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STABLE MAPS OF POLISH SPACES

A. V. OSTROVSKY

(Communicated by Alan Dow)

Abstract. We define the notions of stable and transquotient maps and study
the relation between these classes of maps. The class of stable maps contains
all closed and open maps and their compositions. The transquotient maps
preserve the property of being a Polish space, and every stable map between
separable metric spaces is transquotient.

In particular, a composition of closed and open maps (the intermediary

spaces may not be metric) preserves the property of being a Polish space.
This generalizes the results of Sierpiński and Vainstein for open and closed
maps.

In [5] the author introduced a concept of system (ηy)y∈Y associated to a map f :
X → Y with the help of which we give here new classes of stable and transquotient
maps.1

All the maps in this paper are continuous and onto. All the spaces are regular.
Let f : X → Y be a map from a separable, complete metrizable (= Polish) space

X onto a metric space Y . Then Y is also Polish in the following cases:
a) if f is an open or a closed map [7], [9];
b) if f is a compact–covering map or an s–covering map2 [2], [3], [5];
c) if f is a composition of open and perfect maps [3].
First, we will show that the class of stable maps contains the above–mentioned

classes. Second, we obtain from Theorem 0 all the above–mentioned statements
a)–c) and some new results. In particular, a composition of closed and open maps
preserves the property of being a Polish space.

Notice, that in all the cases a)–c) there is a closed subset X0 ⊂ X such that the
restriction f |X0 is a perfect map onto Y (see [2], [3], [5]).

Theorem 0. Let f : X → Y be a stable map from a Polish space X onto a metriz-
able space Y. Then:

(1) There is a countable set Yσ ⊂ Y and a Polish space X0 ⊂ X such that the
restriction f |X0 is a perfect map onto Y \ Yσ.

(2) Y is a Polish space.
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3082 A. V. OSTROVSKY

1. Stable and transquotient maps

Our approach will be to establish a characterization of stable, transquotient and
harmonious maps in terms of transmittable systems and to give a relation between
these classes of maps. We start first with some general notation:

A system associated to a map f : X → Y is a family (ηy)y∈Y where each ηy is a
family of open subsets of X satisfying the condition U ∩ f−1(y) 6= ∅ for all U ∈ ηy.
The system is said to be transmittable if the following condition holds:

(a) for every U ∈ ηy there is a neighborhood O(y) of y such that U ∈ ηy′ for
every y′ ∈ O(y).

It is clear that if U ∈ ηy, then y ∈ Intf(U). A map may have many transmittable
systems and a system is called trivial if ηy = {X} for every y ∈ Y.

Definition 1. The map f : X → Y is stable if it admits a transmittable system
satisfying the following condition:

(b) If U ∈ ηy and V is open in X such that V ⊃ U ∩ f−1(y), then V ∈ ηy .

Definition 2. A map f : X → Y is transquotient if it admits the transmittable
system satisfying the following condition:

(c) If U ∈ ηy and γ = {Uα}α∈A is a family of open subsets of X such that⋃
α∈A Uα ⊃ f−1(y)∩U, then there is a finite number Uα1 , ..., Uαn ∈ γ and an open

O(y) such that
⋃n
i=1 Uαi ∈ ηy′ for every y′ ∈ O(y) \ {y}.

Remark 0. Let ηy be a transquotient family for f . Define a new family for f :
η̃y = {V : V is open in X and ∃U ∈ ηy such that V ⊃ U ∩ f−1(y)}.
In particular X ∈ η̃y. Notice that the transmittable property holds for η̃y since

for V ∈ η̃y we can consider γ = {V } in (c) and then, obviously, V ∈ η̃y′ for every
y′ ∈ O(y). Since every cover of f−1(y) ∩ V is the cover of f−1(y) ∩ U, we have by
(c) that η̃y is a transquotient family for f.

If V is open in X and there is U ∈ η̃y such that V ⊃ f−1(y) ∩ U (in particular,
if V ⊃ f−1(y)), then, obviously, V is also an element of η̃y. Hence, a transquotient
map f is stable.

It should be noted that the following lemma uses an idea of A.H. Stone’s proof
[8, Lemma 1].

