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Let a function f : X → Y with compact fibers takes any open set into a union of an open
and a closed set. Then there exist subsets Tn ⊂ X (n = 1,2, . . .) such that every restriction
f |Tn is open or closed function onto Yn and Yn (n = 0,1, . . .) cover Y .
This result is related to the problem of preservation of Borel classes by open-Borel
functions and to Luzin’s question about decomposition of Borel-measurable functions into
countably many continuous ones.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

During his research, the author has repeatedly encountered situations where function f : X → Y between arbitrary sub-
spaces X and Y of the Cantor set C possess the following two properties at the same time:

(1) f has compact fibers and takes clopen sets U ⊂ X to Fσ and Gδ-sets B ⊂ Y ;
(2) there exist Tn ⊂ X such that every restriction f |Tn is a closed or an open function onto Yn = f (Tn) and Y = ⋃∞

n=1 Yn .

This brought up a hypothesis that (1) often implies (2). It seems natural to verify this hypothesis for the case of sets
B = F ∪ O , where O is an open and F is a closed set. We will point out in Theorems 3.1 and 4.1 affirmative answers.

This can be applied to the problem of defining a natural common class A for open and closed functions, such that every
function f ∈ A with compact fibers preserves Borel class in C [6, Problem 3.6]. Corollary 4.2 gives us a natural answer.

Our approach gives more. We can apply it to investigate the question of Luzin whether every Borel-measurable function
with arbitrary domain has a countable decomposition into continuous ones [3,2].

This question was answered negatively by P.S. Novikov (see [3]) and was subsequently generalized in [1,3,4,11].
Corollary 5.1 gives a positive answer to Luzin’s question for G ∪ F-measurable functions.

2. Related materials and basic definitions

A clopen set is a set that is both open and closed. As usual, C denotes the Cantor set.
Given an arbitrary (not necessarily continuous) function f : X → Y , we say that a function f is
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– Borel-measurable if the preimage f −1(W ) of every open set W ⊂ Y is a Borel set1;
– open-Borel if the image f (U ) of every open set U ⊂ X is a Borel set.

In particular, f is

– G ∪ F-measurable if the preimage f −1(W ) of every open set W ⊂ Y is the union of an open set and a closed set;
– open (closed) if the image of every open (closed) set is open (closed) set;
– open (closed)-G ∪ F if the image f (W ) of every open (closed) set W ⊂ X is the union of an open set and a closed set;
– half-open if the image f (W ) of every clopen set W ⊂ X is the union of an open and a closed set.

We will denote by S1(y) a sequence with its limit point (yi �= y j for i �= j):

S1(y) = {y} ∪ {yi : yi → y}
It is easy to check that a function f is closed iff it is closed at each point y ∈ Y ; i.e., for every S1(y), every sequence

xi ∈ f −1(yi) (yi �= y j for i �= j) has a limit point in f −1(y).
Indeed, suppose, contrary to our claim, that f is closed and, for some S1(y), there is no limit point in f −1(y) for some

xi ∈ f −1(yi). Now we have two possibilities:

1) there is a limit point x ∈ X \ f −1(y) for xi ;
2) there is no limit points in X for xi .

In case 1) the image f (T ) of the closed set T = {x} ∪ clX {xi} is not closed in Y . In case 2) the image f (T ) of the closed
set T = clX {xi} is not closed in Y . This contradicts our assumption.

Conversely, if, for every S1(y), some sequence of points xi ∈ f −1(yi) has a limit point in f −1(y) and there is a closed
T ⊂ X for which f (T ) is not closed in Y , then there is S1(y) such that y /∈ f (T ) and yi ∈ f (T ). Hence, the sequence of
points xi ∈ f −1(yi) ∩ T has no limit point in f −1(y).

Analogously, it is easy to check that a function f is open iff it is open at each point x ∈ X ; i.e., for every S1(y) where
y = f (x) and for every neighborhood O (x) of x, the intersection f −1(yi) ∩ O (x) = ∅ for only finitely many points yi .

3. Half-open functions in the Cantor set C

The following theorem is, in a way, a generalization of Lemma 1 from [8].

Theorem 3.1. Let f : X → Y be a half-open function with compact fibers, X, Y ⊂ C. Then there exist Tn ⊂ X (n = 1,2, . . .) such
that every restriction f |Tn is a closed function onto a subset f (Tn) = Yn that is closed in Y , and the restriction f | f −1(Y0), where
Y0 = Y \ ⋃∞

n=1 Yn, is an open function onto Y0 .

