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Complex Numbers 
for Block Adjustment 
The number of variables is shortened to one-half, and the size of mathematical 
expressions to one-third or one-fourth. 

IGOROUS LEAST-SQUARES solutions for the simultaneous adjustment of photo- R grammetric blocks have been discussed by various authors: (Brown, 1967). 
(Schut, 1967), (Ackermann, 1962), et. al. Within the present stage of development, 
several thousands of aerial photographs forming a block tha t  mainly extends in two 
directions, can be adjusted simultaneously even on a medium scale computer (Gyer, 
et. al., 1969). This has been made possible by the implementation of special compu- 

ABSTRACT: Contrary to other disciplines (e.g., electrical engineering, physics) 
two-dimensional problems i n  surveying, geodesy, or photogrammetry have rarely 
been tackled or solved by  means o f  consistent use of complex numbers. From the 
theoretical point of view complex numbers give a n  easier and better insight in the 
problem structure, the number o f  mathematical expressions usually being re- 
duced by  at least 50 percent. From the practical point o f  view this topic i s  worth 
considering, a s  e.g., Fortran-IV compilers can process programs written wi th  
complex variables. T h e  paper discusses the problem of horizontal block adiust- 
ment and i ts  representation in a complex plane. T h e  structure o f  the matr ix  of 
normal equations, here of Hermi t ian  type ,  i s  shown, and its solution indicated. 
A unique,  two-dimensional numbering system for block adjustments i s  intro- 
duced, that leads to a special, highly eficient el imination process. 

tational algorithms which take into consideration the regular structure formed by the 
few non-zero elements of the matrix of normal equations (e.g., Brown, 1967; Elassal, 
1969). Independent of the type of units used in photogramn~etric networks, this 
structure essentially is always the same. Whereas Brown (1967), for instance, uses 
individual photographs as  units, the United States Geological Survey (Altenhofen, 
1967) takes independent models obtained with analog plotters. Other units are 
triplets, suitably selected sub-blocks or strips. A profound insight into matrix struc- 
tures in block adjustments is given by Ackermann (1962). 

The  fact that  in spatial or three-dimensional block triangulation, the degrees of 
freedom for each photograph (6) or model (7) are quite numerous, and represent 
arguments of non-linear functions, gave rise to  a separation of the vertical coordinate 
from the planimetric coordinates. This has been particularly useful in densely popu- 
lated European countries, where planimetric block adjustment has a broad applica- 
tion to  large scale cadastral mapping. A special Anblock-method has been developed 
a t  the I T C  in Delft (Van den Hout, 1966). I t  is assumed that  the independent models 
from which planimetric (or horizontal) coordinates are derived are close enough to  
level to  make negligible horizontal errors due to  tilt and relief. Moreover, i t  is possible 

* Presented a t  the ASP 1970 Symposium on Computational Photogrammetry, Alexandria, Virginia, 
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1 to approximate successively a rigorous 
spatial block adjustment by iteratively 
alternating horizontal and vertical trans- Y 

formations (e.g., Schut, 1967). Treating 
only planimetric coordinates yields the 
advantage of directly using linear math- i Y 

ematical expressions. Moreover, as rota- 
tions within a plane easily can be de- 
scribed by complex algebra, the formula- 

1 tions become even s i m ~ l e r  
1 T h a t  the use of complex arithmetic in 

computer programs can economize stor- 
age and computer time, was mentioned 

1 by Schut (1964), (1967), who has been i =fi 
using complex numbers for planimetric 
block adjustment continuously since 
1963. Krijger (1967) has given thought to - i y  

using complex numbers in the adjustment 

Imaginary 
 axis 

of survey networks, but,  for reasons of I 

the ALGOL-compiler available to  him, FIG. 1 .  The complex plane. 
could not give any  practical results. T o  
the knowledge of the author only Krakiwsky (1967) made practical use of complex 
algebra in surveying computer programs. As modern problem oriented computer 
languages, such a s  Fortran-IV or PL/1, contain the basic rules of complex algebra, 
i t  seems worthwhile to pursue the idea of consequently and rigorously applying com- 
plex numbers in horizontal block adjustments. 