Lemma 1. Let f : X → Y be a map. If Y is first–countable and if every fiber
f−1(y) is hereditarily Lindelöf, then the following conditions are equivalent:

(i) f is stable;
(ii) f is transquotient.

Proof. By Remark 0 (ii) ⇒ (i). We will show (i) ⇒ (ii). Suppose the family ηy
satisfies Definition 1 and does not satisfy Definition 2. This means that (c) fails
for some U ∈ ηy and family γ = {Ui}i∈ω. It is obvious that there is an open
decreasing base {On(y)}n∈ω at y such that for every γn =

⋃n
i=0 Ui there is a y′n ∈

On(y) \On+1(y), for which γn 6∈ ηy′n and, hence, Mn = (U ∩ f−1(y′n)) \ γn 6= ∅ (we
assume that O0(y) is a neighbourhood of y such that U ∈ ηy′ for each y′ ∈ O0(y)).

Let M =
⋃
{Mn : n ∈ ω}. Now let us show that f−1(y) ∩ U ∩ clXM 6= ∅.

Suppose the contrary, then U ′ = U \ clXM ⊃ f−1(y) ∩ U and U ′ ∈ ηy. By the
transmittable property, for some n we have U ′ ∈ ηy′n . By our construction, γn
⊃ γn ∩ U ∩ f−1(y′n) = U ′ ∩ f−1(y′n) and, hence, γn ∈ ηy′n . That is impossible.
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STABLE MAPS OF POLISH SPACES 3083

Choose x ∈ f−1(y) ∩ U ∩ clXM ; then x belongs to some γn. It is clear that x ∈
T = f−1(y)∩U ∩clX(

⋃
{Mk : k > n}). Taking into consideration that Mk ⊂ U \γn

for k > n, and hence T ∩ γn = ∅, we get a contradiction with x ∈ γn.

Let us consider some examples of stable and transquotient maps.

Proposition A. Open maps and closed maps f : X → Y are stable.

For an open map: ηy = {U : U is open and y ∈ f(U)}.
For a closed map: ηy = {U ⊂ X : U is open in X, and U ⊃ f−1(y)}. It is a well

known fact that for every y ∈ Y and every open U ⊃ f−1(y) there is an open O(y)
such that f−1(O(y)) ⊂ U.

Every open map with ηy = {U : U is open and y ∈ f(U)} is transquotient but
the space Y = R mod Z, obtained by identifying the integers Z in the real line R to
one point y, gives a closed and non–transquotient map f : R→ Y. Indeed, let γ1 be
a cover of f−1(y) by open intervals of length < 1/2. Then for every finite subcover
γ2 of γ1 and every open O(y) there is y′ ∈ O(y)\ {y} such that

⋃
γ2∩f−1(y′) = ∅.

Proposition B. Suppose f : X → Y and ϕ : Y → Z are stable maps. Then the
composition g = ϕ ◦ f : X → Z is also a stable map.

Let ηy(f) and ηz(ϕ) be stable families for f and ϕ, respectively. Let us define
ηz(g) = {U : ∃T ∈ ηz(ϕ)∀y ∈ T ∩ ϕ−1(z)(U ∈ ηy(f))} and let us show that g is a
stable map. It is clear that X ∈ ηz(g) for every z ∈ Z.

(a) Let us assume U ∈ ηz(g) and y ∈ T ∩ ϕ−1(z). By (a) for f there is an
open O(y) ⊂ T such that U ∈ ηy′(f) for each y′ ∈ O(y). Let T ′ =

⋃
{O(y) : y ∈

T ∩ ϕ−1(z)}. Obviously, T ′ ⊃ T ∩ ϕ−1(z). Hence, T ′ ∈ ηz(ϕ).
We choose (according to (a) for ϕ) an open O(z) such that T ′ ∈ ηz′(ϕ) for every

z′ ∈ O(z), and then we have U ∈ ηz′(g).
(b) Suppose V ⊃ U ∩ g−1(z) for an open V, where U ∈ ηz(g). Then V ∈ ηy(f)

for every y ∈ T ∩ ϕ−1(z) and, hence, V ∈ ηz(g).

