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the regulatory network is given in terms of a fuzzy model. The vagueness of the
regulatory system results from the (unknown) fuzzy coefficients. For an identi-
fication of the shape of the fuzzy coefficients methods from fuzzy regression are
adapted and made applicable to the bi-level situation of target-environment net-
works and uncertain data. Various shapes of fuzzy coefficients are considered and
the control of outliers is discussed. The paper ends with a conclusion and an out-
look to future studies.
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1 Introduction

In our hyper-connected world, interdependent networks are of significant impor-
tance in the modelling and prediction of regulatory systems. Interconnected net-
works with multiple connected groups of entities arise in many applications rang-
ing from the prediction of genetic regulatory patterns in computational biology
and the modelling and simulation of eco-finance networks to the formation of
multisensor-multitarget networks in NBC-tracking scenarios. In this paper, we are
focussing on the important group of so-called target-environment networks under
uncertainty [15]. These two-modal regulatory systems are composed of two dis-
tinct groups of data which define different but strongly related levels of the model.
The first group comprises the entities or targets under observation, which clearly
are the most important variables of the regulatory system. The second group con-
sists of a certain number of additional environmental factors that can have a strong
impact on the targets regulatory patterns. The hidden interactions between the
entities of the system have to be revealed from measurement data. Here, data un-
certainty plays an important role with regard to modelling and prediction of the
future states of the two-modal regulatory system.

An important example of two-modal regulatory systems are the so-called gene-
environment networks, which were introduced in the genetic context by Weber et
al. [4, 6, 29, 30, 31, 32, 36, 37, 38, 45]. Here, the expression values of genes
or proteins are the target variables under consideration. Additional environmen-
tal factors like toxins, transcription factors or other components of the metabolic
pathways may take a strong influence on the targets. Since microarray experi-
ments as well as environmental observations usually result in uncertain data, this
approach has been further extended in order to deal with errors and data uncer-
tainty. The papers [33, 39, 40, 41, 42, 43, 44] focus on gene-environment networks
where noise and uncertainty are represented in terms error intervals. For an esti-
mation of the unknown system parameters, a regression analysis based on interval-
arithmetics is applied leading to generalized Chebychev approximation problems
and regression problems to be solved by methods of generalized semi-infinite op-
timization [34, 35]. Recently, gene-environment networks under ellipsoidal uncer-
tainty have been introduced in [13, 14, 15, 16]. In this approach, functionally re-
lated groups of variables are identified with data mining methods and the uncertain
states of targets and environmental clusters are represented in terms of ellipsoids.
An affine-linear model based on ellipsoidal calculus is applied to predict the future
ellipsoidal states of the system and the estimation of system parameters is based on
a set-theoretic regression analysis.

In the last decade, the concept of target-environment networks has been contin-
uously developed and now provides a conceptual framework for many regulatory
systems in computational biology and life sciences. In addition, target-environment
networks have also been applied to financial sciences, where so-called eco-finance
networks are introduced in [12, 40].
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The condition of the regression models depends heavily on the quality of the
available data sets. For example, modern high-throughput technologies can be used
to measure the expression profiles of a large number of genes simultaneously, but at
a limited number of reading points. Regression analysis can be applied to identify
the functional relationship between independent and dependent variables, where
both variables are given as real numbers [7]. Nevertheless, for classical regres-
sion analysis, measurements have to be taken at a high number of reading points
in order to obtain valid statistical relations between the dependent and independent
variables, which can be considered as too expensive in the genetic context. In addi-
tion, in classical regression analysis the linearity assumption has to be fulfilled, so
that gene-environment networks are clearly out of the scope of classical regression.

In situations where these assumptions are not fulfilled, where imprecise data
with not normally distributed errors have to be considered or where a vagueness in
the relationship between input and output variables exists, fuzzy-regression analysis
offers a more general viewpoint and provides means for tackling problems failing
to satisfy these assumptions. Unlike classical regression, deviations between ob-
served values and estimated values are assumed to be due to system fuzziness or
fuzziness of regression coefficients [3].

In this paper, we introduce the new concept of fuzzy target-environment net-
works and discuss the related fuzzy regression models. The vagueness of the rela-
tion between the targets and/or environmental factors of such a regulatory network
results from the (unknown) fuzzy coefficients of the underlying fuzzy model and it
is no longer determined by precise crisp coefficients. For an identification of the
shape of the fuzzy coefficients, methods from fuzzy regression have to be adapted
and made applicable to the bi-level situation of target-environment systems and
data.

