

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

An alternative approach to the decomposition of functions

Alexey Ostrovsky

Helmut-Käutner Str. 25, 81739 Munich, Germany

A R T I C L E I N F O

Dedicated to the Centennial of the Egorov–Luzin Theorem

MSC:

primary 26A21, 03E15, 28A05, 54C10 secondary 26A15, 54C08

Keywords: Borel-measurable Open-Borel Countably continuous Borel class Open function Closed function

ABSTRACT

Let a function $f: X \to Y$ with compact fibers takes any open set into a union of an open and a closed set. Then there exist subsets $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f|T_n$ is open or closed function onto Y_n and Y_n (n = 0, 1, ...) cover Y.

This result is related to the problem of preservation of Borel classes by open-Borel functions and to Luzin's question about decomposition of Borel-measurable functions into countably many continuous ones.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

During his research, the author has repeatedly encountered situations where function $f: X \to Y$ between arbitrary subspaces X and Y of the Cantor set **C** possess the following two properties at the same time:

(1) *f* has compact fibers and takes clopen sets $U \subset X$ to F_{σ} and G_{δ} -sets $B \subset Y$;

(2) there exist $T_n \subset X$ such that every restriction $f|T_n$ is a closed or an open function onto $Y_n = f(T_n)$ and $Y = \bigcup_{n=1}^{\infty} Y_n$.

This brought up a hypothesis that (1) often implies (2). It seems natural to verify this hypothesis for the case of sets $B = F \cup O$, where O is an open and F is a closed set. We will point out in Theorems 3.1 and 4.1 affirmative answers.

This can be applied to the problem of defining a natural common class \mathfrak{A} for open and closed functions, such that every function $f \in \mathfrak{A}$ with compact fibers preserves Borel class in **C** [6, Problem 3.6]. Corollary 4.2 gives us a natural answer.

Our approach gives more. We can apply it to investigate the question of Luzin whether every Borel-measurable function with arbitrary domain has a countable decomposition into continuous ones [3,2].

This question was answered negatively by P.S. Novikov (see [3]) and was subsequently generalized in [1,3,4,11]. Corollary 5.1 gives a positive answer to Luzin's question for $\mathbf{G} \cup \mathbf{F}$ -measurable functions.

2. Related materials and basic definitions

A clopen set is a set that is both open and closed. As usual, **C** denotes the Cantor set. Given an arbitrary (not necessarily continuous) function $f: X \to Y$, we say that a function f is

E-mail address: Alexey.Ostrovskiy@UniBw.de.

^{0166-8641/\$ –} see front matter $\,\,\odot$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2011.04.032

- Borel-measurable if the preimage $f^{-1}(W)$ of every open set $W \subset Y$ is a Borel set¹;
- open-Borel if the image f(U) of every open set $U \subset X$ is a Borel set.

In particular, f is

- **G** \cup **F**-*measurable* if the preimage $f^{-1}(W)$ of every open set $W \subset Y$ is the union of an open set and a closed set;
- open (closed) if the image of every open (closed) set is open (closed) set;
- open (closed)- $\mathbf{G} \cup \mathbf{F}$ if the image f(W) of every open (closed) set $W \subset X$ is the union of an open set and a closed set;
- half-open if the image f(W) of every clopen set $W \subset X$ is the union of an open and a closed set.

We will denote by $S_1(y)$ a sequence with its limit point $(y_i \neq y_j \text{ for } i \neq j)$:

$$S_1(y) = \{y\} \cup \{y_i : y_i \to y\}$$

It is easy to check that a function f is closed iff it is closed at each point $y \in Y$; i.e., for every $S_1(y)$, every sequence $x_i \in f^{-1}(y_i)$ ($y_i \neq y_j$ for $i \neq j$) has a limit point in $f^{-1}(y)$.