2. Proof of Theorem 0

A map f : X → Y from a metric space X is uniformly sequentially complete if
each f−1(S) is complete with the given metric on X for every convergent, including
its limit, sequence S = {y} ∪

⋃
{yi : yi → y} in Y.

Proposition C. If f : X → Y is transquotient with appropriate families ηy, Y0 ⊆
Y , Z =

⋃
α∈A Uα and Uα ∈ ηy for each y ∈ f(Uα) \ Y0, then f |(Z \ f−1(Y0)) :

Z \ f−1(Y0)→ f(Z) \ Y0 is transquotient.

The new transquotient families are defined as η̃y = {U \ f−1(Y0) ⊆ Z \ f−1(Y0) :
U ∈ ηy}.

Lemma 2. Let f : X → Y be a transquotient, uniformly sequentially complete map
between separable metric spaces X,Y. Then there exists a Gδ–set X ′ ⊂ X and a
countable set Yσ ⊂ Y such that the restriction f |X ′ is a perfect map onto Y \ Yσ.

Proof. There is a perfect extension f∗ : X∗ → Y of f and Z ⊂ X∗ such that Z ⊃ X ,
every f−1(S) is closed in Z for every convergent, including its limit sequence S ⊂ Y
and Z =

⋂
i∈ω Oi, where Oi are open in X∗.

Indeed, suppose BY ⊃ Y and BX̃ are compact spaces containing Y and the
completion X̃ of X, respectively. Then X̃ is a Gδ–set in BX̃ and the first coordinate
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3084 A. V. OSTROVSKY

projection π on BY × BX̃ is a perfect map. Let X∗ = π−1(Y ), Z = Y × X̃ and
f∗ = π|X∗. Then f∗ : X∗ → Y is also perfect. Finally, we can identify the graph
G ⊂ X∗ of the map f with X and the projection of G with f ; then f∗ is the
extension of f .

Notice that f∗−1(S) is always compact for a convergent sequence S including its
limit because f∗−1(S) = S ×BX̃ and this is a product of two compact sets.

Note also that by the construction of the transmittable system constructed in
Remark 0 (η̃y), we can assume that there exists a transmittable system ηy that
makes f both transquotient and stable.

Let us choose for each y ∈ Y some Uy0 ∈ ηy, U
y
0 ⊂ X and for each point

x ∈ Uy0 ∩ f−1(y) a neighborhood U(x) ⊂ Uy0 such that clX∗U(x) ⊂ O0. According
to Definition 2 there are finitely many U(xi), i = 1, 2, ..., n, and a neighborhood
O(y) such that Uy1 =

⋃n
i=1 U(xi) ∈ ηξ for every ξ ∈ O(y) \ {y}.

Hence, δ1 = {O(y) : y ∈ Y } is an open cover of Y and for every y ∈ Y we have
f(Uy1 ) ⊃ O(y).

Since every separable metric space is a Lindelöf space and every Lindelöf space
is paracompact, we can consider the countable, locally finite open refinement γ1 =
{Uk}k∈ω of δ1. We can choose for every Uk ∈ γ1 some yk such that O(yk) ⊃ Uk.

Denote δ1(γ1)= {O(yk) : k ∈ ω} and Y0= {yk : k ∈ ω}.
Choose for every Uk ∈ γ1 the corresponding elements O(yk) ∈ δ1(γ1), Uyk1 ∈ ηyk

and denote W1,k = Uyk1 ∩ f∗−1(Uk) ⊂ X. By our construction
(∗) W1,k ∈ ηy for every point y ∈ Uk \ Y0.
In fact, for every y′ ∈ O(yk) \ {yk} (see the definition η̃y) we obtain (∗). Let us

denote

X0 = (
⋃
k∈ω

W1,k) \ f−1(Y0), f0 = f |X0 : X0 → Y \ Y0.

According to (∗) and Proposition C f0 is transquotient. Let us denote

X∗0 = (clX∗
⋃
k∈ω

W1,k) \ f∗−1(Y0), f∗0 = f∗|X∗0 : X∗0 → Y \ Y0.

