding Institute, Leningrad, U.S.S.R.

Received 25 June 1984 Revised 25 April 1985

We give some conditions under which triquotient maps are inductively perfect.

AMS(MOS) Subj. Class.: 54C10, 54D18, 54E35

triquotient maps

s-covering maps

completions Čech complete

inductively perfect maps compact covering maps separable metric spaces

1. Introduction

All spaces in this paper are assumed to be regular and all maps are continuous. We recall that a surjective map $f: X \to Y$ of topological spaces is said to be *inductively perfect* if there is a closed set $F \subset X$ such that f(F) = Y and $f|_F$ is perfect.

Triquotient maps were introduced by Michael in [7], and generalize the concepts of open and inductively perfect maps. The question of when open maps are inductively perfect has been considered in [1, 5, 7, 14]. The question of when compact covering and s-covering maps are inductively perfect have been considered in [7, 8, 12, 13, 16] (see also [4, Corollary to Theorem 1]).

Definition [7]. A map $f: X \to Y$ of topological spaces is said to be *triquotient* if for each $y \in Y$ there is a family η_y of open subsets of X such that $X \in \eta_y$ and

- (a) if $U \in \eta_y$ and γ is an open cover of $U \cap f^{-1}(y)$ by open subsets of X then there exists a finite number of elements $U_i \in \gamma$, $1 \le i \le k$, such that $\bigcup_{i=1}^k U_i \in \eta_y$,
 - (b) if $U \in \eta_v$, then $y \in \text{Int } f(U)$,
- (c) if $U \in \eta_y$, then there is a neighbourhood O(y) such that $U \in \eta_{\xi}$ for every $\xi \in O(y)$.

The above definition of a triquotient map is slightly different from that of Michael [7], but obviously is equivalent to it (put $U^* = \{y \in Y : \text{ there is } O \in \eta_y \text{ such that } O \subset U\}$ and $\eta_v = \{U \subset X : y \in U^*\}$).

Our main results are:

Theorem 1. Let $f: X \to Y$ be a triquotient map onto a paracompact space Y. If there exists a perfect extension $f^*: X^* \to Y$ of f such that X is a G_{δ} -set in X^* , then f is inductively perfect.

Theorem 2. If $f: X \to Y$ is a triquotient map of a metric space (X, d) onto a metric space Y such that every fiber $f^{-1}(y)$ is a complete metric space with respect to d and, for every open $U \subset X$, f(U) is a G_{δ} -set in Y, then f is inductively perfect.

The proof of Theorem 1 is, to some extent, similar to the proof of a theorem of Pasynkov [14, Theorem 8]. The idea of the proof of Lemma 1 for the case of subsets of the real line is due to Novikov [3, Section 14, Lemma 1]. Theorem 2 is based on Lemma 1 and Theorem 1. Corollaries to these results give further partial answers to the question of when triquotient maps are inductively perfect.

It should be remarked that Theorem 1 yields Theorem 1.6 of [7] but not the more general Theorem 6.6 of [7], and that Theorem 2 strengthens Corollary 1.2 in [10].

2. Proofs and corollaries

Proof of Theorem 1. Let $X = \bigcap_{i \in \omega} O_i$ where O_i is open in X^* , $i \in \omega$. Let us choose for each $y \in Y$ some $U_0^y \in \eta_y$ and for each point $x \in U_0^y$ choose a neighbourhood $U(x) \subset U_0^y$ such that $\operatorname{cl}_X * U(x) \subset O_0$. There are finitely many $U(x_i)$, $i = 1, 2, \ldots, k$, such that $U_1^y = \bigcup_{i=1}^k U(x_i) \in \eta_y$. Obviously, $\operatorname{cl}_X * U_1^y \subset O_0$. Now $y \in \operatorname{Int} f(U_1^y)$ and there is a neighbourhood O(y) of y such that $U_1^y \in \eta_\xi$ for each $\xi \in O(y)$. Let us consider the open cover $\{(\operatorname{Int} f(U_1^y)) \cap O(y)\}_{y \in Y}$ of Y and let $Y = \{U_\alpha\}_{\alpha \in A}$ be a locally finite open refinement. For every $\alpha \in A$ we can choose $\xi(\alpha) \in Y$ such that $U_\alpha \subset O(\xi(\alpha)) \cap \operatorname{Int} f(U_1^{\xi(\alpha)})$. Let us consider the family δ of sets $W_\alpha^{\xi(\alpha)} = U_1^{\xi(\alpha)} \cap f^{*-1}(U_\alpha)$, and put $X_0 = \operatorname{cl}_X * (\bigcup_{\alpha \in A} W_\alpha^{\xi(\alpha)})$. Then $X_0 = \bigcup_{\alpha \in A} \operatorname{cl}_X * W_\alpha^{\xi(\alpha)} \subset O_0$ and $f_0 = f^*|_{X_0}$ is perfect. Since for each $y \in Y$ there is some $W_\alpha^{\xi(\alpha)} \in \eta_y$, we may consider O_1, X_0, f_0 instead of O_0, X^*, f^* and repeat the construction and so on. Thus we have $O_i \supset X_i \supset X_{i+1}$, $i \in \omega$, where X_i is closed in X^* and $f_i : X_i \to Y$ is perfect. Let $F = \bigcap_{i \in \omega} X_i$. It is obvious that $F \subset X$ and F is closed in X^* , hence $f|_F = f^*|_F$ is perfect and f(F) = Y. \square

