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ABSTRACT:

We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML
standard (Groger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps
using semi-global matching (SGM) (Hirschmiiller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al.,
2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof model selection (Nguatem
et al., 2013) and window model selection (Nguatem et al., 2014). We demonstrate our workflow up to the export into CityGML.

1. INTRODUCTION

The automatic derivation of 3D-models of individual buildings
is essential for the generation of landscape and city models of
larger areas, especially if the data is used for further analysis or if
it is presented in simulation environments. Also, the data of large
3D surface meshes needs to be reduced, e.g., by replacing mesh
parts by geometric primitives (Schnabel et al., 2007, Lafarge and
Mallet, 2012), or by deriving building models on various levels
of detail (Becker and Haala, 2008, Verdie et al., 2015).

In recent years, we proposed three methods for the automatic gen-
eration of building models with different levels of detail (LOD)
following the LOD definitions of CityGML 2.0 (Groger et al.,
2012). First, we demonstrated our ability to detect cuboid based
buildings and their major walls, i.e., LOD 1 (Nguatem et al.,
2012). Second, we presented a method for determining roof mod-
els to obtain building models with LOD 2 (Nguatem et al., 2013).
And finally, we proposed a reliable window and door extraction
method for modelling building facades with LOD 3 (Nguatem et
al., 2014). All methods rely on statistical evaluation of the 3D
points. They perform well even if the reconstructed point cloud
is noisy or if it contains many holes due to, e.g., bright or texture-
less object surfaces. I.e., our approach is robust for different kinds
of data.

In this paper, we present a combination of our previously pub-
lished methods and the workflow for automatic data analysis con-
sisting of the orientation of images, the computation of depth
maps, the generation of highly detailed 3D-point clouds, and fi-
nally the interpretation of the data and the construction of build-
ing models. Our workflow is almost fully automatic, only very
little manual interaction is needed for inspecting the intermedi-
ate results, for scaling the dense point cloud, and for rotating the
scene into a selected coordinate system. The last two interac-
tions could be skipped if the GPS-information of the acquired im-
ages is used. Our software returns the recognized building parts,
i.e., walls, roof planes, and windows, and we export the model in
CityGML 2.0 format (Groger et al., 2012).

The paper is structured as follows: In the next section, we de-
scribe our methodology. Section 3 presents and discusses our
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experiments. Finally, we summarize the current state of our work
and propose next steps for our work.

2. METHODOLOGY

In this section, we first present and discuss our workflow starting
with image orientation and ending with the reconstruction of a
dense 3D-point cloud. Second, we describe our semantic analysis
for building modelling.

2.1 3D-Point Cloud Generation

As first step, we estimate image orientations with (Mayer et al.,
2012) including the recent improvements (Mayer, 2014, Miche-
lini and Mayer, 2014, Michelini and Mayer, 2016). The orienta-
tion procedure efficiently estimates camera poses also for large,
unsorted image sets. To this end, the images are first sorted ac-
cording to the number of matched SIFT points (Lowe, 2004), to
obtain overlap information between the images. Then, a triplet
graph is constructed (Michelini and Mayer, 2016) and highly pre-
cise poses are estimated for the triplets. Finally, the poses of im-
age triplets are hierarchically merged including the detection of
critical camera configurations (Michelini and Mayer, 2014) and a
bundle adjustment on every level (Mayer, 2014).

The obtained orientation is highly precise and very robust also for
arbitrary image configurations. The approach does not need addi-
tional information on position, e.g., by GPS, or viewing direction,
e.g., by INS. Furthermore, no calibrated cameras are needed, so
that almost any photogrammetric but also consumer camera can
be used for image acquisition. The orientation is initialized with
a mapping between the images and an approximate calibration
matrix for each camera, which is given by

fx S Ip
Kinit = ( 0 fy, wyp ) (D
0 0 1

with shear s = 0 and the normalized coordinates of the principal
point (zp,yp) = (0,0). The focal lengths are set as
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with f being the focal length [mm] and / and w the sensor height
and width [mm]. Thus, f; and f, are the focal lengths with a
normalized scale. The orientation returns a relative 3D-model of
the scene containing the estimated poses of all cameras and the
3D-positions of the matched image points. This point cloud is
relatively sparse, but dominant objects, such as buildings, trees
or the ground, can readily be seen by manual inspection.