It is clear that f∗0 is a perfect map. Since {W1,k}k∈ω is a locally finite family, we
have: X∗0 = (

⋃
k∈ω clX∗W1,k) \ f∗−1(Y0) and, hence, X0 ⊂ X∗0 ⊂ O0.

We may consider O1, X0, X
∗
0 , f0, f

∗
0 instead of O0, X,X

∗, f, f∗ and repeat the
construction. In this way we obtain a countable subspace Y1 ⊂ (Y \ Y0) and:

a perfect map f∗1 : X∗1 → Y \ (Y0 ∪ Y1), where X∗1 ⊂ O1 and X1 ⊂ X∗1 ⊂ X∗0 ;
a transquotient map f |X1 onto Y \ (Y0 ∪ Y1), where X1 ⊂ X0.
Thus, we have the subspaces Oi ⊃ X∗i ⊃ X∗i+1, i ∈ ω, where X∗i ⊃ Xi is

closed in X∗ \
⋃i
k=0 f

∗−1(Yk) and every f∗i : X∗i → Y \
⋃i
k=0 Yk is perfect. Denote

Yσ =
⋃
i∈ω Yi. Evidently, Yσ is countable. It is obvious that F =

⋂
i∈ωX

∗
i ⊂ Z

is closed in X∗ \ f∗−1(Yσ) and, hence, f∗|F is a perfect map onto Y \ Yσ. Denote
X ′ = F ∩X. We shall prove that f ′ = f |X ′ is a perfect map onto Y ′ = Y \ Yσ.

By inspection of the construction of the spaces X∗n one can see that they are of
the form X∗n = Tn\f∗−1(

⋃n
i=0

Yn), where the sets Tn are closed in X∗, T0 ⊇ T1 ⊇ ...
and Tn ⊆ On. Let T =

⋂
n Tn; then T ⊂ Z, because Tn ⊂ On. Let S be a sequence

contained in Y ′ and assume that S is convergent and contains its own limit. f−1(S)
is closed in Z. Hence f−1(S) ∩ T is closed in T, because T ⊂ Z. Hence f ′−1(S) =
f−1(S)∩F = f−1(S)∩T is closed in f∗−1(S)∩T. But the set f∗−1(S) is compact.
Thus f ′−1(S) is compact.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



STABLE MAPS OF POLISH SPACES 3085

To prove that f ′(X ′) = Y \ Yσ, note first that for every y ∈ Y \ Yσ the set Ln =
clX∗f

−1(y)∩X∗n is compact (n ∈ ω). By our construction Ln ⊃ Ln+1 and Ln 6= ∅
since X∗n ⊃ Xn and f−1(y)∩Xn 6= ∅. Hence, there is x ∈

⋂
n Ln = clX∗f

−1(y)∩F.
Since f−1(y) is closed in Z and F ⊂ Z, we have x ∈ f−1(y) ∩ F = f ′−1(y).

To verify that f ′(A) is closed in Y ′ for every closed A ⊂ X , note that if yi =
f ′(xi), xi ∈ A, and yi → y, then, as C = f ′−1({yi : i ∈ ω} ∪ {y}) is compact, there
is a limit point x for the sequence {xi : i ∈ ω} of the points of C. But then x ∈ A
because xi are in A and A is closed. Obviously, f ′(x) = y ∈ f ′(A).

Since f |X ′ is a perfect map onto Y \ Yσ, X ′ is a closed subset of X \ f−1(Yσ),
hence X ′ is a Gδ–set in X.

Let X be a topological space. The strong Choquet game C is played as follows.
Players α, β take turns, with β playing first, choosing nonempty open subsets of
X . Player β also plays a point in his open set at each move and α must play an
open set containing this point. Each open set played by any player is contained in
the opponent’s previous move
β U0, x0 U1, x1 ...
α V0 U1 ...

where xi ∈ Ui, xi ∈ Vi and U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ .... We say that α wins a run
of this game U0, V0, V1, ... if

⋂
n Vn(=

⋂
Un) 6= ∅. One can require without losing

generality that at every step the first player plays a different point. We say that X
is a strong Choquet space if α has a winning strategy in the strong Choquet game
C for X [1].

