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The aim of this note is to prove the following result:
Assume that f is a continuous function from the space of irrationals ωω onto Y such that
the image f (U ) of every set U which is open and closed in ωω is the union of one open
and one closed set. Then Y is a completely metrizable space.

© 2009 Elsevier B.V. All rights reserved.

All spaces in this paper are supposed to be separable and metrizable and all the maps f : X → Y to be continuous and
onto. By ωω we denote the space of irrationals. A space X is called an F II-space if the following conditions hold: X does
not contain any countable perfect subset X ′ (all such X ′ are homeomorphic to the space of rationals Q). A clopen set is a
set which is both open and closed.

A long time ago Sierpiǹski and Vainštain have established that if Y is an image of a completely metrizable space X under
a closed or an open map, then Y is completely metrizable [13,14].

There have been numerous attempts to define the common class of maps that would contain all the classes of open and
closed maps with their good common property: preservation of complete metrizability.

The first such class – the class of s-covering maps1 – was introduced and investigated in [6,7].
The most broad class – the class of stable maps2 – was discovered by the author 20 years later [11].
The class of stable maps includes compositions of open or closed maps [11], which is not the case for the class of

s-covering maps [10, Example].
Note that stable maps (closed, open, s-covering maps) of separable metric spaces preserve F II-spaces [11, Theorem 1]

(see also [6]).
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1 The map f : X → Y is s-covering if for every countable compact K ⊂ Y there is a compact B ⊂ X for which f (B) = K .
2 The map f : X → Y is stable if for every y ∈ Y there is a nonempty family ηy of open subsets of X intersecting f −1(y) such that for every U ∈ ηy and

every open V ⊃ U ∩ f −1(y) there is an open neighborhood O (y) of y such that V ∈ ηy′ for every point y′ ∈ O (y).
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Eventually, we shall note that if f : X → Y is stable, and X = ωω , then there is a subset Z ⊂ X such that f (Z) = Y and
for every clopen (relative to Z ) subset U ⊂ Z its image f (U ) is Fσ set in Y [11, Theorem 0]. Surprisingly, this statement is
true for s-covering maps without any limitations on X or on fibers f −1(y) [12, Corollary 3].

The following Theorem 1 and Corollary 4 give a new natural common generalization of Sierpiǹski’s and Vainštain’s
results. In contrast to all previous works the map f in Theorem 1 can be not quotient. It is also rather surprising that the
assertion of Theorem 1 was not known even if every f (W ) = V is closed in Y .

Theorem 1. Let f : X → Y be a map from X ⊂ ωω with the following property:

(∗) if W ⊂ X is clopen in X then f (W ) = U ∪ V is the union of the sets U and V , an open set and a closed set respectively.

If X is completely metrizable, then Y is also completely metrizable.

Theorem 1 is an obvious corollary of Theorem 2 below. Indeed, first note that Y is an absolute Borel space. This follows
from the condition (∗) using [8] (see also [9,4]). In facts, we conclude from (∗) that f is an open-Borel map3 i.e. the image
f (U ) of every open subset U ⊂ X is a Borel subset of Y , hence by [8, Lemma 1] that there is an absolute Borel space Z ⊂ X
such that f |Z is one-to-one map onto Y , and finally that Y is an absolute Borel space according to the classical theorem of
descriptive set theory.

Further, by Hurewicz’s theorem [3] an absolute Borel space is completely metrizable if and only if it is an F II-space. Now
we must only prove that Y is an F II-space:

Theorem 2. Let f : X → Y be a map from X ⊂ ωω with the property (∗).
If X is an F II-space, then Y is also an F II-space.

We need to prove the following lemma (the closure of V in X will be denoted by [V ]X ):

Lemma 3. Let f : X → Y be a map from X ⊂ ωω onto a space Y without isolated points with the property (∗). Denote V =⋃
y∈Y Int f −1(y) and W = [V ]X . Then f (W ) is closed in Y and the restriction f |W is a closed map.

Proof. 1. First of all we prove that f (W ) is a closed subset in Y . Indeed, if f (W ) is not closed, then take y ∈ Y \ f (W ) and
yi → y, where yi ∈ f (W ). Since V is dense in W and f is continuous, we can suppose that yi ∈ f (V ).

