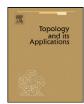


Contents lists available at ScienceDirect

Topology and its Applications



www.elsevier.com/locate/topol

New basic result in classical descriptive set theory: Preservation of completeness

Alexey Ostrovsky*

Helmut-Käutner Str. 25, 81739 Munich, Germany

ARTICLE INFO

Article history: Received 23 September 2008 Received in revised form 26 February 2009

MSC: primary 03E15, 54C10, 54H05 secondary 54E40, 26A21

Keywords: Borel space Completely metrizable space Open map Closed map s-Covering map Stable map

ABSTRACT

The aim of this note is to prove the following result: Assume that f is a continuous function from the space of irrationals ω^{ω} onto Y such that the image f(U) of every set U which is open and closed in ω^{ω} is the union of one open and one closed set. Then Y is a completely metrizable space.

© 2009 Elsevier B.V. All rights reserved.

All spaces in this paper are supposed to be separable and metrizable and all the maps $f: X \to Y$ to be continuous and onto. By ω^{ω} we denote the space of irrationals. A space X is called an F_{II} -space if the following conditions hold: X does not contain any countable perfect subset X' (all such X' are homeomorphic to the space of rationals \mathbb{Q}). A clopen set is a set which is both open and closed.

A long time ago Sierpinski and Vainštain have established that if *Y* is an image of a completely metrizable space *X* under a closed or an open map, then *Y* is completely metrizable [13,14].

There have been numerous attempts to define the common class of maps that would contain all the classes of open and closed maps with their good common property: preservation of complete metrizability.

The first such class – the class of s-covering $maps^1$ – was introduced and investigated in [6,7].

The most broad class – the class of stable $maps^2$ – was discovered by the author 20 years later [11].

The class of stable maps includes compositions of open or closed maps [11], which is not the case for the class of s-covering maps [10, Example].

Note that stable maps (closed, open, s-covering maps) of separable metric spaces preserve F_{II} -spaces [11, Theorem 1] (see also [6]).

^{*} Tel.: +49896256676.

E-mail address: Alexey.Ostrovskiy@UniBw.de.

¹ The map $f: X \to Y$ is *s*-covering if for every countable compact $K \subset Y$ there is a compact $B \subset X$ for which f(B) = K.

² The map $f: X \to Y$ is *stable* if for every $y \in Y$ there is a nonempty family η_y of open subsets of X intersecting $f^{-1}(y)$ such that for every $U \in \eta_y$ and every open $V \supset U \cap f^{-1}(y)$ there is an open neighborhood O(y) of y such that $V \in \eta_{y'}$ for every point $y' \in O(y)$.

^{0166-8641/\$ –} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2009.03.001

Eventually, we shall note that if $f: X \to Y$ is stable, and $X = \omega^{\omega}$, then there is a subset $Z \subset X$ such that f(Z) = Y and for every clopen (relative to Z) subset $U \subset Z$ its image f(U) is F_{σ} set in Y [11, Theorem 0]. Surprisingly, this statement is true for s-covering maps without any limitations on X or on fibers $f^{-1}(y)$ [12, Corollary 3].

The following Theorem 1 and Corollary 4 give a new natural common generalization of Sierpiński's and Vainštain's results. In contrast to all previous works the map f in Theorem 1 can be not quotient. It is also rather surprising that the assertion of Theorem 1 was not known even if every f(W) = V is closed in Y.

Theorem 1. Let $f : X \to Y$ be a map from $X \subset \omega^{\omega}$ with the following property:

(*) if $W \subset X$ is clopen in X then $f(W) = U \cup V$ is the union of the sets U and V, an open set and a closed set respectively.

If X is completely metrizable, then Y is also completely metrizable.

Theorem 1 is an obvious corollary of Theorem 2 below. Indeed, first note that *Y* is an absolute Borel space. This follows from the condition (*) using [8] (see also [9,4]). In facts, we conclude from (*) that *f* is an open-Borel map³ i.e. the image f(U) of every open subset $U \subset X$ is a Borel subset of *Y*, hence by [8, Lemma 1] that there is an absolute Borel space $Z \subset X$ such that f|Z is one-to-one map onto *Y*, and finally that *Y* is an absolute Borel space according to the classical theorem of descriptive set theory.