Any coordinate plane (x,y) can be considered as  a complex plane (Figure 1). 
Complex numbers then are represented geometrically as points in this plane: the real 
part  extends in x-direction, the imaginary part in y-direction. The  basic rules of com- 
plex algebra are equivalent to  those of real algebra. Addition and subtraction of 
complex numbers is equivalent to  adding and subtracting the real parts and the 
imaginary parts. This is in accordance with the parallelogram law between forces. 

Multiplication is defined a s  

Geometrically, this means a counter clockwise rotation of the vector OP1 =zl$about 
the origin 0 by the argument angle 62, and a multiplication of the absolute value rl 
by r2. I t  is equivalent to  saying the point zl has been subject t o  a similarity transfor- 
mation zz. This statement proves to  be fundamental for the use of complex numbers in 
block adjustments. 

Division is defined as the inverse operation of multiplication: 

Geometrically, this is a clock-wise rotation of the vector OP1 =zl about the origin by 
the angle 82, and a division of the absolute value rl by r2. Of great importance is the 
definition of a conjugate complex number 3 = x -iy of z = x+iy. (Figure 1). 

A complex matrix is a matrix consisting of complex elements. I t  can be divided 
into a real part matrix and an imaginary part  matrix. As has been shown by Grijbner 
(1966), least-squares adjustments can be expanded to  complex quantities. The  result- 
ing matrix of the normal equations turns out to  be of Hermitian type, i.e., original 
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matrix and its conjugate transposed are equal. This implies that  the real part is 
symmetric, the imaginary part  is skew-symmetric. 

If a set of points z' in a certain x1,y'-coordinate system is supposed to  be trans- 
formed such tha t  its geometric form remains the same, then only two translations 
along the coordinate axes, one rotation and one scale change may be accomplished. 
Assuming the z' as model points, and the z as corresponding ground points, the trans- 
formation formula may be written in the for111 

Here, r is a complex shift or translation, c is the operator for a similarity transforma- 
tion. In  components, Equation 1 yields the well-known form ( r  =p+iq,  c=a+ib)  : 

x = ax' - by' + p 
y = bx' + ay' + q.  

The following simple example illustrates the usefulness of complex numbers for a 
least-squares adjustment of several model points zit, i =  1 ,  2 ,  . . . n 2 2 ,  to the same 
number of ground control points zi. Each point gives rise to one Equation 1. Addition- 
ally, a complex residual w =u+iv must be considered yielding 

as the coordinates are subject to errors. The  least-squares condition for complex 
numbers is 

n 

zBiw, = Min. 
i= 1 

This leads to a Hermitian form, 

and to the conditions 

i.e., to  the normal equations: 

( 2 ,=I i:Z:) c + ( 2 2.') r = 2 i t f z ,  
~ = l  2- 1 

n + 12r = Z,.  
2=1 

As the product'of a complex number with its conjugate is a real number, the 
coefficient associated with c is real. If the model coordinates were related t o  their 
point of gravity as origin, the off-diagonal terms vanish, and 



FIG. 2. (a)  External numbering system (left). (6 )  Internal numbering system. 

Complex numbers obviously need less writing, the formulas therefore are more 
compact and more readable. 

HORIZONTAL STRIP ADJUSTMENT 

A strip is the natural expansion from one model to a linear sequence of models. 
Two types of points have to be distinguished: control points and tie points. They 
may be separated from each other by using different symbols: 
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ncsI  

ground coordinates of control points zc = xc+iyc 
model coordinates of control points zc' = xc'+iyct 
model coordinates of tie points zt =x'+iyf 
ground coordinates of tie points z=x+iy.  
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ncs5 

- + - 

" " - + 
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The efficiency of a numerical treatment of strip or block adjustments depends 
very much on the ordering or numbering system of the points in use (see e.g., Brown, 
1967; Ackermann, 1962). 