Fuzzy regression as a variation of classical regression has been studied by
many authors and we refer to [9] for a recent literature review on fuzzy regression
approaches and applications. In general, there are two types of fuzzy regression
methods - possibilistic regression, which is based on Tanaka’s linear programming
approach [28] and fuzzy least-squares regression [5]. In this paper, we focus on
possibilistic regression and adapt various extensions of the fuzzy regression prob-
lem introduced by Tanaka et al. [28]. This model was based on crisp input vectors
as well as fuzzy output vectors and used fuzzy coefficients, which were represented
by symmetric triangular fuzzy numbers. The underlying idea was to minimize the
fuzziness of the model by minimizing the spread of the fuzzy output or the total
support of the fuzzy coefficients subject to all the given data. This basic model has
been further extended in several directions in order to deal with potential limita-
tions of possibilistic regression. For example, in possibilistic regression based on
symmetric triangular fuzzy numbers, only the extremal data points determine the
structure of the model. All others data points have no impact on the structure what
results in a high sensitivity to outliers [20, 21].
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This problem can be resolved by using asymmetric triangular or trapezoidal
fuzzy numbers [2, 8]. Since Tanaka et al. have introduced the concept of fuzzy re-
gression, several fuzzy regression approaches have been proposed, often referring
to a particular nature of input-output data. Some authors focus on crisp input-crisp
output data [22], others use mixed crisp input-fuzzy output data [28] or fuzzy input-
fuzzy output data [23]. Although possibilistic regression has been successfully
applied in many areas of engineering sciences and Operations Research, methods
involving fuzzy concepts have been rarely applied to genetics [1].

In this study, we consider fuzzy possibilistic regression for target-environment
networks affected by errors and uncertainty. We present various fuzzy regression
algorithms for target-environment data based on different representations of the
fuzzy coefficients of the underlying fuzzy model. The algorithms are applied to
crisp input-crisp output data. In addition, by assigning individual membership
grades to input-output samples, the influence of outliers can be softened and con-
trolled.

The paper is organized as follows: In Section 2, the concept of fuzzy target-
environ- ment networks and the corresponding fuzzy regression model with fuzzy
coefficients are introduced. In Section 3, we adapt Tanaka’s possibilistic regression
model for crisp target-environment data and introduce various fuzzy regression
algorithms. To overcome the limitations of this approach, we consider different
shapes of fuzzy coefficients in terms of symmetric and asymmetric triangular fuzzy
sets as well as symmetric and asymmetric trapezoidal fuzzy numbers. In addition,
we consider models where membership grades are assigned to input-output data in
order to deal with outliers. Finally, in Section 4, we conclude with an outlook on
potential directions of research.

2 Fuzzy Target-Environment Networks and Fuzzy Regres-
sion

In this section, the concept of fuzzy target-environment networks is introduced. A
linear fuzzy model determines the synergistic connections between the targets and
the additional environmental entities. Various algorithms for an estimation of the
unknown fuzzy coefficients of the fuzzy model are discussed in Section 3.

2.1 The Fuzzy Model

Target-environment networks and their inherent dynamics are often modeled by
time-discrete systems

X (k+1) = F
(
X (k),E(k)),

E(k+1) = G
(
X (k),E(k)),

for k ≥ 0, where the time-dependent n-vector X (k) = (X (k)
1 , . . . ,X (k)

n )T denotes the
expression values of the n targets and the m-vector E = (E(k)

1 , . . . ,E(k)
m )T repre-
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sents the values of the m environmental items. Both linear and nonlinear models
are available, where F : Rn+m → Rn and G : Rn+m → Rm describe the linear or
nonlinear dynamics of the system.

In this paper, we focus on the linear dynamics of single targets and environ-
mental items. The time-discrete dynamics of each target, X j ( j = 1, . . . ,n), is rep-
resented by a (n+m)-input and single-output linear fuzzy system

X (k+1)
j := F j

(
X (k),E(k))= Z j0 +

n

∑
r=1

A jrX
(k)
r +

m

∑
s=1

B jsE
(k)
s (k ∈ N0).

Similarly, the states of the environmental items, Ei (i = 1, . . . ,m), are given by

E(k+1)
i := Gi

(
X (k),E(k))= Z′

i0 +
n

∑
r=1

A′
irX

(k)
r +

m

∑
s=1

B′
isE

(k)
s (k ∈ N0).