Proof. Theorem 3.1 is an obvious corollary to the following Theorem 3.2. Indeed, by Theorem 3.2, f is an open function at
every point of the set D0 = X \ ⋃∞

n=1 Tn . Hence, if f −1(L) ⊂ D0 for some L ⊂ Y , then the restriction f | f −1(L) is an open
function onto L. It follows from definitions of Y0 and D0 that f −1(Y0) ⊂ D0. �
Theorem 3.2. Under conditions of Theorem 3.1, there exist Tn ⊂ X (n = 1,2, . . .) such that every restriction f |Tn is a closed function
onto a subset f (Tn) = Yn that is closed in Y and f is an open function at every point2 of the set D0 = X \ ⋃∞

n=1 Tn.

Proof. We start with the following notion:

Definition 3.1. Let f : X → Y be a function, Z ⊂ X . We say that f is clY f (Z)-closed extendable if, for every sequence yi → y,
where yi ∈ f (Z) and y ∈ clY f (Z), every sequence xi ∈ f −1(yi) ∩ Z has a limit point x ∈ f −1(y).

Lemma 3.1. Let f : X → Y be a clY f (Z)-closed extendable function of metric spaces X, Y . We define a set T y for every y ∈ clY f (Z)

by setting

T y = {
x ∈ f −1(y): ∃yi ∈ f (Z) for which yi → y and ∃xi ∈ Z ∩ f −1(yi) for which xi → x

}
.

Then g = f |⋃y∈Y T y is a closed function onto clY f (Z).

Remark. Definition 3.1 does not involve the condition yi �= y j for i �= j; hence, every T y is nonempty for all y ∈ f (Z) and
g in Lemma 3.1 is “onto”.

1 Borel measurable functions are often called Borel mappings.
2 A nuance: f |D0 is not necessarily an open function.



2006 A. Ostrovsky / Topology and its Applications 159 (2012) 2004–2008
Proof of Lemma 3.1. Suppose the opposite: g is not closed, and hence there is an S1(y) ⊂ clY f (Z) such that, for some
xi ∈ g−1(yi), there is no limit point in g−1(y).

By the definition of T yi , for every xi ∈ g−1(yi) there exist yi j ∈ f (Z) such that yi j → yi and there exist xi j ∈ Z ∩ f −1(yi j )

such that xi j → xi .
It is clear, that {yi j } contains a subsequence yi j(i) → y. Moreover, we can choose j(i) such that for the corresponding

points xi j(i) ∈ Z ∩ f −1(yi j(i) ) the following condition holds:

dist(xi j(i) , xi) < 1/i. (#)

Since yi j(i) ∈ f (Z), yi j(i) → y, and f is clY f (Z)-closed extendable, by Definition 3.1 the sequence xi j(i) has a limit point

x ∈ f −1(y). By definition of T y we have x ∈ T y . According to (#), xi → x, and hence x ∈ g−1(y). Thus, we obtain a contra-
diction. �

In order to prove Theorem 3.2 we need the following notion and Lemma 3.2.
For every n = 1,2, . . . , denote Zn = {x ∈ X: ∃S1( f (x)) ⊂ Y such that for all yi ∈ S1( f (x)), dist(x, f −1(yi)) > 1/n}.
Hence,

f (Zn) = {
y ∈ Y : there exist S1(y) and x ∈ f −1(y) such that dist

(
x, f −1(yi)

)
> 1/n

}
. (∗)

Lemma 3.2. f is a clY f (Zn)-closed extendable function.

Proof. Indeed, suppose the contrary: there exist yk → y, yk ∈ f (Zn), y ∈ clY f (Zn), and xk ∈ f −1(yk)∩ Zn that have no limit
points in f −1(y). Since every f −1(y) is compact, we can suppose that yk �= y j for k �= j:

According to condition (∗) we can take S1(yk) = {yk} ∪ {yki : yki → yk} such that dist(xk, f −1(yki )) > 1/n.
Let O 1/n(xk) = {x ∈ X: dist(xk, x) < 1/n} be the 1/n-ball centered at xk .
Since X is a subspace of the Cantor set C, the points xk have a limit point z ∈ C.
It is clear that there is a number N such that, for every k > N , we have:
(i) O 1/2n(z) ⊂ O 1/n(xk).
By the above z /∈ f −1(y) and f −1(y) is compact, hence:
(ii) there is a clopen in X neighborhood O (z) ⊂ O 1/2n(z) of the point z, that does not intersect f −1(y) and hence

y /∈ f (O (z)).
By assumption, f is half-open, f (O (z)) = F ∪ O , where F is a closed and O is an open subset in Y .
Since z is limit point for xk and f (xk) = yk we conclude that {yk} ⊂ f (O (z)) and since yk → y /∈ f (O (z)), the closed set

F contains at most finitely many points yk , and we can suppose that {yk} ⊂ O \ F .
The items (i) and (ii) shows that for every k > N

f
(

O (z)
) ⊂ f

(
O 1/n(xk)

)
,

and hence

f
(

O (z)
) ⊂

⋂

k>N

f
(

O 1/n(xk)
)
.

