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ABSTRACT:

This paper addresses extensions of the classical least-squares matching approaches of (Wrobel, 1987, Ebner and Heipke, 1988) partic-
ularly in the direction of full three-dimensional (3D) reconstruction. We use as unknowns the movement in the direction of the normals
for a triangulation of the surface. To regularize the ill-posed inverse reconstruction problem, we smooth the surface by enforcing a
low curvature in terms of that the vertices of the triangulation are close to the average plane of their direct neighbors. We employ a
hierarchy of resolutions for the triangulation linked to adequate levels of image pyramids, to expand the range of convergence, and
robust estimation, to deal with occlusions and non-Lambertian reflection. First results using highly precise and reliable, but sparse
points from the automatic orientation of images sequences as input for the triangulation show the potential of the approach.

1 INTRODUCTION

The goal of this paper is to generate a dense three-dimensional
(3D) model from given orientations of cameras and reliable but
sparse points obtained by an automatic orientation procedure.

In a recent survey for two images (Scharstein and Szeliski, 2002)
the four steps (1) Matching cost computation (2) Cost (support)
aggregation (3) Disparity computation / optimization and (4) Dis-
parity refinement are named for a typical stereo algorithm. The
test described in (Scharstein and Szeliski, 2002) has sparked a
large interest into stereo matching. Here we report shortly only
about approaches that deal with more than two images.

Our work is inspired by (Fua and Leclerc, 1996) which also em-
ploy 3D triangular facets for the surface. Opposed to them, we
only focus on stereo, we optimize the vertices of the 3D facets
along their normals, and we employ robust least-squares opti-
mization to deal with occlusions.

In recent work on 3D reconstruction such as (Lhuillier and Quan,
2005) or (Strecha et al., 2004) points from the image orientation
are used as starting point for dense surface reconstruction. In the
former case a bounded regularization approach is employed for
surface evolution by level-set methods. The approach is different
from ours as it is not focusing on wide-baseline scenarios and it
therefore can use a very dense set of points stemming from the
orientation. Wide baselines are the scope of the latter approach.
As we they use the 3D points as starting points, but they formulate
the 3D reconstruction problem in terms of an Bayesian approach
and use the EM-algorithm to solve it.

A computationally very efficient approach is presented in
(Hirschmüller, 2006). It employs a semi-global matching in the
form of dynamic programming in 16 directions. This together
with a mutual information based computation of the matching
costs results into well regularized results and still a high perfor-
mance allowing to work with very large images.

Opposed to the above approaches we decided to extend the clas-
sical least-squares matching approaches of (Wrobel, 1987, Ebner
and Heipke, 1988) in the direction of full 3D reconstruction from
wide-baseline image sequences in a similar way as (Schlüter,
1998). We move the vertices of a triangulation resulting from a
densification of a triangulation obtained from our initial reliable

but sparse 3D points in the direction of their normals. To deal
with occlusions, we employ robust estimation. Regularization is
based on additional observations modeling the local curvature of
the surface.

According to the above four steps of (Scharstein and Szeliski,
2002) we do matching cost computation by squaring brightness
differences between transformed values for individual images and
an average image. The latter can be considered as an orthophoto
of the surface. The costs are aggregated over the whole surface
consisting of planar triangles and the computation of disparities
or in our case of 3D coordinates is done together with the refine-
ment in the least-squares estimation.

The potential of the least-squares approach lies in its high possi-
ble accuracy. Yet, least-squares matching is known to converge to
local minima and thus good approximations are necessary. They
are obtained here by using as basis sparse but highly precise and
reliable points. They stem from a multi-image matching and
robust bundle adjustment approach suitable for large baselines
(Mayer, 2005) extended by the five point algorithm of (Nistér,
2004). The radius of convergence is additionally expanded by a
coarse-to-fine optimization for different levels of resolution for
the triangles.

The paper is organized as follows. After sketching basic ideas
and giving an overview of the algorithm we detail the ideas in
the following sections. Finally we give results and end up with
conclusions.

2 BASIC IDEAS AND OVERVIEW OF ALGORITHM

The problem of surface reconstruction is formulated in terms of
least-squares adjustment. To be able to work in full 3D, we tri-
angulate the surface and move the vertices of the triangulation
along a path independent from the definition of the coordinate
system, namely the direction of the normal at the vertex of the
triangulated surface. The direction of the normal in the vertex
Nu for the unknown number u is estimated as the average of the
normal vectors of the planes attached to the vertex. E.g., for Fig-
ure 1 this means Nu = N1+N2+N3+N4+N5

5
. It is normalized by

Nnorm
u = Nu

‖Nu‖ .