A dense 3D-point cloud is obtained after computing depth maps
using semi-global matching (SGM) by (Hirschmiiller, 2008) with
census as matching cost (Hirschmiiller and Scharstein, 2009).
The dense 3D-point cloud is computed by fusing the depth maps
and analysing the resulting 3D-points considering additional geo-
metric constraints. The employed approach is scalable from small
building scenes to large scenes of villages and cities (Kuhn et al.,
2014, Kuhn and Mayer, 2015).

The 3D point cloud generation works fully automatically and we
obtain point clouds with millions or even billions of 3D points,
which can have a point spacing of less than 1 mm, if the cam-
eras have a sufficient resolution. The dense point cloud still de-
scribes a relative model without a meaningful scale, and the pose
of the coordinate system is defined by the first camera analysed.
A further normalization for the dense point cloud is performed
manually at the moment.

2.2 Building Modelling

Our building modelling uses a coarse-to-fine approach, i.e., we
first detect large building structures, such as major walls and roof
surfaces, and only then we search for smaller building parts such
as windows. Le., we first derive building models with level of
detail (LOD) 1 and 2, and then we refine these models afterwards
by further analysis of each wall.

We start with segmenting the 3D point cloud into small disjunct
planar surfaces, then we analyse the topologically adjacent sur-
faces, if they fit to a predefined roof model. Previously, our scene
segmentation was limited to cuboid buildings (Nguatem et al.,
2012), but we have extended our approach significantly.

Similar to other methods, where larger scenes with several build-
ings can be modelled, e.g., (Schnabel et al., 2007) or (Monszpart
etal., 2015), we detect arbitrary planes in the entire reconstructed
scene. To this end, we employ a divide-and-conquer approach,
where we divide the scene into small disjunct patches. In each of
these local neighbourhoods, we estimate the most dominant plane
using RANSAC (Fischler and Bolles, 1981). Planes with similar
normal vectors in adjacent neighbourhoods are merged to obtain
reliable candidates for walls, roof planes and the ground surface.

In planar landscapes, the ground surface can easily be determined
by selecting the largest plane perpendicular to the vertical direc-
tion. When the ground plane is removed, the major building
planes characterize the scene. We cluster these planes and fit a
roof model for each cluster employing (Nguatem et al., 2013).
We employ the GRIC-approach (Torr and Davidson, 2003) for
our stochastic sampling to limit the influence of outliers. We
make use of predefined roof shapes and we selected several typ-
ical roof models of German buildings, e.g., pyramid roof, gable
roof, or mansard roof. Since all these roof types have a small
number of surfaces, we do not consider a punitive term for model
complexity in our evaluation scheme, e.g., by considering mini-
mum description length (Rissanen, 1978).

The vertical walls below the recognized roof model are combined
to obtain a waterproof LOD 2 building model. Removing the roof
structure, we can downgrade the building model to LOD 1. With
respect to gable and half-hipped roofs, where the facades have
different heights, we harmonize them by cropping the building
model at the height of the lowest eaves.

For LOD 3 building models, we focus on openings in the walls
such as windows and doors. So far, we have not finished the
recognition and modelling of roof superstructures, such as dorm-
ers and chimneys and other buildings parts like balconies, oriels
and stairs. Again, the localization of windows is performed by
stochastic evaluation (Nguatem et al., 2014) and we are able to fit
the most common window styles in Germany: rectangular, arch-
shaped and pointed arch-shaped windows.

3. EXPERIMENTS

In this section, we present the results of our tool chain. We start
with describing the results of orienting 208 images acquired by
two cameras. Then we show and discuss the results for our dense
point cloud. Finally, we present the results of the functional mod-
elling, i.e., the surface plane estimation and the window extrac-
tion.

3.1 Image Orientation

We acquired 208 images of a single building by two cameras:
70 images were taken manually with a Nikon D800 with a fo-
cal length of 24 mm, the other 138 images were acquired with a
Sony ILCE «7R with a focal length of 35 mm mounted on a re-
motely piloted Falcon 8 UAV. Both cameras capture images with
7360 x 4912 pixels, i.e., each image contains more than 36 mil-
lion pixels (RGB).

Figure 1. Orientation result of 208 images (presented as pyra-
mids) showing a single building.