Take the clopen sets O i ⊂ f −1(yi) ∩ V , diam O i < 1/i. It is easy to see that M = ⋃
O i does not have any limit points in

f −1(y)∩ W since, obviously, [M]W ⊂ [V ]X = W and W ∩ f −1(y) = ∅. Hence, M is a clopen set in X . By (∗), f (M) = {yi} is
the union of the sets U and V , an open set and a closed set respectively. Since Y is without isolated points, U = ∅, hence,
f (M) can only be closed in Y . But the set f (M) is not closed in Y , since its limit point y /∈ f (M).

2. We will prove that f |W : W → f (W ) is a closed map. Obviously, it is equivalent to the following statement:
If yi → y, where y, yi ∈ f (W ), then every sequence of points xi ∈ f −1(yi) ∩ W has a limit point in f −1(y) ∩ W .
Suppose the opposite, then there are y, yi ∈ f (W ), yi → y and a sequence of points xi ∈ f −1(yi) ∩ W which have no

limit point in f −1(y) ∩ W .
Since V is dense in W and f is continuous, we can take x′

i ∈ V , dist(x′
i, xi) < 1/i and dist( f (x′

i), f (xi)) < 1/i. Denote
y′

i = f (x′
i), then y′

i → y.
Choose the clopen sets O (x′

i) ⊂ f −1(y′
i) ∩ V such that diam O (x′

i) < 1/i.
It is easy to see that M ′ = ⋃

O (x′
i) has no limit point in f −1(y) ∩ W and is a clopen set in X .

By supposition, f (M ′) = {y′
i} is the union of the sets U and V , an open set and a closed set respectively. Since Y is

without isolated points, U = ∅, hence, f (M ′) can only be closed in Y .
On the other hand, f (M ′) is not closed in Y , since its limit point y ∈ f (W ) \ f (M ′). �
We now return to the proof of Theorem 2.
If Y is not an F II-space then it contains a countable perfect subset Q , which is homeomorphic to the space of rationals Q.

Remark. The map f | f −1(Q ) has also property (∗). Indeed, let U1 ⊂ f −1(Q ) be a clopen set in f −1(Q ), then U2 =
f −1(Q ) \ U1 is open and closed in f −1(Q ) too. For every point x ∈ U1 the distance dist(x, U2) is a positive number and
we can consider a ball U (x), which is clopen in X and diam U (x) < dist(x, U2). Analogously, take for every x ∈ U2 a clopen
ball U (x) such that diam U (x) < dist(x, U1). Finally, we can take (since f −1(Q ) is closed in X ) for every x ∈ X \ f −1(Q ) a
clopen ball U (x) ⊂ X \ f −1(Q ).

3 Open-Borel map is called OB-map in russian version of [8].
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Since X ⊂ ωω , X is Lindelöf space and by [5, §26, II, Theorem 1] there is an open refinement of the open cover
{U (x): x ∈ X} from pairwise disjoint sets Vα , which are clopen in X and such that every Vα lies in some U (x). The
union of all sets Vα , which intersect U1 is denoted by V 1. It is clear that it is clopen in X and V 1 ∩ f −1(Q ) = U1.

Hence, f (U1) = Q ∩ f (V 1) and we can suppose Y = Q .
According to Lemma 3 if T = Q \ f (W ) �= ∅ then T = Q \ f (W ) is an open subset in Q and hence f −1(T ) is an F II-space

(as open subset of the F II-space X ). But this is impossible because all the sets f −1(y), y ∈ T are nowhere dense in X and
in f −1(T ) and T is countable.

Hence, T = Q \ f (W ) = ∅ and f |W is a closed map onto Q . This contradicts our assumption that X (and hence W ) is
completely metrizable and that closed maps preserve F II-spaces.

Corollary 4. Let F : Z → Y be a map from a (not necessarily 0-dimensional) separable metric space Z with the following property:

for every open or for every closed subset W ⊂ Z its image F (W ) = U ∪ V , where U is open and V is closed in Y .

If Z is completely metrizable, then Y is also completely metrizable.

Indeed, a separable metric space Z is complete if and only if it is a continuous image of the irrationals under an open
map h [2] and under a closed map g [1]. It is easily proved that compositions F ◦ g : ωω → Y and F ◦ h : ωω → Y have the
property (∗), hence, by Theorem 1 Y is completely metrizable.

Question. I do not know whether the conclusion of Theorem 1 is still true if the condition “ f (W ) = U ∪ V ” would be
replaced by “ f (W ) = U ∩ V ” or by another combination of open and closed sets.
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