The basic ideas of our approach can be summarized as follows:
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Figure 1: Relation of normal Nu at (center) vertex to normals of
neighboring planes and unknown size of movement nu

• It is based on a triangulated 3D surface.

• The vertices of the triangles move along their respective nor-
mals. The sizes of movement are the unknowns nu (cf. Fig-
ure 1).

• Points inside the 3D triangles are projected into the images
resulting into the observations.

• The goal of moving the vertices along the normal vectors is
to obtain as small a squared gray value difference as possible
between the back-projected points in the images and their
average value supposed to be the reflectance value of the
surface in a least-squares sense.

• Additionally to the image observations representing the data
term the surface is regularized by observations enforcing its
local smoothness in terms of curvature.

• To deal with outliers, e.g., in the form of local occlusions,
robust estimation is used.

The algorithm consists of:

• Creation of triangulated surface from the given sparse 3D
points

• Densification of the triangulation at different resolution lev-
els by splitting the triangles of the surface. This results in
the unknowns for whom the initial values are interpolated
from the neighboring given 3D points.

• By splitting of the triangles of the unknowns and projection
of the resulting points into the images the image observa-
tions are obtained. The analysis of a local neighborhood of
the unknowns leads to additional smoothness observations.

• Robust least-squares adjustment to estimate improved val-
ues for the unknowns at the different levels of resolution

Before describing the steps of the algorithm, we detail the con-
tents of the design matrix of the least-squares estimation problem
which will be constructed in the course of the algorithm.

3 PARTIAL DERIVATIVES FOR THE DESIGN MATRIX

The image observations are devised to describe how well the in-
tensities in all images showing a 3D point fit to an average in-
tensity computed from all these images by taking the difference

between the individual values and the average. Unfortunately,
the lighting might be different for the images, the camera might
have used a different gain, or the surfaces have a non-Lambertian
bidirectional reflection distribution function (BRDF). Therefore,
to reduce the bias of the estimation, the overall brightness of the
images is estimated at the beginning from a small neighborhood
of all given sparse, but reliable 3D points seen in an image.

For the given non-linear problem the design matrix consists of
the partial derivatives of the intensity value Ii of observation i in
an image according to the change of the size of movement nu of
unknown u. They are given by

∂Ii

∂nu
=

∂I

∂x

∂x

∂nu
+

∂I

∂y

∂y

∂nu

=
∂I

∂x

(
∂x

∂X

∂X

∂nu
+

∂x

∂Y

∂Y

∂nu
+

∂x

∂Z

∂Z

∂nu

)
+

∂I

∂y

(
∂y

∂X

∂X

∂nu
+

∂y

∂Y

∂Y

∂nu
+

∂y

∂Z

∂Z

∂nu

)
with

• ∂I
∂x

, ∂I
∂y

the image gradients in x and y direction which can,
e.g., be estimated by the Sobel operator,

• ∂x|∂y
∂X|∂Y |∂Z

describing how the position in x- or y-direction
in the image is affected by changing the 3D point coordi-
nates X , Y , or Z corresponding to observation i, and

• ∂X|∂Y |∂Z
∂nu

the derivative of the 3D point coordinates X , Y ,
or Z according to the size of the unknown movement. The
points move in the direction of Nu. The size of their move-
ment depends on the distance of the 3D point from the line
connecting the other two vertices of the triangle the point is
lying in.

We model the projection of (homogeneous) 3D points X to image
points x by (Hartley and Zisserman, 2003)

x′ = PX (1)

with the projection matrix P

P = KR(I | − X0)

describing the collinearity equation consisting of the calibration
matrix K comprising principal point, principal distance, scale
difference and sheer as well as translation described by the Eu-
clidean vector X0 and rotation by the matrix R.

We additionally employ quadratic and quartic terms to model the
radial distortion to obtain an accuracy in the range of one fifth
to one tenth of a pixel, but we will not include this issue in the
further discussion, to make the paper more readable.

For improved flexibility we work in a relative coordinate system
which can be obtained from images alone. The first camera posi-
tion is used as the origin of the coordinate system. The rotation
of the first camera is fixed and is supposed to point to the negative
z-direction. The distance of the first and the second camera is set
to one.

4 TRIANGULATION OF GIVEN SPARSE 3D POINTS

We assume that the given sparse 3D points stemming from a
highly accurate bundle adjustment using possibly many images
are precise and reliable. We thus fix their 3D position.
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One basic problem for a full 3D approach is the linking of trian-
gles. It is at least difficult, often even impossible to link points in
3D just based on proximity. E.g., consider a thin surface, where
points on both sides of the surface should not be linked, but might
be much closer than points on the same side of the surface.