By the above, dist(xk, f −1(yki )) > 1/n, hence, yki /∈ f (O (z)) = F ∪ O . This contradicts the condition yki → yk: the open
set O \ F contains yk but not yki . �

We now turn to the proof of Theorem 3.2. By lemma above f is a clY f (Zn)-closed extendable function, hence we
conclude from the Lemma 3.1 for Z = Zn , Tn = ⋃

y∈Y T y and Yn = clY f (Zn) that f |Tn is a closed function onto a subset Yn

that is closed in Y and finally that f is an open function at every point of the set D0. �
4. Open-G ∪ F functions in separable metric spaces

Let X and Y be separable metric spaces; hence, there exists a metric compact space K ⊃ X, Y .
First, one can observe that the proof of Lemma 3.1 remains valid if we replace C by K and “half-open” by “open-G ∪ F”

and the following result can be proved in the same way as Theorem 3.1 if we consider a metric compact K instead of C.

Theorem 4.1. Let f : X → Y be an open-G ∪ F function with compact fibers of separable metric spaces X, Y . Then there exist subsets
Tn ⊂ X (n = 1,2, . . .) such that every restriction f |Tn is a closed function onto a subset f (Tn) = Yn that is closed in Y , and f | f −1(Y0),
where Y0 = Y \ ⋃∞

n=1 Yn is an open function onto Y0 .

Corollary 4.1. Let f : X → Y be a continuous function with compact fibers of separable metric spaces X, Y . Let Z ⊂ X be a subspace
such that f (Z) = Y and the restriction f |Z be an open-G ∪ F function onto Y .
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Then,

(a) there exist closed Tn ⊂ X (n = 1,2, . . .) such that every restriction f |Tn is a closed function onto a closed subset Yn ⊂ Y ;
(b) there is a Gδ-set T0 ⊂ X such that the restriction f |T0 is a closed function onto a Gδ-set Y0 = Y \ ⋃∞

n=1 Yn.

Proof. Indeed, it is easily seen that if f : X → Y is a continuous function and there is a subset Z ⊂ X such that the
restriction f |Z is closed and f (Z) = Y , then Z is closed in X .

It is clear that Y0 in Theorem 4.1 is a Gδ-set in Y .
According to Novikov’s Lemma [5, Lemma 1], the set

L =
⋃

y∈Y

clX
(

f −1(y) ∩ Z
)

is a Gδ-set in X .
It is easy to check that f |L is a half-open function with compact fibers onto Y .
By [5, Theorem 2], there is a subset T0, closed in f −1(Y0), such that f |T0 is a closed function onto Y0. �
By analogy with to [7, Theorem 7], using the classical Taimanov–Saint Raymond theorem on the preservation of Borel

classes by closed functions, we can easily deduce from Corollary 4.1 (for α > 1) the following:

Corollary 4.2. Let f : X → Y be a continuous function with compact fibers between subspaces X, Y of the Cantor set C. Let Z ⊂ X,
f (Z) = Y , and the restriction f |Z be a half-open function onto Y . If X is a Borel set of additive or multiplicative class α in C, then Y is
a Borel set of the same class in C.

For α = 1 this corollary follows from [8, Theorem 1].

5. G ∪ F-measurable functions in separable metric spaces and the Cantor set C

By Egorov’s theorem and Luzin’s theorem in the classical measure theory, for every Lebesgue measurable function
f : R → R, there exist Xn such that X = ⋃

n Xn , μ(A0) = 0, and each f |Xn is continuous.
In this connection, Luzin posed the question of whether, for arbitrary X, Y ⊂ R and B-measurable function f : X → Y ,

there exist Xn such that X = ⋃
n Xn and each f |Xn is continuous.

The following theorem is an analogue of Theorem 3.1. Its proof is somewhat simpler than the proof of Theorem 3.1.