Further, by Hurewicz's theorem [3] an absolute Borel space is completely metrizable if and only if it is an F_{II} -space. Now we must only prove that Y is an F_{II} -space:

Theorem 2. Let $f : X \to Y$ be a map from $X \subset \omega^{\omega}$ with the property (*).

If X is an F_{II} -space, then Y is also an F_{II} -space.

We need to prove the following lemma (the closure of V in X will be denoted by $[V]_X$):

Lemma 3. Let $f : X \to Y$ be a map from $X \subset \omega^{\omega}$ onto a space Y without isolated points with the property (*). Denote $V = \bigcup_{y \in Y} \text{Int } f^{-1}(y)$ and $W = [V]_X$. Then f(W) is closed in Y and the restriction f|W is a closed map.

Proof. 1. First of all we prove that f(W) is a closed subset in *Y*. Indeed, if f(W) is not closed, then take $y \in Y \setminus f(W)$ and $y_i \to y$, where $y_i \in f(W)$. Since *V* is dense in *W* and *f* is continuous, we can suppose that $y_i \in f(V)$.

Take the clopen sets $O_i \subset f^{-1}(y_i) \cap V$, diam $O_i < 1/i$. It is easy to see that $M = \bigcup O_i$ does not have any limit points in $f^{-1}(y) \cap W$ since, obviously, $[M]_W \subset [V]_X = W$ and $W \cap f^{-1}(y) = \emptyset$. Hence, M is a clopen set in X. By (*), $f(M) = \{y_i\}$ is the union of the sets U and V, an open set and a closed set respectively. Since Y is without isolated points, $U = \emptyset$, hence, f(M) can only be closed in Y. But the set f(M) is not closed in Y, since its limit point $y \notin f(M)$.

2. We will prove that $f|W: W \to f(W)$ is a closed map. Obviously, it is equivalent to the following statement:

If $y_i \to y$, where $y, y_i \in f(W)$, then every sequence of points $x_i \in f^{-1}(y_i) \cap W$ has a limit point in $f^{-1}(y) \cap W$.

Suppose the opposite, then there are $y, y_i \in f(W), y_i \to y$ and a sequence of points $x_i \in f^{-1}(y_i) \cap W$ which have no limit point in $f^{-1}(y) \cap W$.

Since V is dense in W and f is continuous, we can take $x'_i \in V$, $dist(x'_i, x_i) < 1/i$ and $dist(f(x'_i), f(x_i)) < 1/i$. Denote $y'_i = f(x'_i)$, then $y'_i \to y$.

Choose the clopen sets $O(x'_i) \subset f^{-1}(y'_i) \cap V$ such that diam $O(x'_i) < 1/i$.

It is easy to see that $M' = \bigcup O(x'_i)$ has no limit point in $f^{-1}(y) \cap W$ and is a clopen set in X.

By supposition, $f(M') = \{y_i^{\gamma}\}$ is the union of the sets U and V, an open set and a closed set respectively. Since Y is without isolated points, $U = \emptyset$, hence, f(M') can only be closed in Y.

On the other hand, f(M') is not closed in *Y*, since its limit point $y \in f(W) \setminus f(M')$. \Box

We now return to the proof of Theorem 2.

If Y is not an F_{II} -space then it contains a countable perfect subset Q, which is homeomorphic to the space of rationals \mathbb{Q} .

Remark. The map $f|f^{-1}(Q)$ has also property (*). Indeed, let $U_1 \subset f^{-1}(Q)$ be a clopen set in $f^{-1}(Q)$, then $U_2 = f^{-1}(Q) \setminus U_1$ is open and closed in $f^{-1}(Q)$ too. For every point $x \in U_1$ the distance dist (x, U_2) is a positive number and we can consider a ball U(x), which is clopen in X and diam $U(x) < \text{dist}(x, U_2)$. Analogously, take for every $x \in U_2$ a clopen ball U(x) such that diam $U(x) < \text{dist}(x, U_1)$. Finally, we can take (since $f^{-1}(Q)$ is closed in X) for every $x \in X \setminus f^{-1}(Q)$ a clopen ball $U(x) \subset X \setminus f^{-1}(Q)$.