Indeed, suppose, contrary to our claim, that f is closed and, for some $S_1(y)$, there is no limit point in $f^{-1}(y)$ for some $x_i \in f^{-1}(y_i)$. Now we have two possibilities:

1) there is a limit point $x \in X \setminus f^{-1}(y)$ for x_i ;

2) there is no limit points in X for x_i .

In case 1) the image f(T) of the closed set $T = \{x\} \cup cl_X\{x_i\}$ is not closed in Y. In case 2) the image f(T) of the closed set $T = cl_X\{x_i\}$ is not closed in Y. This contradicts our assumption.

Conversely, if, for every $S_1(y)$, some sequence of points $x_i \in f^{-1}(y_i)$ has a limit point in $f^{-1}(y)$ and there is a closed $T \subset X$ for which f(T) is not closed in Y, then there is $S_1(y)$ such that $y \notin f(T)$ and $y_i \in f(T)$. Hence, the sequence of points $x_i \in f^{-1}(y_i) \cap T$ has no limit point in $f^{-1}(y)$.

Analogously, it is easy to check that a function f is open iff it is open at each point $x \in X$; i.e., for every $S_1(y)$ where y = f(x) and for every neighborhood O(x) of x, the intersection $f^{-1}(y_i) \cap O(x) = \emptyset$ for only finitely many points y_i .

3. Half-open functions in the Cantor set C

The following theorem is, in a way, a generalization of Lemma 1 from [8].

Theorem 3.1. Let $f: X \to Y$ be a half-open function with compact fibers, $X, Y \subset \mathbf{C}$. Then there exist $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f|T_n$ is a closed function onto a subset $f(T_n) = Y_n$ that is closed in Y, and the restriction $f|f^{-1}(Y_0)$, where $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$, is an open function onto Y_0 .

Proof. Theorem 3.1 is an obvious corollary to the following Theorem 3.2. Indeed, by Theorem 3.2, f is an open function at every point of the set $D_0 = X \setminus \bigcup_{n=1}^{\infty} T_n$. Hence, if $f^{-1}(L) \subset D_0$ for some $L \subset Y$, then the restriction $f|f^{-1}(L)$ is an open function onto L. It follows from definitions of Y_0 and D_0 that $f^{-1}(Y_0) \subset D_0$. \Box

Theorem 3.2. Under conditions of Theorem 3.1, there exist $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f | T_n$ is a closed function onto a subset $f(T_n) = Y_n$ that is closed in Y and f is an open function at every point² of the set $D_0 = X \setminus \bigcup_{n=1}^{\infty} T_n$.

Proof. We start with the following notion:

Definition 3.1. Let $f: X \to Y$ be a function, $Z \subset X$. We say that f is $cl_Y f(Z)$ -closed extendable if, for every sequence $y_i \to y$, where $y_i \in f(Z)$ and $y \in cl_Y f(Z)$, every sequence $x_i \in f^{-1}(y_i) \cap Z$ has a limit point $x \in f^{-1}(y)$.

Lemma 3.1. Let $f: X \to Y$ be a $cl_Y f(Z)$ -closed extendable function of metric spaces X, Y. We define a set T_y for every $y \in cl_Y f(Z)$ by setting

 $T_{v} = \{x \in f^{-1}(y): \exists y_{i} \in f(Z) \text{ for which } y_{i} \to y \text{ and } \exists x_{i} \in Z \cap f^{-1}(y_{i}) \text{ for which } x_{i} \to x\}.$

Then $g = f | \bigcup_{y \in Y} T_y$ is a closed function onto $cl_Y f(Z)$.

Remark. Definition 3.1 does not involve the condition $y_i \neq y_j$ for $i \neq j$; hence, every T_y is nonempty for all $y \in f(Z)$ and g in Lemma 3.1 is "onto".

¹ Borel measurable functions are often called Borel mappings.

² A nuance: $f|D_0$ is not necessarily an open function.