We employ the orientation approach described in Section 1. We
initialized the orientation with f; = f, = 0.8 for the Nikon
camera and with f, = f, = 1.169 for the Sony camera. The ori-
entation including the construction of a graph of matchable image
triplets and the hierarchical bundle adjustment was performed in
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Figure 2. Six views on a building corner and the corresponding SGM outputs (depth maps). There are almost no commonly matched
points between the third and the fourth image. But due to sufficiently many corresponding points between images 1 to 3, and 4 to 6,

respectively, we are able to reconstruct dense building surfaces.

21 minutes on a standard computer with 16 cores returning the
estimations of 43321 3D points and the orientation of all 208
images, cf. Fig. 1. The result has an average re-projection error
of 0.45 pixels. The returned calibration matrices are
0.82249 0.00028 0.00080
Knikon = ( 0 0.82328 0.00032 ) 3)
0 0 1

and

1.20557 —0.0003  0.00092
Ksony = 0 1.20560 —0.0069 4)
0 0 1

for the Nikon and the Sony camera, respectively, i.e., our ini-
tialization is a reasonable approximation. Recent experiments
and a comparison with another VisualSFM approach (Wu, 2011,
Wu, 2013) are presented in (Mayer, 2015, Michelini and Mayer,
2016).

3.2 SGM and Reconstruction of Dense 3D Point Clouds

SGM took 1357 minutes, i.e., almost 23 hours. The large com-
putation time arises, because we derive one depth map for each
image, containing the fused depth information of all pairwise im-
age matches with SGM. The pairwise SGM was calculated on a
field programmable gate array (FPGA) Virtex-6 board, the fusion
to one depth map was calculated on the CPU. We also down-
scaled the images by a factor of 2, so that all depth maps have a
resolution of 3 680 x 2456 pixels.

In our experiments, we used the original implementation of SGM
by (Hirschmiiller, 2008) with census matching cost (Hirschmiiller
and Scharstein, 2009). Although this implementation belongs to
the best SGM implementations (high ratio between correctness
and performance), we have difficulties in finding the correct cor-
respondences on large weakly textured surfaces, in very bright or
dark areas, and when looking on the surface at an angle to the
normal vector of more than 45 degrees, cf. Fig. 2. We could not
estimate any depth information for all white pixels in the SGM
output images.

In the next step, the depth maps for the individual images are
fused to obtain a 3D point cloud. The fusion process analyses
the data concerning geometric plausibility, so we obtain a point
cloud with almost no outliers. Since the approach of (Kuhn et
al., 2013) and (Kuhn et al., 2014) divides the scene into smaller
parts using an octree, its depth is correlated with the size of the
model and the positional accuracy of the individual 3D points.

Due to the large number of pixels, we would obtain extremely
many 3D points, if we would reconstruct the scene with the high-
est available resolution. In consequence, the 3D models would
consist of billions of triangles, and we are not able to visualize it
on standard computers.

The 3D model shown in Fig. 3 consists of 25 687 052 3D points
and 50 686 350 triangles for the entire scene of the building and
its surrounding. The reconstruction was computed in approxi-
mately 14 hours, again on the standard PC with 16 cores. The
density of the 3D model is higher than one point per cm®. E.g.,
the handrail of the stairs is clearly visible. The texture of the mesh
could be improved, since the sign left of the door is not readable
in the model.

Further results for SGM and the fusion of depth maps into dense
3D point clouds can be found in recently published papers, e.g.,
(Kuhn et al., 2014) and (Mayer, 2015).

3.3 Functional Modelling

So far, we only presented results of our workflow to demonstrate
the generation of our input data, when we derive 3D models from
imagery. Nevertheless, our approach for functional modelling is
also suitable for LiDAR point clouds which usually have less
noise, less outliers and coplanar LiDAR-points appear in a reg-
ular grid. Furthermore, the 3D models derived from imagery are
relative models, i.e., the point cloud does not have a normalized
scale, and we do not know the vertical direction of the scene.
Consequently, we manually normalize each 3D model.