To avoid the above problem, we split the images into overlapping
triplets. For them we assume that the topology of the 3D points
can in essence be modeled in two dimensions (2D) in the images.
We therefore can triangulate the points for the triplets in one of
the images. To obtain compact triangles, we employ Delaunay
triangulation. This reduces problems with elongated thin trian-
gles.

First, we project via equation (1) and the known camera param-
eters the given 3D points into the central image of the triplet.
There they are triangulated. After this, triangulations for different
triplets can be stitched together which leads to full 3D triangula-
tions. Yet, for us this is subject of further work. All following
steps can now work on this basic global triangulation in as many
images as available. The given 3D points are shown as (black)
numbers in Figure 2.
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Figure 2: Creation of the vertices of the triangulation correspond-
ing to unknowns and observations – The given 3D points are con-
sidered as control points and are marked as (black) numbers. The
first level of unknowns are denoted by (blue) capital letters and
the second level, which is detailed only for one original trian-
gle, by (red) small letters. Observations are sketched for triangle
2CB (left) as black dots. They are denser because the threshold
employed is 1

10
of the side length for the unknowns.

5 CREATION OF UNKNOWNS AND COARSE-TO-FINE
STRATEGY

The vertices of the triangulation corresponding to the unknowns
are generated by splitting the sides of the triangles obtained from
the given 3D points (cf. preceding Section) at their center if the
length of the side is beyond a given threshold. The new unknowns
receive their 3D position by linear interpolation. This leads to the
first level of unknowns marked by blue capital letters in Figure 2.
If the length of the sides should still be above the given threshold,
i.e., the triangle is rather big as no 3D point could be found inside
it, we split the triangle again along the sides and obtain a second
level of unknowns marked by red small letters in Figure 2. This
is done recursively until all side lengths are below the threshold.

As a well-known feature of least-squares matching is its rather re-
stricted radius of convergence, we employ a coarse-to-fine strat-
egy. It comprises

• different levels of densification of the triangles by setting
the thresholds for the lengths of the sides of the triangles
differently and

• use of image resolutions adapted to the sizes of the triangles
by selecting a corresponding level of an image pyramid.

6 DETERMINATION OF IMAGE OBSERVATIONS

The coordinates of the 3D points corresponding to the observa-
tions are generated similarly as above for the unknowns except
that a smaller threshold, namely 10% of the threshold of the un-
knowns is used. The resulting 3D points are sketched as black
dots on the left hand side of Figure 2. The 3D points are pro-
jected into all images they can be seen from. The intensity value
Ii of observation i at the projected homogeneous image point
x = α(xy1)T in an image is given by Ii = g(x, y), with g the
bilinear interpolation function.

For the design matrix A an unknown is affected only by the obser-
vations belonging to neighboring triangles. This leads to a sparse
design matrix. We employ this by only computing those parts
belonging to the actual observations, i.e., which are non-zero.

Yet, it also means that only unknowns in the normal equations are
correlated which have common triangles. To obtain a banded nor-
mal equation matrix, for which efficient solutions are available,
with a band-width as small as possible, we traverse the triangles
along the shorter side of the given area for 3D reconstruction. For
the example in Figure 3 this leads to a banded normal equation
matrix sketched in Figure 4. One can regard the first unknowns
to belong to the triangles marked in red in the lower left corner of
the triangulation in Figure 3, the next unknowns to the triangles
marked in green right of it, the next the blue, etc. All vertices of
the triangles, i.e., the unknowns, are linked only to two layers of
triangles which leads to a normal equation matrix with just one
band parallel to the main diagonal. The width of the band de-
pends on the length of the layer. Thus, it is useful to traverse the
triangulation along the shorter side.

Figure 3: Traversal of triangles along the shorter side. The dif-
ferent colors correspond to different layers of the traversal. The
traversal starts in the lower left corner (red triangles) – image
Trinity from web-page Criminisi and Torr
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symmetric

Figure 4: Banded structure of normal equation matrix resulting
from traversal of triangulation along the shorter side in Figure 3.

7 REGULARIZATION BY SMOOTHNESS
OBSERVATIONS

Due to noise and occlusions 3D surface reconstruction is an ill-
posed problems which has to be regularized. One way to accom-
plish this is via additional observations enforcing the smoothness
of the surface. Their influence is controlled via the ratio between
the weights for the image and the smoothness observations.

We describe smoothness in terms of the deviation hchangeof a
vertex from an average plane derived from the neighboring ver-
tices in the direction of its normal N .