Proof of Lemma 3.1. Suppose the opposite: g is not closed, and hence there is an $S_1(y) \subset cl_Y f(Z)$ such that, for some $x_i \in g^{-1}(y_i)$, there is no limit point in $g^{-1}(y)$.

By the definition of T_{y_i} , for every $x_i \in g^{-1}(y_i)$ there exist $y_{i_j} \in f(Z)$ such that $y_{i_j} \to y_i$ and there exist $x_{i_j} \in Z \cap f^{-1}(y_{i_j})$ such that $x_{i_i} \to x_i$.

It is clear, that $\{y_{i_j}\}$ contains a subsequence $y_{i_{j(i)}} \rightarrow y$. Moreover, we can choose j(i) such that for the corresponding points $x_{i_{j(i)}} \in Z \cap f^{-1}(y_{i_{j(i)}})$ the following condition holds:

 $dist(x_{i_{i(i)}}, x_i) < 1/i.$

(#)

Since $y_{i_{j(i)}} \in f(Z)$, $y_{i_{j(i)}} \to y$, and f is $cl_Y f(Z)$ -closed extendable, by Definition 3.1 the sequence $x_{i_{j(i)}}$ has a limit point $x \in f^{-1}(y)$. By definition of T_y we have $x \in T_y$. According to (#), $x_i \to x$, and hence $x \in g^{-1}(y)$. Thus, we obtain a contradiction. \Box

In order to prove Theorem 3.2 we need the following notion and Lemma 3.2. For every n = 1, 2, ..., denote $Z_n = \{x \in X: \exists S_1(f(x)) \subset Y \text{ such that for all } y_i \in S_1(f(x)), \text{ dist}(x, f^{-1}(y_i)) > 1/n\}.$ Hence,

$$f(Z_n) = \left\{ y \in Y: \text{ there exist } S_1(y) \text{ and } x \in f^{-1}(y) \text{ such that } \operatorname{dist}\left(x, f^{-1}(y_i)\right) > 1/n \right\}.$$
(*)

Lemma 3.2. f is a $cl_Y f(Z_n)$ -closed extendable function.

Proof. Indeed, suppose the contrary: there exist $y_k \to y$, $y_k \in f(Z_n)$, $y \in cl_Y f(Z_n)$, and $x_k \in f^{-1}(y_k) \cap Z_n$ that have no limit points in $f^{-1}(y)$. Since every $f^{-1}(y)$ is compact, we can suppose that $y_k \neq y_i$ for $k \neq j$:

According to condition (*) we can take $S_1(y_k) = \{y_k\} \cup \{y_{k_i} : y_{k_i} \rightarrow y_k\}$ such that $dist(x_k, f^{-1}(y_{k_i})) > 1/n$.

Let $O_{1/n}(x_k) = \{x \in X: \operatorname{dist}(x_k, x) < 1/n\}$ be the 1/n-ball centered at x_k .

Since X is a subspace of the Cantor set C, the points x_k have a limit point $z \in C$.

It is clear that there is a number N such that, for every k > N, we have:

(i)
$$O_{1/2n}(z) \subset O_{1/n}(x_k)$$
.

By the above $z \notin f^{-1}(y)$ and $f^{-1}(y)$ is compact, hence:

(ii) there is a clopen in X neighborhood $O(z) \subset O_{1/2n}(z)$ of the point z, that does not intersect $f^{-1}(y)$ and hence $y \notin f(O(z))$.

By assumption, f is half-open, $f(O(z)) = F \cup O$, where F is a closed and O is an open subset in Y.

Since *z* is limit point for x_k and $f(x_k) = y_k$ we conclude that $\{y_k\} \subset f(O(z))$ and since $y_k \to y \notin f(O(z))$, the closed set *F* contains at most finitely many points y_k , and we can suppose that $\{y_k\} \subset O \setminus F$.