Theorem 5.1. Let f : X → Y be a G∪F-measurable function of separable metric space X, Y . Then X can be covered by countably many
subsets Tn ⊂ X, n = 0,1,2, . . . , such that every restriction f |Tn is continuous.3

Proof. We will suppose without loss of generality that Y is a subset of the Cantor set C.4

For every n = 1,2, . . . , denote

Xn = {
x ∈ X: there are xi ∈ X such that xi → x and dist

(
f (x), f (xi)

)
> 1/n

}
. (∗∗)

In order to prove Theorem 5.1 we need the following lemma:

Lemma 5.1. Every restriction f |Xn is a continuous function (n > 0).

Proof. Suppose the contrary; then there exist x and x j → x, where x, x j ∈ Xn, such that f (x j) �→ f (x).
Let y∗ ∈ C be an accumulation point for the points f (x j); then we can suppose that f (x j) → y∗ ∈ C and, for some d > 0,

we have dist(y∗, f (x)) > d.
Take a clopen (in C) neighborhood O δ(y∗) of y∗ , where δ = min{d/2,1/2n}. Then, for a subset D = O δ(y∗) ∩ Y that is

clopen in Y , we can suppose that f (x j) ∈ D and f (x) /∈ D .
Since D is clopen in Y , f −1(D) is a union of a closed set F and an open set O .
According to (∗∗), every x j is a limit point for some sequence {x ji } such that dist( f (x j), f (x ji )) > 1/n; hence, f (x ji ) /∈ D .
Since x j ∈ f −1(D) and x j is a limit point for x ji /∈ f −1(D), we have x j /∈ O . Hence {x j} is a subset of the closed set F \ O .

This contradicts the fact that x j → x; hence, x ∈ F and f (x) /∈ f (D) ⊃ f (F ). �
3 It is easy to see that we can assume Tn to be disjoint, taking Xn = Tn \ ⋃

k<n Tk .
4 If X and Y are Borel subsets of C, our assertion follows from [1]. But the proof of Theorem 5.1 gives a little more: we can only suppose that preimages

of elements of some clopen base of Y are union of open and closed sets.
I do not know whether the hypothesis at the beginning that (1) implies (2) is still true for Borel (or analytic) X, Y ⊂ C even if f is continuous.
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The task is now to prove Theorem 5.1 for n = 0. According to (∗∗), for every x ∈ X \ ⋃
n Tn , where Tn = Xn , the condition

xi → x implies dist( f (x), f (xi)) = 0, and hence f is continuous at every point of T0 = X \ ⋃
n Xn . This finishes the proof of

Theorem 5.1. �
Note, that an analysis similar to that applied in the proof of Theorem 3.1 shows that Xn can be supposed to be closed

subsets of X (n = 1,2, . . .) and X0 can be supposed to be a Gδ-set in X .

Corollary 5.1. Let f : X → Y be a G∪F-measurable function of the separable metric spaces X, Y . Then X can be divided into countably
many subsets Hn such that f is continuous on each of these sets.

Proof. Indeed, let us define H1 = T1 and Hn = Tn+1 \ Tn , n > 0. Obviously, f is continuous on Hn (n = 1,2, . . .) and on
H0 = X \ ⋃

k Xk . It is clear that Hi ∩ Hk = ∅ if i �= k and
⋃∞

i=0 Hi = X . �
Corollary 5.2. Let f : X → Y be a one-to-one function of the separable metric spaces X, Y such that f and f −1 are G ∪ F-measurable.
Then X is a countable homeomorphism; i.e., X can be divided into countably many sets Xn such that all restrictions f |Xn are homeo-
morphisms.

Proof. Indeed, let us take the sets H X
n ⊂ X and H Y

k ⊂ Y such that each of f |H X
n and f −1|H Y

k is a one-to-one continuous
function.

Then every restriction f |(Xn), where Xn = H X
n ∩ f −1(H Y

k ), is a homeomorphism. �
6. Closed-G ∪ F functions in metric spaces

Note that, while proving Theorem 3.1, we have also proved the following Theorem 6.1 for arbitrary metric spaces; more-
over its proof is simpler than that of Theorem 3.1: we do not need to consider a limit point z ∈ C for the points xk .

Theorem 6.1. Let f : X → Y be a closed-G ∪ F function of the metric spaces X, Y .5 Then there are subsets Tn ⊂ X (n = 1,2, . . .) such
that every restriction f |Tn is a closed function onto a subset Yn, that is closed in Y , and f | f −1(Y0), where Y0 = Y \ ⋃∞

n=1 Yn, is an
open function onto Y0 .

For more details (about open-G ∩ F functions and G ∩ F-measurable functions) we refer the reader to [9] and [10].
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