Whereas control points need to  be numbered from an external point of view 
only, tie points must be numbered both in an  external and (model-)-internal system 
(see Figure 2a, 2b). Denoting with nti the number of tie points in model i, with 
nci the number of control points in model i, and with ncsi the number of control 
points in all models between the first and the i-th model, then for any model i the 
following two types of observation equations exist. For control points, 

4 

" - 

For tie points, 

"CS2+ 1 

. . . .  

ncs3 

ncs + l 

.... 

ncs2 

z,klci + ~i - ZA,+,: = wik k = I ,  2, . . . , %ti (7 )  

The tie point numbering is consistent if for any model are ordered, firstly, the tie 
points common with the preceding model, and secondly, tie points common with the 
following model. The  control point numbering is consistent if, where the same control 
point in two adjacent models, the ground coordinates appear twice and in the correct 
order. Two kinds of unknown parameters occur: model parameters ci, ri, and tie point 
parameters zi. Not  discussing different weights assigned to  the observations, the 
least-squares condition is given by 
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Models Tie points 

ENT 89 

Original system 

FIG. 3. Block-tridiagonal matrix. 

If  the model parameters are combined in one (complex) vector 

Reduced system 

the resulting system of normal equations can be subdivided into a model part, and a 
tie point part  (Figure 3). The model sub-matrix H is a block-diagonal Hermitian 
matrix, each block representing one model, and consisting of 2 X 2 components. The  
tie point sub-matrix D = 2 1  is a real scalar matrix. The  rectangular matrix R which 
correlates models and tie points is also of a block-diagonal form. The matrix normal 
equations are: 

I ts  components are given by the following expressiolls 

nt i  

nci nt* 

hr;-l,zi = C Z~ik' + C %ikl 

all other components being identically zero. Also, 

Z 1 i , ~ - ~ i y  X i  < 1 < X i  + nli 
Yei~-l,l = 

0,  else 

C 1, X i  < 1 5 X i  + nti 

r2i,l  = 0, else 



where 

2, k = l  
d k l  = 

0, else. 

Furthermore, the absolute right-hand terms are: 

and 

= C i ,  t 2 i  = Y i .  

If a computer program uses these subscripted variables as shown above, a tre- 
mendous amount of storage locations would be required, because of the dimensions of 
the arrays h, r, d. In  order to  take advantage of the sparsely filled sub-matrices, 
ar-rays with three subscripts have turned out to  be of great help and convenience. 
The  first subscript indicates the model to which the variable refers, the second and 
third indicate the location within the proper sub-matrix. Equations 11 to  14 then 
read 

n r i  
2-3 

gi,l = x ~dik'~cncs;-nc,+k 

and 

The  original Equation 10 can be further reduced to a more compact form. From 
the second matrix of Equation 10, expression of z in terms of t is easy as  D =  21. 
Substitution of 

into the first of Equation 10 leads to the so-called reduced system of normal equations 
(Figure 3). 

This is a block-tridiagonal Hermitian matrix, consisting of 2 x 2  sub-matrices. 
Denoting the Hermitian sub-matrices along the main diagonal by Hi, and the sub- 
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1 FIG. 4. Block-tridiagonal matrix. 

matrices along the upper adjacent diagonal by Fi,  the reduced system (Figure 4) 
reads 

I 

In component form: 

nci 1 7 ~ 1 7  

I ? i , l , l  = x Z L ' ~ ~ ' Z C ~ ~ '  + , o ~ ~ ' z ~ ~ '  

nr:; 1 nl; 

h i , l , ?  = x Z C i k f  + T C ~ i k '  

Also, if i<m : 

1 " t t "  

f i . a , l  = - Sri+l,k 
2 k=1 

1 
f i , 2 , 2  = - ntti, 

2 

where ntti is equal to the number of tie points common to  the two adjacent models i 
and i+l. 

An interesting feature of the individual H-matrices is that  the off-diagonal 
elements hi,l,z and are identical to  a weighted sum of all pass point coordinates 



FIG. 5 .  Block-triangular matrix. 

in the particular model: control points weight 1, tie points weight 1/2. For one par- 
ticular model coordinate system, the origin of which coincides with the corre- 
spondingly weighted point of gravity of all pass points in this model, and hi,z.l 
would be equal to  zero, i.e., all sub-matrices H i  would degenerate to  real diagonal 
matrices. Though attractive, this property does not bear any computational ad- 
vantage, as i t  will be lost again during the subsequent matrix partitioning. 