The average plane is computed as weighted average of the heights
of the vertices hi above the plane through the given vertex and
perpendicular to the normal N at the given vertex. For this the
vertices are projected along the normal N , resulting in the primed
(blue) numbers in Figure 5. The weighting is done according to
the inverse distance di of the points. The average height of the
vertices is at the same time the height of the given vertex at height
0 above or below this plane:

hsmooth =

n∑
i=1

hi

di
/

n∑
i=1

1

di

hsmooth is combined with the average inverse distance to an ob-
servation describing the curvature at the vertex:

lsmooth = hsmooth ∗

n∑
i=1

1
di

n

8 ROBUST LEAST-SQUARES ADJUSTMENT

To solve the least-squares adjustment for the unknowns x, we
must factorize the normal equation matrix ATPA, with the de-
sign matrix A and the weight matrix P . As there might be thou-
sands or even tens of thousands of unknowns, the factorization of
the matrix requires special attention. We basically employ that
as detailed above in Section 6 we obtain a (symmetric positive
definite) band matrix. We then use a Cholesky factorization for
banded symmetric matrices and solve for x.

To stabilize the solution, we employ the Levenberg-Marquardt al-
gorithm. I.e., we multiply the elements on the main diagonal with
a factor ranging from 1.0001 to 1.1 and take the result with the
smallest average standard deviation σ0. The non-linear optimiza-
tion is done a couple of times until the ratio of the σ0 between
two iterations falls below 1.01.
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Figure 5: Smoothing – The (black) numbers denote the original
vertices. The (blue) primed numbers show their projection on the
plane perpendicular to the normal N through the given point 0
with height hi. hsmooth corresponds to the height of the given
vertex above or below the (weighted) average plane.

As weight matrix P we use a diagonal matrix. It is normalized
to unity before being multiplied with the design matrix or the
vector of the observations l. Initially all weights are set to one
besides a scaling factor weighing image and smoothness obser-
vations against each other as explained in Section 7.

Because there might be bad or wrong matches due to occlusions
or non-Lambertian behavior of the surface, robust estimation is
used. We particularly base robust estimation on standardized
residuals v̄i = vi/σvi involving the standard deviations σvi

of the residuals, i.e., the differences between observed and pre-
dicted values. As the computation for the individual observa-
tion is computationally costly, we substitute it by an estimate of
the average standard deviation of the gray value, particularly 3
gray values. We then do reweighting of the elements of P with
wi = 1/

√
2 + v̄i

2 (McGlone et al., 2004).

9 RESULTS

In this section we report about initial results. In all cases we com-
pare the initial triangulation on the first level consisting of the
reliable but sparse points from the orientation with the final den-
sified result to show the improvement obtained by our approach.
The output is done in VRML – virtual reality modeling language
format.

Figures 6 and 8 give results for two scenes derived from image
triplets from the web-page of Antonio Criminisi and Phil Torr
while in Figure 7 we present a 3D reconstruction for an image
triplet showing a part of the Zwinger in Dresden.

The final results in Figures 6 and 7 demonstrate that the densifi-
cation of the triangulation leads to a better reconstruction of the
details of the scene. This can be even better appreciated in Fig-
ures 8 and particularly 9, where one can see that, e.g., for the
front part of the baguette or the left rim of the red basket on the
right hand side, the densified triangulation is accompanied with
improved normals.

10 CONCLUSIONS

We have shown an extension of the classical least-squares match-
ing approaches of (Wrobel, 1987, Ebner and Heipke, 1988) which
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Figure 6: Result for triplet Trinity (from web-page Criminisi and Torr) at first level of resolution (left) and on third level after optimiza-
tion (right). Please particularly look at the drainpipe on the right facade.

Figure 7: Result for triplet Zwinger at first level of resolution (left) and on third level after optimization (right)

were confined to 2.5D surfaces to 3D by employing the normals
of a triangulation similarly as (Schlüter, 1998). Opposed to the
latter, our approach is focusing on wide-baseline settings and we
employ robust estimation to deal with occlusions.

First results show the potential but also the shortcomings of the
approach. We still need to extend it by linking the triangulation of
image triplets into triangulations for larger number of images and
many parts of the algorithm need to be refined. We also consider
to move the vertices towards edges in the image, as the latter tend
to give hints on break-lines of the surface, though we note that
this problem is mitigated as the initial points are at corners by
definition. Finally, we want to check the fit in terms of least-
squares error of each triangle before subdividing them to avoid
small triangles in homogeneous areas.

Very recently, (Pons et al., 2007) have presented an approach with
similarities to ours, though they link surface reconstruction with

scene flow estimation over time. They employ graphics hardware
to speed up processing. This idea could also help to speed up our
algorithm as the determination of the observations entails large
numbers of projections from 3D space into the images which
could very well be solved by graphics hardware.
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