Lemma 3. Let f : X → Y be a transquotient map of a strong Choquet space X
onto Y. Then Y is also a strong Choquet space.

Proof. Denote by Σ a winning strategy for α in C. Denote by C′ the strong Choquet
game on Y and by α′, β′ its players. We will describe a winning strategy for α′ in
C ′.

Step 0. Let β′ start with (U ′0, y0). For every x0 ∈ f−1(y0) take an open U0 ⊂
f−1(U ′0), x0 ∈ U0. Let β play (U0, x0), then α answers, using Σ, by f0((x0, U0)) =
V0 ⊆ U0, x0 ∈ V0.

By Remark 0 to Definition 2 we may suppose X ∈ ηy0 . Since the elements V0

cover X ∩ f−1(y0), there is a finite family γ0 of elements V0 and an open V ′0 ⊆
U ′0, y0 ∈ V ′0 such that

⋃
γ0 ∈ ηy′ for every y′ ∈ V ′0 \ {y0}. Then α′ answers by

f ′0((y0, U
′
0)) = V ′0 ⊂ U ′0, y0 ∈ V ′0 .

Step 1. Let β′ play (U ′1, y1), where y1 ∈ U ′1 ⊆ V ′0 .
Then β plays (U1, x1), where U1 ⊂ V0 ∩ f−1(U ′1) for every V0 ∈ γ0 and every

x1 ∈ V0 ∩ f−1(y1). Then α, using Σ, answers by f1((x0, U0), (x1, U1)) = V1 ⊂ U1,
x1 ∈ V1.

By the definition of transquotient maps, there is a finite family γ1 of elements
V1 and an open V ′1 ⊆ U ′1, y1 ∈ V ′1 such that

⋃
γ1 ∈ ηy′ for every y′ ∈ V ′1 \ {y1}.

Then α′ answers by f ′1((y0, U
′
0), (y1, U

′
1)) = V ′1 ⊂ U ′1, y1 ∈ V ′1 . By construction

U ′1 ⊃ f(
⋃
γ1) ⊃ V ′1 .

Step n + 1. Suppose we defined a map f ′n((y0, U
′
0), ..., (yn, U ′n)) = V ′n ⊂ U ′n,

yn ∈ V ′n for (y0, U
′
0), ..., (yn, U ′n) and finite families γn of open sets Vn such that⋃

γn ∈ ηy′ for every y′ ∈ V ′n and U ′n ⊃ f(
⋃
γn) ⊃ V ′n. Let β′ play (U ′n+1, yn+1).
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Then β plays (Un+1, xn+1) for every Vn ∈ γn and every xn+1 ∈ Vn ∩ f−1(yn+1)
with Un+1⊂Vn∩f−1(U ′n+1) and α answers, using Σ, fn+1((x0, U0), ..., (xn+1, Un+1))
= Vn+1 ⊂ Un+1, xn+1 ∈ Vn+1.

By the definition of transquotient maps there is a finite family γn+1 of elements
Vn+1 and an open V ′n+1 ⊂ U ′n+1, yn+1 ∈ V ′n+1 such that

⋃
γn+1 ∈ ηy′ for every

y′ ∈ V ′n+1 \ {yn+1}. Then α′ answers f ′n+1((y0, U
′
0), ..., (yn+1, U

′
n+1)) = V ′n+1 ⊂

U ′n+1, yn+1 ∈ V ′n+1.
By our construction
(∗) U ′n+1 ⊃ f(

⋃
γn+1) ⊃ V ′n+1.

By König’s theorem an infinite, finitely branching tree must have an infinite
branch and we obtain in this way a sequence V ∗0 ⊃ V ∗1 ⊃ ... ⊃ V ∗i ⊃ ..., obtained
according to a winning strategy for α, where V ∗i ∈ γi. Since α wins, there is x ∈⋂
n V
∗
n and, hence, x ∈

⋃
γn for every n ∈ ω. Since by definition of strong Choquet

game V ′n ⊃ U ′n+1, we have according to (∗): f(x) ∈
⋂
n V
′
n, and α′ wins.