³ Open-Borel map is called OB-map in russian version of [8].

Since $X \subset \omega^{\omega}$, X is Lindelöf space and by [5, §26, II, Theorem 1] there is an open refinement of the open cover $\{U(x): x \in X\}$ from pairwise disjoint sets V_{α} , which are clopen in X and such that every V_{α} lies in some U(x). The union of all sets V_{α} , which intersect U_1 is denoted by V_1 . It is clear that it is clopen in X and $V_1 \cap f^{-1}(Q) = U_1$.

Hence, $f(U_1) = Q \cap f(V_1)$ and we can suppose Y = Q.

According to Lemma 3 if $T = Q \setminus f(W) \neq \emptyset$ then $T = Q \setminus f(W)$ is an open subset in Q and hence $f^{-1}(T)$ is an F_{II} -space (as open subset of the F_{II} -space X). But this is impossible because all the sets $f^{-1}(y)$, $y \in T$ are nowhere dense in X and in $f^{-1}(T)$ and T is countable.

Hence, $T = Q \setminus f(W) = \emptyset$ and f|W is a closed map onto Q. This contradicts our assumption that X (and hence W) is completely metrizable and that closed maps preserve F_{II} -spaces.

Corollary 4. Let $F: Z \to Y$ be a map from a (not necessarily 0-dimensional) separable metric space Z with the following property:

for every open or for every closed subset $W \subset Z$ its image $F(W) = U \cup V$, where U is open and V is closed in Y.

If Z is completely metrizable, then Y is also completely metrizable.

Indeed, a separable metric space Z is complete if and only if it is a continuous image of the irrationals under an open map h [2] and under a closed map g [1]. It is easily proved that compositions $F \circ g : \omega^{\omega} \to Y$ and $F \circ h : \omega^{\omega} \to Y$ have the property (*), hence, by Theorem 1 Y is completely metrizable.

Question. I do not know whether the conclusion of Theorem 1 is still true if the condition " $f(W) = U \cup V$ " would be replaced by " $f(W) = U \cap V$ " or by another combination of open and closed sets.

References

- [1] R. Engelking, On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (3) (1969) 583-586.
- [2] F. Hausdorff, Ueber innere Abbildungen, Fund. Math. 23 (1934) 279-291.
- [3] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 12 (1928) 78-109.
- [4] K. Kuratowski, A. Maitra, Some theorems on selectors and their applications to semicontinuous decompositions, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 22 (1974) 887–891.
- [5] K. Kuratowski, Topologie I, Academic Press, New York, 1966.
- [6] A. Ostrovskii, On k-covering mappings of separable metric spaces, Soviet Math. Dokl. 13 (1972) 289-291, MR0296916 (45 #5975).
- [7] A.V. Ostrovskii, On compact-covering mappings, Soviet Math. Dokl. 17 (1976) 606-610, MR0402702 (53 #6518).
- [8] A.V. Ostrovsky, Borel extensions, selectors and nonisomorphic A-sets, in: Proceedings of the Leningrad International Topology Conference, 1982, pp. 84– 90 (in Russian); Leningrad International Topological Conference, Abstracts, 1982, p. 119.
- [9] A.V. Ostrovskii, On the Luzin-Yankov theorem and the general theory on selections, Russian Math. Surveys 40 (1985) 226-227, MR0786101 (86g:54030).
- [10] A.V. Ostrovskii, New classes of maps related to covering maps, Moscow Univ. Math. Bull. 49 (1994) 20-23, 75, MR1317090 (96a:54013).
- [11] A. Ostrovsky, Stable maps of polish spaces, Proc. Amer. Math. Soc. 128 (10) (2000) 3081-3089, MR1664430 (2000m:54017).
- [12] A. Ostrovsky, s-Covering maps with complete fibers, Topology Appl. 102 (2000) 1-11.
- [13] W. Sierpiński, Sur une propriete des ensembles $G_{\delta},$ Fund. Math. 16 (1930) 173–180.
- [14] I.A. Vainštain, On closed mappings, Moskov. Gos. Univ. Uč. Zap. 155 (5) (1952) 3-53 (in Russian).