Similar to a method named of recurrent partitioning (Brown, 1968), the block- 
tridiagonal matrix of the reduced normal equations can be reduced further. This re- 
duction consists of successively eliminating the unknown model parameter vectors, 
beginning with the first model. In  matrix notation, this means expressing tl  in the 
first model in terms of t z  from the first of Equation 21 : 

and substituting i t  in the second of Equation 21, yielding 

H2(')tz - F2t3 = g2(l)  

where 
- 

Hz(1)  = Hz - FITHI-'Fl, gz(l) = gz + ?jlTHl-lgl. 

The process has to  be continued until a last equation 

is obtained, from which t, can easily be determined. Thus, System 21  has been changed 
into a block-triangular matrix with two block-diagonals (Figure 5). 

where 

H.(i-1) = H .  = ~ i - 1 T [ ~ i - l ( i - 9 ) ] - 1 ~ i - l ,  

g i ( e l )  = gi + Fi-lT - [ .  ~ ~ _ l ( ~ - ~ ) ] - ~ ~ ~ - ~  (i = 1, 2, . . . , m). (28) 

By a procedure analog to  ordinary back-substitution, all model parameters may 
be determined : 
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The model parameters are by far the most important ones, as now any point in 
any model can be transformed to  the ground system by using Equation 1. Although 
the adjusted ground coordinates of the tie points can be determined from the matrix 
Equation 19, a closer inspection of the resulting relations shows tha t  the same 
answer is obtained if Equation 1 is used. As with Equation 1, tie points are computed 
twice, their arithmetic mean is identical to  the value obtained from Equation 19. 

The  previous section showed the usefulness of complex numbers and of an intelli- 
gent numbering system for single strip adjustments. I t  can be expected that,  as  any 
block may be considered consisting of various strips, for a simultaneous adjustment of 
total blocks, even more attention has to  be paid to  the numbering. I t  has been shown 
(e.g., Brown, 1967) tha t  the structure of the matrix of normal equations depends on 
the numbering of models and tie points. Main emphasis has been put  on rearranging 
the adjustment parameters such as  to  obtain a matrix whose elements are concen- 

trated around the main diagonal with as  
I o Hodel Hodel II Hodel 6 small a band width as possible. The  num- 

bering and ordering so far seems to  bear a 
great deal of subjectivity, although 
efforts have been made for optimization. 
A natural order scheme is given by group- 
ing the model tie points along rows (or 
strips) or alongcolumns. I t  still, however, 
bears some arbitrariness particularly in 
cases of irregular tie point numbers. 
Within this context an attempt is made 
to develop the most natural numbering 
system realizing the two-dimensional 
extension of the block. This has been 
made possible by introducing tie zones 
rather than individual tie points. Models 
as  well as  tie zones are numbered with 
double subscripts, the first subscript indi- 
cating the strip, the second indicating the 

FIG. 6. Unbiased numbering system column. Figure 6 represents a block of 
for models and tie zones. three strips each consisting of 6 models. 

The  models are numbered from (1,l) 
through (1,6), (2,1), . , (2,6), and (3,l) to (3,6). Tie zones together with the 
remaining model zones are numbered according to  the same principle. These num- 
bers provide an instant indication of the type of zone: if both subscripts are even, 
four models are overlapping; if one is even and the other odd, only two models over- 
lap. If both subscripts are odd numbers, the zone belongs just to one model and may 
be called control zone, because all ground control can be considered lying within it. 
Connection between model and tie zone numbers is given by the fact tha t  a model 
j,k corresponds to the zone Zj - 1,  Zk - 1. 