Proof of Theorem 0. Lemma 2 implies part (1) of Theorem 0. Notice that X is
completely metrizable if and only if X is a metrizable strong Choquet space [1]
and we obtain from Lemmas 1 and 3 part (2) of Theorem 0 (see also [4, Corollary
7.3]).

3. Remarks

We begin by recalling the following definition [6]:

Definition 3. A map f : X → Y is harmonious if one can assign to every compact
K ⊂ Y a family ηK of open subsets of X satisfying the following conditions:

(a′) If U ∈ ηK , then there exists a compact B ⊂ U such that f(B) = K and for
every open V ⊃ B we have V ∈ ηK .

(b′) If U ∈ ηK , then there exists an open O(K) such that U ∈ ηK′ for every
compact K ′ ⊂ O(K).

We obtain the definition of a point–harmonious map by replacing K and K ′ in
the above definition by points y and y′.

By Theorems 1 and 2 from [6] in case of separable metrizable spaces X,Y the
class of harmonious (resp. point–harmonious) maps coincides with the class of
compact–covering (resp. s–covering) maps.

Recall that triquotient maps may be defined as transquotient maps satisfying
condition (c) from Definition 2 for every y′ ∈ O(y).

Proposition D. Transquotient maps, triquotient maps, point–harmonious maps
and harmonious maps are stable.

Let f : X → Y be a map. Then 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5).
1) f is harmonious.
2) f is point–harmonious.
3) f is triquotient.
4) f is transquotent.
5) f is stable.
1) ⇒ 2) ⇒ 3) follow from the definition of harmonious and point–harmonious

maps.
3) ⇒ 4) ⇒ 5) follow from the definition of transquotient maps and Remark 0.
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Proposition E. Compact–covering maps and s–covering maps onto a metrizable
space are stable.

The corresponding stable family ηy is constructed in Example 1.

Proposition F. If f : X → Y is a stable map with compact fibres, then f is point–
harmonious.

Let ηy be a stable family for f and let εy = {B = clXU ∩ f−1(y) : U ∈ ηy}.
Define a transmittable family for f as follows:
η′y = {U ′ : U ′ is open in X and there is B ∈ εy such that U ′ ⊃ B}.
It is clear that the condition (a′) is satisfied. Let us consider U ′ ∈ η′y and some

compact B ∈ εy, B ⊂ U ′. Since X is regular, there is an open set V ⊃ B such that
clXV ⊂ U ′. Since B ⊃ U ∩ f−1(y) where U ∈ ηy, there is an open O(y) such that
V ∈ ηy′ for every y′ ∈ O(y). Since U ′ ⊃ B′ = clXV ∩f−1(y′) and B′ ∈ εy′ , we have
U ′ ∈ η′y′ for every y′ ∈ O(y) and (b′) is also satisfied.

A map f : X → Y is feebly open if for every (non-empty) open V ⊂ X we have
Intf(V ) 6= ∅.

Recall that a space Y is an FII–space if there is no closed subset of Y which is of
the first category in itself. The following theorem shows that part (2) of Theorem
0 can be extended onto a larger class of FII–spaces.

Theorem 1. Let f : X → Y be a transquotient map. If X is an FII–space, then Y
is also an FII–space.

We need the following lemma.

Lemma 4. Let f : X → Y be a transquotient map. Then there is a closed Z ⊂ X
such that the restriction f |Z is a feebly open, transquotient map onto Y.

Proof . Suppose f is not feebly open; then there is a non-empty open V ⊂ X such
that Intf(V ) = ∅. Denote X1 = X \ V, f1 = f |X1, η

1
y = {U1 = U ∩X1 : U ∈ ηy}.

First, U1 ∩ f−1
1 (y) 6= ∅. Suppose not; then for some U ∈ ηy, V ⊃ U ∩ f−1(y).

According to Remark 0, we may suppose that f is not only transquotient but also
stable with respect to ηy, hence there is an open O(y) such that f(V ) ⊃ O(y),
which is impossible.