Corollary 1 [7, Theorem 1.6]. A triquotient map $f: X \to Y$ of a Čech-complete space X onto a paracompact space Y is inductively perfect.

Proof. Let us extend f to $\tilde{f}: \beta X \to \beta Y$ and put $X^* = \tilde{f}^{-1}(Y), f^* = \tilde{f}|_{X^*}$. \square

Remark 1. Let $f: X \to Y$ be a triquotient map onto a countable, hence paracompact, space Y, and let $f^*: X^* \to Y$ be a perfect extension of f such that all the fibers $f^{-1}(y)$, $y \in Y$, are G_{δ} -sets in $f^{*-1}(y)$. Then $X = f^{-1}(Y)$ is also a G_{δ} -set in X^* and, by Theorem 1, f is inductively perfect.

Corollary 2. A triquotient map $f: X \to Y$ of a subspace X of a perfectly normal Čech-complete space Z onto a countable space Y with Čech-complete fibers is inductively perfect.

Proof. Let $X^* = (\beta Z) \times Y$, where Z is Čech-complete and perfectly normal and $X \subset Z$, and let $f^* \colon X \to Y$ be the projection. Then f^* is perfect. We may identify X with the graph of f and assume $X \subset X \times Y \subset (\beta Z) \times Y$. By Remark 1 it is sufficient to show that every fiber $f^{-1}(y)$ is a G_{δ} -set in βZ . Now $\beta Z \setminus Z = \bigcup_{i \in \omega} F_i$, where F_i is compact, and $Z \setminus \operatorname{cl}_Z f^{-1}(y) = \bigcup_{i \in \omega} T_i$, where T_i is closed in Z, $i \in \omega$. Since $f^{-1}(y)$ is Čech-complete, $\operatorname{cl}_{\beta Z}(f^{-1}(y)) \setminus f^{-1}(y) = \bigcup_{i \in \omega} B_i$, where B_i is compact, $i \in \omega$. It is easily seen that $\beta Z \setminus f^{-1}(y) = \bigcup_{i \in \omega} (F_i \cup \operatorname{cl}_{\beta Z}(T_i) \cup B_i)$, and so $f^{-1}(y)$ is a G_{δ} -set in βZ . \square

Remark 2. Taking the completion of X, we see that every metrizable space X satisfies the condition of Corollary 2, thus Corollary 2 generalizes Theorem 1.4 from [7].

Lemma 1. Let $h: Z \to Y$ be a map of a metric space Z with a σ -discrete open base $\bigcup_{n \in \omega} \{H_{n,\alpha}: \alpha \in A\}$ onto a topological space Y. If $X \subset Z$ and h(X) = Y, then $\bigcup_{y \in Y} T_y = Z \setminus \bigcup_{n \in \omega} \bigcup_{\alpha \in A} T_{n,\alpha}$, where $T_y = \operatorname{cl}_Z(h^{-1}(y) \cap X)$ and $T_{n,\alpha} = H_{n,\alpha} \setminus h^{-1}h(H_{n,\alpha} \cap X)$.

Proof. (1) Let $x \in \bigcup_{y \in Y} T_y$, then $x \in T_y$ for some $y \in Y$. It is clear that h(x) = y and $x \in Z$. If $x \in T_{n,\alpha}$ then $x \in H_{n,\alpha}$ and $x \notin h^{-1}h(H_{n,\alpha} \cap X)$. Hence $H_{n,\alpha} \cap X \cap h^{-1}(y) = \emptyset$ and $x \notin T_y$.

(2) Let $x \in Z$ and $x \notin T_{n,\alpha}(n \in \omega, \alpha \in A)$. This implies that if $x \in H_{n,\alpha}$, then $x \in h^{-1}h(H_{n,\alpha} \cap X)$. Hence $x \in \operatorname{cl}_Z(h^{-1}(h(x)) \cap X)$, so $x \in T_{h(x)}$.