The items (i) and (ii) shows that for every k > N

$$f(O(z)) \subset f(O_{1/n}(x_k)),$$

and hence

$$f(O(z)) \subset \bigcap_{k>N} f(O_{1/n}(x_k)).$$

By the above, $dist(x_k, f^{-1}(y_{k_i})) > 1/n$, hence, $y_{k_i} \notin f(O(z)) = F \cup O$. This contradicts the condition $y_{k_i} \to y_k$: the open set $O \setminus F$ contains y_k but not y_{k_i} . \Box

We now turn to the proof of Theorem 3.2. By lemma above f is a $cl_Y f(Z_n)$ -closed extendable function, hence we conclude from the Lemma 3.1 for $Z = Z_n$, $T_n = \bigcup_{y \in Y} T_y$ and $Y_n = cl_Y f(Z_n)$ that $f | T_n$ is a closed function onto a subset Y_n that is closed in Y and finally that f is an open function at every point of the set D_0 . \Box

4. Open-G ∪ F functions in separable metric spaces

Let X and Y be separable metric spaces; hence, there exists a metric compact space $K \supset X, Y$.

First, one can observe that the proof of Lemma 3.1 remains valid if we replace **C** by *K* and "half-open" by "open-**G** \cup **F**" and the following result can be proved in the same way as Theorem 3.1 if we consider a metric compact *K* instead of **C**.

Theorem 4.1. Let $f: X \to Y$ be an open- $\mathbf{G} \cup \mathbf{F}$ function with compact fibers of separable metric spaces X, Y. Then there exist subsets $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f | T_n$ is a closed function onto a subset $f(T_n) = Y_n$ that is closed in Y, and $f | f^{-1}(Y_0)$, where $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$ is an open function onto Y_0 .

Corollary 4.1. Let $f : X \to Y$ be a continuous function with compact fibers of separable metric spaces X, Y. Let $Z \subset X$ be a subspace such that f(Z) = Y and the restriction f | Z be an open- $\mathbf{G} \cup \mathbf{F}$ function onto Y.

Then,

(a) there exist closed $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f | T_n$ is a closed function onto a closed subset $Y_n \subset Y$; (b) there is a G_{δ} -set $T_0 \subset X$ such that the restriction $f | T_0$ is a closed function onto a G_{δ} -set $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$.

Proof. Indeed, it is easily seen that if $f: X \to Y$ is a continuous function and there is a subset $Z \subset X$ such that the restriction f|Z is closed and f(Z) = Y, then Z is closed in X.

It is clear that Y_0 in Theorem 4.1 is a G_{δ} -set in Y.

According to Novikov's Lemma [5, Lemma 1], the set

$$L = \bigcup_{y \in Y} cl_X \left(f^{-1}(y) \cap Z \right)$$

is a G_{δ} -set in X.

It is easy to check that f|L is a half-open function with compact fibers onto Y.

By [5, Theorem 2], there is a subset T_0 , closed in $f^{-1}(Y_0)$, such that $f|T_0$ is a closed function onto Y_0 .

By analogy with to [7, Theorem 7], using the classical Taimanov–Saint Raymond theorem on the preservation of Borel classes by closed functions, we can easily deduce from Corollary 4.1 (for $\alpha > 1$) the following:

Corollary 4.2. Let $f : X \to Y$ be a continuous function with compact fibers between subspaces X, Y of the Cantor set C. Let $Z \subset X$, f(Z) = Y, and the restriction f | Z be a half-open function onto Y. If X is a Borel set of additive or multiplicative class α in C, then Y is a Borel set of the same class in C.

For $\alpha = 1$ this corollary follows from [8, Theorem 1].

5. $G \cup F$ -measurable functions in separable metric spaces and the Cantor set C

By Egorov's theorem and Luzin's theorem in the classical measure theory, for every Lebesgue measurable function $f : \mathbf{R} \to \mathbf{R}$, there exist X_n such that $X = \bigcup_n X_n$, $\mu(A_0) = 0$, and each $f | X_n$ is continuous.