It is clear that the transmittable property (a) for f1 is satisfied.
Let U1 ∈ η1

y and γ1 = {U1
α} be an open cover of f−1

1 (y) ∩ U1. Let us take an
open U ∈ ηy such that U ∩X1 = U1. Obviously, γ = {T 1

α = U1
α ∪ (X \X1)} is an

open cover of U ∩ f−1(y). Hence, there exist T 1
α1
, ..., T 1

αn and O(y) ⊂ Y such that
T 1 =

⋃n
i=1 T

1
αi ∈ ηy′ for every y′ ∈ O(y)\{y}. It is clear that T 1∩X1 =

⋃n
i=1 U

1
αi ∈

η1
y′ for every y′ ∈ O(y)\{y} and, hence, (c) is also satisfied and f1 is transquotient.

Suppose we obtained for some α a strictly decreasing sequence of closed subsets
Xβ ⊂ X (β < α) and transquotient maps fβ = f |Xβ onto Y with hereditary
transquotient family ηβy = {Uβ = U ∩Xβ : U ∈ ηy}.

If α is not a limit ordinal, that is, if α = β + 1, and f |Xβ is not feebly open, we
may consider Xα, Xβ instead of X1, X and repeat the construction above.

For the limit ordinal α define: Xα =
⋂
β<αXβ, fα = f |Xα, η

α
y = {Uα =

U ∩ Xα : U ∈ ηy} and prove that for every y ∈ Y and every Uα ∈ ηy we have
Uα ∩ f−1

α (y) 6= ∅.
Suppose the contrary. Then for some U ∈ ηy and Uα = U ∩ Xα, we have

U ∩ Xα ∩ f−1(y) = ∅. It is clear that {Oβ = X \ Xβ}β<α is an open cover of
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f−1(y)∩U. Since Xβ ⊃ Xβ+1 and f is transquotient, there is β < α and y′ ∈ O(y)
such that Oβ ∈ ηy′ and, hence, Oβ ∩ Xβ ∈ ηβy′ . This contradicts the condition
∅ 6∈ ηβy′ because Oβ ∩Xβ = ∅.

Just like for X1 we can prove that f |Xα is a transquotient map with hereditary
transquotient family. We may repeat the above construction if f |Xα is not feebly
open, etc. Since {Xα} is a strictly decreasing sequence of closed sets, there is α0

such that Z = Xα0 = Xα0+1 = .... Let us denote fα0 = f |Z. Then fα0 is a feebly
open, transquotient map onto Y.

To prove Theorem 1 suppose the contrary and let Y0 ⊂ Y be a closed subspace of
the first category and, hence, Y0 can be represented as a countable union of nowhere
dense and closed in Y subsets Fi. It is not hard to prove (see Proposition C) that
f0 = f |X0, where X0 = f−1(Y0), is a transquotient map. By Lemma 4 we can
suppose that f0 is feebly open and, hence, every f−1(Fi) is a closed nowhere dense
subset. Then X0 is a subspace of the first category in itself, which is impossible by
definition of FII–space.

Let X be a (non–separable) complete metric space, and let Y be a metric space. I
don’t know whether the map f in the following cases 1 and 2 must be transquotient
(or Y completely metrizable):

1. f : X → Y is a countable–inductively perfect map (i.e., for every countable
closed Y0 ⊂ Y there is X0 ⊂ X such that f |X0 is a perfect map onto Y0).

2. f : X → Y is a composition of closed and open maps (the domain and the
range of all maps are regular).

4. Examples

The assumption that X is separable cannot be omitted in Theorem 0:

Example 1. A stable, non-transquotient map f : X → Y from a completely metriz-
able space X onto metric space Y which does not satisfy conditions (1) and (2) of
Theorem 0.

In fact, let Y not be a union of a countable set and an absolutely Gδ–set. For
example, Y = Qω (where Q is the space of rational numbers) and let X be a
topological sum of all compact subsets of Y with the obvious map f : X → Y. It
is clear that X is completely metrizable and, by Lemma 3, f is not transquotient.
Since a perfect image of a completely metrizable space is completely metrizable, f
does not satisfy the conditions of Theorem 0.