Proof of Theorem 2. Let \tilde{X} and \tilde{Y} be the completions of X and Y, respectively, and let $\tilde{f}: X_0 \to \tilde{f}(X_0)$ be an extension of f, where X_0 is a G_δ -set in \tilde{X} . Let $g: \beta X_0 \to \beta \tilde{f}(X_0)$ be the extension of \tilde{f} and let $X^* = g^{-1}(Y)$. It is clear that $g^* = g|_{X^*}: X^* \to Y$ is perfect. Since X_0 is a G_δ -set in βX_0 , the set $Z = X_0 \cap X^*$ is a G_δ -set in X^* . We shall show that X is a G_δ -set in Z and hence in X^* . Let $h = g|_Z$. Since the fibers $f^{-1}(y)$ are complete with respect to d, they are closed in Z and, by Lemma 1, $\bigcup_{y \in Y} T_y = X = Z \setminus \bigcup_{n \in \omega} \bigcup_{\alpha \in A} T_{n,\alpha}$. Since for each $n \in \omega$ the set $\bigcup_{\alpha \in A} T_{n,\alpha}$ is an F_σ -set in Z, X is a G_δ -set in Z. \square

We conclude with several rather specialized remarks.

Recall that a subset $Y \subset \mathbb{R}$ is called a σ -set provided every F_{σ} subset of Y is a G_{δ} -set in Y [6, Section 40, VI]. The continuum hypothesis implies the existence of uncountable σ -sets. It is known [6, Section 40, VI, Theorem 1] that any Borel subset of a σ -set is simultaneously an F_{σ} and a G_{δ} . Thus Theorem 2 remains valid for a σ -set Y provided the map f satisfies the following property:

(*) For each open set $U \subset X$, f(U) is a Borel subset of Y.

We note that a continuous map $f: X \to Y$ satisfies (*) if $X, Y \subset \mathbb{R}, X$ is a Borel set and $f^{-1}(y)$ is compact for each $y \in Y$ [3, Section 14, Theorem 3.5].

Under the assumption of Martin's Axiom, for each $Y \subset \mathbb{R}$ with $|Y| < 2^{\omega}$ each subset of Y is G_{δ} -set [15, Chapter 6, Theorem 12]. This and Theorem 2 imply:

Corollary 3 [10]. Let X be a separable metric space, and $Y \subset \mathbb{R}$ with $|Y| < 2^{\omega}$. If $f: X \to Y$ is a triquotient map such that for every $y \in Y$ the fiber $f^{-1}(y)$ is complete in the metric induced by X, then f is inductively perfect.

It should be noted that under the hypothesis of Corollary 3, the class of triquotient maps coincides with the class of s-covering and compact covering maps.

Acknowledgement

The author would like to express his gratitude to Prof. A.V. Archangelskii and V. Mishkin for their help.

References

- [1] A.V. Archangelskii, Open and close-to-open mappings, Relations among spaces. Trudy Moskov Mat. Obsc. 15 (1966) 181-223; English transl. in: Transl. Moscow Math. Soc. (1966) 204-250.
- [2] A.V. Archangelskii, A survey of some recent advances in general topology, Actes, Congrès Internat. Math. 2 (1970) 19-26.
- [3] В.Я. Арсенин and А.А. Ляпунов, Теория А-множеств, Успехи математических наук, Т.У.В. 5 (39) 45-108.
- [4] J.P.R. Christensen, Necessary and sufficient conditions for measurability of certain sets of closed subsets, Math. Ann. 200 (1973) 189-193.
- [5] М.М. Чобан, Открытые отображения и классы пространств, В сб, Топологические пространства и алгебраические системы, Математические исследования, вып. 53, Кишинев, Штиинца (1979) 148–178.
- [6] К. Куратовский, Топология, Т.1. М., Мир (1966).
- [7] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (3) (1977) 716-733.
- [8] E. Michael, Inductively perfect maps and tri-quotient maps, Proc. Amer. Soc. 82 (1) (1981) 115-119.
- [9] E. Michael, A problem, Mathematical Centre Tracts 115, Topological structures II, part 1 (Amsterdam, 1979) 165-166.
- [10] E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959) 647-652.
- [11] A.V. Ostrovsky, On k-covering mappings of separable metric spaces, Dokl. Akad. Nauk SSSR 202 (1972) 1271-1273; English transl. in: Soviet Math. Dokl. 13 (1972) 289-291.
- [12] A.V. Ostrovsky, On compact covering maps, Dokl. Akad. Nauk SSSR, 227 (6) (1976) 1297-1300; English transl. in: Soviet Math. Dokl. 17 (1976) 606-610.
- [13] A.V. Ostrovsky, Compact covering images of absolutely G_{δ} -sets and close them sets, Thesis, Moscow State University, 1975.
- [14] B. Pasynkov, Open mappings, Dokl. Akad. Nauk SSSR 175 (1967) 292-295; English transl. in: Soviet Math. Dokl. 8 (1967) 853-856.
- [15] M.E. Rudin, Martin's Axiom, In: Handbook of Mathematical Logic, J. Barwise, ed. (North-Holland, Amsterdam, 1977).
- [16] J. Saint Raymond, Caractérisation d'espaces polonais, Séminaire Choquet Initiation à l'analyse 11-12 années, 1971-1973, n.5.