Besides this external numbering system, tie zones surrounding a model advanta- 
geously are numbered internally by double subscripts r,s = 1,2,3 (see Figure 7). Similar 
t o  Equation 6 and 7, each control point or tie point measured in model k of strip j, 
and situated within the (internal) zone r,s gives rise to  one observation equation 
( j=1,2, .  . . q ;  k=l ,Z ,  . . . m): 



Original system 

Reduced system 

2 j - 2 ,  
2k 

1 ,3  

2 j - I ,  
2k  

2 . 3  

2 j ,  2k  

3 , 3  

2 j - 2 ,  
2k-2 

1 ,  I  

2 j - I .  
2k-2 

2 , I  

2 j , 2 k - 2  

3 , 1  

FIG. 7. Relations around Model j, k. External and FIG. 8. I-Iorizontal block of three strips with four 
internal tie-zone numbering. models each. Ordered row-wise. 

2 j - 2 ,  2k-1 

1 ,Z 

Model 

i ,k 

2 j - I ,  2k- I  

7 . 1  

2 j ,  2 k - I  

3 , 2  

This equation comprises of both control and tie points;" but note that  control 
points can be located in the control zone r = s = Z  only. Because of the fact that  four 
dimensional arrays are used, a simple graphical representation of the distribution of 
all non-zero elements in the design matrix is impossible on a two-dimensional sheet 
of paper. I t  is this difficulty tha t  makes i t  necessary to  arrange the models and tie 
zones in a certain (however consistent) sequence in order to  obtain a two-dimensional 
matrix display. Such a sequence may be done according to  strips or according to 
columns. The  normal equations in matrix form are equivalent to  the System 10, 
except that  the connecting matrix R consists of several diagonal strips (Figure 8). 

Denoting the (2 X2) submatrices of H by Hjk, the elements on the main diagonal 
in D by dir, and the collapsed sub-matrices in R by Rjkrs, the normal equations can be 
written as 

where 

* Zones rather than points; but this does not affect the principles of the method. For simplicity one 
may think of each zone consisting of one point only. 

t The connected two sigma symbols 202 have the meaning that the sum must be taken exclusively 
around (circular sum) the central zone r = s  =2.  
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The  components are 

" . 1 1  ' I ,  

j 2 ,  if (i + 1) is odd 

di i  = \I, if i and i are even 

By eliminating the tie points zil in the original System 31 of normal equations, 
reduced normal equations are obtained. As indicated in Figure 8, the matrix of the 
reduced system consists of several block-tri-diagonal sub-matrices which themselves 
as units are arranged in block-tridiagonal form. The  structure therefore is very simple: 
If the ordering takes place according to strips, the total matrix H of the reduced sys- 
tem is a block-tridiagonal Hermitian matrix. The  size of the sub-matrices is given by 
the number of strips. The  sub-matrices are also of block-tridiagonal form. The  
number of (2 X2) sub-sub-matrices is given by the number of models per strip which 
is equivalent to  the number of columns. 

From the second of Equation 31, zit can be expressed in terms of t,, and substi- 
tuted into the first equation. The  most general form of the system of reduced normal 
equations therefore reads as 

For a model completely surrounded by adjacent models, i.e., for any non-marginal 
model, r and s take the values 1,2,3,u takes the values j -1,  j+l and v the values 
k-1, k, k+1, which ensues from Equations 32 and 33. Extracting from the second 
compound term on the left-hand side of Equation 34 the term for which u = j, v = k, 
and combining i t  with the first term Hjetjk,  yields the reduced matrices of all block- 
diagonal Hermitian matrices Hjk.  As any non-marginal model j ,k is surrounded by 
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FIG. 9. Arrangement and numbering of sub-matrices for the reduced system of normal 
equations of a block consisting of three rows and four columns. 

eight adjacent models, eight off-block-diagonal matrices which indicate the correla- 
tion between neighboring models can be set up. As they essentially have the same 
structure, all (2x2) submatrices are distinguishable by introducing two more 
subscripts u,v which can take the values 1,2,3. Figure 9 shows the entire matrix of 
the reduced system for a block of three strips and four columns ordered according 
to  strips. Only the sub-matrices on and above the main block-diagonal are linearly 
independent, the reason being the Hermitian type of the matrix. The  most general 
form expressing the throughout block-tridiagonality of the matrix of reduced normal 
equations then can be written as  