In the first step of functional modelling, we detect all major pla-
nar surfaces of the scene, cf. Fig. 4. The largest plane, which
is nearly perpendicular to the vertical direction in non-mountain
areas, is usually the ground surface of the scene. The rest of
the planes is clustered to obtain candidates for building parts and
other objects. With these planes, secondly, we can derive building
models following (Nguatem et al., 2013). Our output shows all
major walls and the half-hipped roof planes, cf. Fig. 5. Cutting
off the surfaces on the roof, we also can derive the corresponding
LOD 1 from the LOD 2 model. The LOD 2 model was derived
in less than two minutes.

In the third step, we look for holes in all vertical walls. Thus,
we are only able to detect open windows or windows which lie
behind the building’s wall. Windows with a closed shutter cannot
be detected if the reconstructed 3D points of the shutter lie (al-
most) within the plane of the wall. Furthermore, we are able to
localise windows of a previously defined size: We designed our
window model with common width and height parameters. Due
to performance issues, we have rejected small window sizes, i.e.,
we are unable to extract smaller windows which can usually be
found in the cellar.
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Figure 3. Reconstructed dense point cloud with surface mesh
containing more than 25 million 3D points and more than 50 mil-
lion triangles. This result is not the highest resolution we can
obtain, but we are still able to visualise this model. The lower
part shows a close view, where details as the sign left of the door
or the handrails of the stairs can be recognized.

Regarding our test example, we could localize all typical 40 win-
dows, cf. Fig. 6. The small windows in the cellar, the closed
windows and the windows within the dormers are missing. The
derivation of the LOD 3 model with windows was done within
one minute.

Further results of the derivation of building models with LOD 1,
2 and 3 can be found in the previous publications (Nguatem et al.,
2012), (Nguatem et al., 2013) and (Nguatem et al., 2014). There
we also show results of various roof types and window styles
which are common for buildings in Germany, e.g., pyramid roof,
gable roof and mansard roof, or round arch-shaped and pointed
arch-shaped windows.

In this paper, we restrict to only one example with a half-hipped
roof and with normal-sized windows, because we want to present
our workflow with as many details as possible. Currently, we also
test our workflow on publicly available data sets, e.g., the ISPRS
benchmark for dense image matching (Nex et al., 2015). Yet, as
the roof structures of the buildings of this data set are complex,
we see a need for extending our roof modelling towards arbitrary
roof structures, cf., e.g., (Xiong et al., 2014).

3.4 Export to CityGML
In the last step of our workflow, we export the derived building

model to CityGML. We are able import our output in the free
CityGML viewer by the Institute of Applied Computer Science

Figure 4. Segmented planes of the test scene with a building with
its surrounding.

of Karlsruhe Institute of Technology, the FZKViewer. So far, we
have only finished the export of LOD 2 models, cf. Fig. 7.

The export is also done within a few seconds, so the total time
consumed for automatic derivation of the building model from
208 images is 37.5 hours, but most of the time has been used for
SGM and 3D reconstruction.

4. CONCLUSION AND OUTLOOK

In this paper, we have described an approach for automatic gen-
eration of dense 3D point clouds from unsorted image sets and
the automatic derivation of building models with levels of detail
(LOD) 1 to 3. The modelling of buildings is based on segmenting
the 3D point cloud into planes. Then we fit roof models and win-
dow models into the data employing the stochastic approaches
(Nguatem et al., 2013, Nguatem et al., 2014).

Our approach can easily be extended to other appearances of
building parts, e.g., half-spherical and cone-shaped roofs or cir-
cular windows. To this end, we have to update the data base for
defined roof or window models.

Furthermore, we plan to integrate a scene interpretation module
into our workflow. E.g., the method of (Huang and Mayer, 2015,
Kuhn et al., 2016) or (Kluckner and Bischof, 2010) can be used
to classify 3D point clouds of landscapes to detect buildings in
villages and cities. We also have to solve the problem of finding
closed windows, i.e., windows or their shutters lie in the same
plane as the surrounding wall. We are not able to detect such
windows based on relative depth information, so we need a fur-
ther analysis, e.g., of the rectified facade image. This can be done
by employing the grammar based approaches (Teboul et al., 2013,
Martinovic and Van Gool, 2014) or by facade image interpreta-
tion, e.g., by convolutional networks (Schmitz and Mayer, 2016)
or by a marked point process (Wenzel and Forstner, 2016).
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Figure 5. LOD 2 building model. Surfaces of roof model and
3D points in the same view with the model supporting points in
yellow and others in green (top), and wireframe model of the
same building (below).
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