In this connection, Luzin posed the question of whether, for arbitrary $X, Y \subset \mathbf{R}$ and *B*-measurable function $f: X \to Y$, there exist X_n such that $X = \bigcup_n X_n$ and each $f | X_n$ is continuous.

The following theorem is an analogue of Theorem 3.1. Its proof is somewhat simpler than the proof of Theorem 3.1.

Theorem 5.1. Let $f: X \to Y$ be a $\mathbf{G} \cup \mathbf{F}$ -measurable function of separable metric space X, Y. Then X can be covered by countably many subsets $T_n \subset X$, n = 0, 1, 2, ..., such that every restriction $f | T_n$ is continuous.³

Proof. We will suppose without loss of generality that *Y* is a subset of the Cantor set C.⁴ For every n = 1, 2, ..., denote

 $X_n = \{x \in X: \text{ there are } x_i \in X \text{ such that } x_i \to x \text{ and } \operatorname{dist}(f(x), f(x_i)) > 1/n\}.$ (**)

In order to prove Theorem 5.1 we need the following lemma:

Lemma 5.1. Every restriction $f | X_n$ is a continuous function (n > 0).

Proof. Suppose the contrary; then there exist x and $x_j \rightarrow x$, where $x, x_j \in X_n$, such that $f(x_j) \not\rightarrow f(x)$.

Let $y^* \in \mathbf{C}$ be an accumulation point for the points $f(x_j)$; then we can suppose that $f(x_j) \to y^* \in \mathbf{C}$ and, for some d > 0, we have dist $(y^*, f(x)) > d$.

Take a clopen (in **C**) neighborhood $O_{\delta}(y^*)$ of y^* , where $\delta = \min\{d/2, 1/2n\}$. Then, for a subset $D = O_{\delta}(y^*) \cap Y$ that is clopen in Y, we can suppose that $f(x_j) \in D$ and $f(x) \notin D$.

Since *D* is clopen in *Y*, $f^{-1}(D)$ is a union of a closed set *F* and an open set *O*.

According to (**), every x_j is a limit point for some sequence $\{x_{j_i}\}$ such that $dist(f(x_j), f(x_{j_i})) > 1/n$; hence, $f(x_{j_i}) \notin D$. Since $x_j \in f^{-1}(D)$ and x_j is a limit point for $x_{j_i} \notin f^{-1}(D)$, we have $x_j \notin O$. Hence $\{x_j\}$ is a subset of the closed set $F \setminus O$. This contradicts the fact that $x_j \to x$; hence, $x \in F$ and $f(x) \notin f(D) \supset f(F)$. \Box

³ It is easy to see that we can assume T_n to be disjoint, taking $X_n = T_n \setminus \bigcup_{k < n} T_k$.

⁴ If X and Y are Borel subsets of C, our assertion follows from [1]. But the proof of Theorem 5.1 gives a little more: we can only suppose that preimages of elements of some *clopen* base of Y are union of open and closed sets.

I do not know whether the hypothesis at the beginning that (1) implies (2) is still true for Borel (or analytic) $X, Y \subset \mathbf{C}$ even if f is continuous.

The task is now to prove Theorem 5.1 for n = 0. According to (**), for every $x \in X \setminus \bigcup_n T_n$, where $T_n = X_n$, the condition $x_i \to x$ implies dist $(f(x), f(x_i)) = 0$, and hence f is continuous at every point of $T_0 = X \setminus \bigcup_n X_n$. This finishes the proof of Theorem 5.1. \Box

Note, that an analysis similar to that applied in the proof of Theorem 3.1 shows that X_n can be supposed to be closed subsets of X (n = 1, 2, ...) and X_0 can be supposed to be a G_δ -set in X.

Corollary 5.1. Let $f : X \to Y$ be a $\mathbf{G} \cup \mathbf{F}$ -measurable function of the separable metric spaces X, Y. Then X can be divided into countably many subsets H_n such that f is continuous on each of these sets.