We’ll prove that f is stable. In fact, let us define:
ηy = {U : U is open in X and for every compact K ⊂ Y containing y, there is a

compact B ⊂ X such that f−1(y) ∩B ⊂ U and f(B) = K}.
Obviously, the condition (b) of Definition 1 is fulfilled. We will verify the trans-

mittable property (a). Let us assume the contrary: for some U ∈ ηy there is a base
{Oi} at the point y, points yi ∈ Oi and compacts Ki ⊂ Oi, which contain yi such
that there is no compact subset Bi of X satisfying the conditions: f−1(yi)∩Bi ⊂ U
and f(Bi) = Ki. It is clear that S = {y} ∪

⋃
{Ki : i ∈ ω} is a compact set and

y ∈ S. By definition of ηy there is a compact B ⊂ X for which f(B) = S and
f−1(y) ∩ B ⊂ U. Then compact B \ U contains a closed countable discrete family
of non-empty sets (f−1(yi) ∩B) \ U. This is impossible.
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Example 2. A transquotient (and stable) map f : X → Y from a countable, Polish
space X onto a compact, metric space Y and the following conditions are satisfied:

1) f : X → Y is not s–covering (= not point–harmonious) map.
2) f = f2 ◦ f1, where f1 is a closed map and f2 is an open map.3

Let p0 < p1 < ... < pn < ... be a sequence of prime numbers. Denote

Yn = {1/pi+1
n : i ∈ ω}, Y ′n = {0} ∪ Yn ⊂ I = [0, 1].

For the prime numbers pn, pk we have pi+1
n = pj+1

k iff pk = pn. Hence Y ′n ∩ Y ′k =
{0} ( n 6= k). Denote also:

X1
n = Y ′n × {n+ 1}, X2

n = Yn × {1/(n+ 1)},

X = {0, 0} ∪
⋃
{X1

n ∪X2
n : n ∈ ω} ⊂ I× R, Y =

⋃
{Y ′n : n ∈ ω}.

Let π : I× R→ Y be the projection onto the first coordinate and f = π|X.
1. It is easy to see that f is stable (define ηy as a family of all open in X subsets

U such that y ∈ f(U), if y 6= 0 and U ⊃ f−1(0), if y = 0).
2. If f is an s–covering map, then there is a compact X0 ⊂ X for which f(X0) =

Y and X0 ∩X1
n 6= ∅ (since X1

n are open and closed in X) for a finite number of n
only. Then there is an n for which the set X2

n ∩X0 has cardinality ℵ0. Since X2
n is

closed in X, X2
n ∩X0 has an accumulation point in X2

n. This is impossible.
3. Define f1 by factorising f−1(0) to one point z0. Then f1 is a closed map.

The map f2 from Z onto Y is defined as follows: f2(z) = 0 if z = z0, and f2(z) =
f(f−1

1 (z)) if z 6= z0. Then f2 is an open map and f = f2 ◦ f1.
The product of two stable ( even two transquotient ) maps cannot be stable.

Indeed, let us consider the product t = f × idI : X × I → Y × I of the stable,
transquotient map f from Example 2 and identity map idI. If t is stable, then by
Theorem 0 there is a countable set Yσ ⊂ Y × I and X0 ⊂ X × I such that t|X0 is a
perfect map onto (Y × I)\Yσ. Hence, there is x0 ∈ I such that (Y ×{x0})∩Yσ = ∅
and t|t−1(Y × {x0)} = f : X → Y is s–covering. This is impossible.

References

1. G. Choquet, Lectures on Analysis, Volume I, Math. Lecture Notes Series–W.A. Benjamin,
1969. MR 40:3252

2. G. Debs and J.Saint Raymond, Compact Covering and Game Determinacy, Topology and
Appl. 68 (1996), 153–185. MR 96m:54067

3. E. Michael, Complete spaces and tri–quotient maps, Illinois J. Math. 21(3) (1977), 716–733.
MR 57:7543

4. E. Michael, Partition-complete spaces and their preservation by tri-quotient and related maps,
Top. and Appl. 73 (1996), 121–131. MR 97h:54016

5. A. Ostrovsky, On compact–covering mappings, Soviet Math.Dokl. 17 (1976), 606–610.
6. A. Ostrovsky, New classes of maps related to k-covering maps, Moskow University Mathe-

matics Bulletin 49 (1994), 20–23.
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