(u and v are not equal to  2 simultaneously). 
I t  is obvious tha t  one of the most important features of the above representation 

is the large amount of algebraic manipulations occurring amongst the subscripts. 
This is the reason for the compactness of all equations and expressions. By a process 
of recurrent partitioning analogous to  that  one described in strip adjustment, the 
entire matrix can be altered to  a block-triangular matrix. Except for the very first 
sub-matrix on the main block-diagonal, all other Hermitian sub-matrices (i.e., those 
situated on the main block-diagonal) lose their block-tridiagonal character. During 
the sequential reduction procedure, they turn out to be general Hermitian matrices 
with all elements filled. From the numerical point of view, as  they have to  be inverted, 
i t  is therefore desirable to obtain such sub-matrices as small as possible. This means 
tha t  the models and tie zones preferably are ordered accoiding to  the larger number 
of either strips (rows) or columns. For a block of three strips and four columns, 
Figures 8 and 10 show the difference. Ordering according to  columns here results in 
smaller Hermitian matrices (Figures l l a ,  l l b )  along the main block-diagonal, hence 
is preferable. Independent of that,  however, is the fact tha t  during recurrent par- 
titioning and during back-substitution, general Hermitian matrices are to be inverted. 
Because of a close relationship between Hermitian and real symmetric matrices, the 
algorithm is quite similar to  the standard Gaussian algorithm. The  principal charac- 
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RESUMEN 
RESUMEN DE LOS ARTiCULOS TECNICOS PUBLICADOS 

EN EL MES PREVIO* 

Vol. XXXVl No. 12 Diciembre 1970 

DISPERSI~N DE LOS DESPERDICIOS EN EL MAR 
Por Wesley James y Fred J. Buvgess 

La fotografia ae'rea puede ser un me'todo para 
analizar la dispersi6n de los desperdicios que se 
arrojan al mar. Se describe uno de 10s procedi- 
mientos usados para determinar las concentra- 
ciones de desperdicios por medio de la aerofoto- 
graf ia. 

Es posible que esta tdcnica rinda mejores 
resultados que 10s mdtodos convencionales de 
estudio por medio de barcos. Las discrepancias 

entre las concentraciones por barco y las foto- 
grBficas, se deben principalmente al cambio y 
variaci6n de 10s desperdicios en este ambiente 
dindmico. La te'cnica fotogrhfica es un me'todo de 
estudio que permitiri conocer el problema de la 
dispersi6n, lo que ha sido imposible de efectuar 
con me'todos convencionales de pruebas. 
PHOTO. ENGR., DICIEMBRE 1970, PAGINA 1241 

PSEUDORADAR: FOTOGRAF~A A ~ R E A  DE ALTO CONTRASTE POR ANGULOS SOLARES BAJOS 
Por R. J. P. Lyon, JOSE Mercado y Robert Campbell, Jr. 

El analisis de imBgenes de radar de toma 
lateral, banda K, indic6 que la mayor parte de 
su utilidad geol6gica proviene de: a) su presen- 
tacidn a escala pequefia (cerca de 1 : 100,000) y 
b) sus sombras fuertes, negras como el azabache, 
que recalcaron enormemente el relieve topo- 
grBfico. Varios ensayos publicados subrayaron 
el efecto de 10s Bngulos solares bajos en la foto- 

grafia a6rea vertical, y por eso ideamos esta 
te'cnica para simular el radar de toma lateral 
(SLAR) por medio de la fotografia ae'rea con- 
vencional, pero con el sol a unos 20-30' sobre 
el horizonte. Se propone que este tipo de aero- 
fotografia poco conventional se denomine foto- 
grafia por Bngulos solares bajos (LSAP). 
PHOTO. ENGR., DICIEMBRE 1970, PAGINA 1257 

* Nota: Traducido por la Secci6n de Traducciones de la Escuela Cartogrkfica del Servicio Geode'sico 
I nteramericano (IAGS). 