Proof. Indeed, let us define $H_1 = T_1$ and $H_n = T_{n+1} \setminus T_n$, n > 0. Obviously, f is continuous on H_n (n = 1, 2, ...) and on $H_0 = X \setminus \bigcup_k X_k$. It is clear that $H_i \cap H_k = \emptyset$ if $i \neq k$ and $\bigcup_{i=0}^{\infty} H_i = X$. \Box

Corollary 5.2. Let $f : X \to Y$ be a one-to-one function of the separable metric spaces X, Y such that f and f^{-1} are $\mathbf{G} \cup \mathbf{F}$ -measurable. Then X is a countable homeomorphism; i.e., X can be divided into countably many sets X_n such that all restrictions $f|X_n$ are homeomorphisms.

Proof. Indeed, let us take the sets $H_n^X \subset X$ and $H_k^Y \subset Y$ such that each of $f|H_n^X$ and $f^{-1}|H_k^Y$ is a one-to-one continuous function.

Then every restriction $f|(X_n)$, where $X_n = H_n^X \cap f^{-1}(H_k^Y)$, is a homeomorphism. \Box

6. Closed-G ∪ F functions in metric spaces

Note that, while proving Theorem 3.1, we have also proved the following Theorem 6.1 for arbitrary metric spaces; moreover its proof is simpler than that of Theorem 3.1: we do not need to consider a limit point $z \in \mathbf{C}$ for the points x_k .

Theorem 6.1. Let $f: X \to Y$ be a closed- $\mathbf{G} \cup \mathbf{F}$ function of the metric spaces X, Y.⁵ Then there are subsets $T_n \subset X$ (n = 1, 2, ...) such that every restriction $f | T_n$ is a closed function onto a subset Y_n , that is closed in Y, and $f | f^{-1}(Y_0)$, where $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$, is an open function onto Y_0 .

For more details (about open- $\mathbf{G} \cap \mathbf{F}$ functions and $\mathbf{G} \cap \mathbf{F}$ -measurable functions) we refer the reader to [9] and [10].

References

- [1] J.E. Jayne, C.A. Rogers, First level Borel functions and isomorphisms, J. Math. Pures Appl. 61 (1982) 177-205.
- [2] R.O. Davies, C. Tricot, A theorem about countable decomposability, Mathematical Proceedings of the Cambridge Philosophical Society (03) 91 (1982) 457-458.
- [3] Ludmila Keldysh, Sur les fonctions premieres measurables B, Dokl. Akad. Nauk SSSR 4 (1934) 192–197.
- [4] J. van Mill, R. Pol, Baire 1 functions which are not countable unions of continuous functions, Acta Math. Hungar. 66 (1995) 289-300.
- [5] A. Ostrovsky, Triquotient and inductively perfect maps, Topology Appl. 23 (1986) 25-28.
- [6] A. Ostrovsky, Maps of Borel sets, Proceedings of the Steklov Institute of Mathematics 252 (2006) 225-247.
- [7] A. Ostrovsky, Finite-to-one continuous s-covering mappings, Fund. Math. 194 (2007) 89-93.
- [8] A. Ostrovsky, New basic result in classical descriptive set theory: Preservation of completeness, Topology Appl. 156 (2009) 1749–1751.
- [9] A. Ostrovsky, The structure of LC-continuous functions, Acta Math. Hungar. 133 (4) (2011) 372-375, doi:10.1007/s10474-011-0102-6.
- [10] A. Ostrovsky, Preservation of the Borel class under open-LC functions, Fund. Math. 213 (2011) 191–195, doi:10.4064/fm213-2-4.
- [11] V.A. Vinokurov, Strong regularizability of discontinuous functions, Dokl. Akad. Nauk SSSR 281 (2) (1985) 265-269 (in Russian).

 $^{^{5}}$ Note that we did not really have to use in Theorems 3.1 and 6.1 the metrizability of Y: it is sufficient to suppose that Y is a regular space with the first axiom of countability.