The unknown fuzzy coefficients Z j0,A jr,B js,Z′
i0,A

′
ir,B

′
is of the fuzzy models F j

and Gi have to be determined from crisp data vectors

X(κ)
=

(
X (κ)

1 , . . . ,X (κ)
n

)T and E(κ)
=

(
E(κ)

1 , . . . ,E(κ)
m

)T
,

with κ = 0,1, . . . ,T +1, obtained from measurements taken at reading points t0 <
t1 < .. . < tT+1. For the initial states of the linear fuzzy system we assume X (0)

r =

X (0)
r and E(0)

s = E(0)
s (r = 1, . . . ,n; s = 1, . . . ,m).

2.2 Fuzzy Target-Environment Networks

The uncertain relations between the targets and environmental factors of the fuzzy
model can be represented in terms of a highly interconnected regulatory network
(cf. Fig. 1). The nodes of this fuzzy target-environment network are given by the
targets and environmental items. The branches between targets and/or environ-
mental factors are weighted by the corresponding fuzzy coefficients that define
the coupling rules of the fuzzy model. In order to include the intercepts Z j0 and
Z′

i0 in our network, we introduce an additional node 0. We note that also weights
can be assigned to the nodes of the fuzzy network. This can be, e.g., the outputs
(or some measure of the outputs) of the fuzzy model. Although the weights of
the branches are static, the evolution of the states of the targets and environmen-
tal items turns the system into a time-dependent fuzzy evolving network. Hereby,
fuzzy-discrete mathematics and its network algorithms in both versions, statically
and dynamically, becomes applicable on subjects such as connectedness, compo-
nents, clusters, cycles, shortest paths or further subnetworks [11, 17]. Beside these
discrete-combinatorial aspects, combinatorial relations between graphs and (non-
linear) optimization problems as well as topological properties of regulatory net-
works can be analyzed.
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Figure 1: The fuzzy target-environment network. The nodes are the targets and
environmental factors. The branches are weighted by the fuzzy coefficients of the
fuzzy models F j and Gi.

2.3 Fuzzy Regression

The basic idea of fuzzy regression is to minimize the fuzziness of the fuzzy models
F j and Gi. In case of non-fuzzy data they have to include all the given input-output
data in their level sets4, i.e.,

X (κ+1)
j ∈

[
F j

(
X(κ)

,E(κ))]
α , E(κ+1)

i ∈
[
Gi
(
X(κ)

,E(κ))]
α ′ (κ = 0,1, . . . ,T ).

The inclusion relations for target and environmental data sets depend on the
level sets of the fuzzy models F j and Gi with parameters α,α ′ ∈ (0,1], which
have to be given by the practitioner according to the desired spread of the fuzzy
models. They are usually unequal what refers to the individual behaviour of the
two distinct groups of data.

In the following sections, we introduce various fuzzy regression models for
fuzzy target-environment networks. These models are based on crisp measurement
data as well as many different kinds of fuzzy coefficients.

4The r-level (or r-cut) of a fuzzy set µ : R→ [0,1] is defined for 0 < r ≤ 1 as the set [µ]r := {x ∈
R |µ(x)≥ r}.
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3 Fuzzy Regression Analysis for Target-Environment Data

In this section, we focus on fuzzy regression models for non-fuzzy target-environment
data. The fuzzy coefficients of the linear fuzzy models F and G have to be deter-
mined from non-fuzzy input data vectors

X(κ)
=

(
X (κ)

1 , . . . ,X (κ)
n

)T ∈ Rn and E(κ)
=

(
E(κ)

1 , . . . ,E(κ)
m

)T ∈ Rm,

with κ = 0,1, . . . ,T +1.

3.1 Fuzzy Regression Based on Symmetric Triangular Fuzzy Coeffi-
cients

In the first fuzzy regression model, the coefficients of the fuzzy model are given
by symmetric triangular fuzzy numbers. As we are interested in the dynamics of
single targets and environmental factors, our regression analysis will be based on
crisp data sets((

X(κ)
,E(κ))T ;X (κ+1)

j
)
,
((
X(κ)

,E(κ))T ;E(κ+1)
i

)
(κ = 0,1, . . . ,T ).

The symmetric triangular fuzzy coefficients can be represented in terms of their
center (C) and width (W) (cf. Fig. 2):

Z j0 = (ZC
j0,Z

W
j0)

T , A jr = (AC
jr,A

W
jr)

T , B js = (BC
js,B

W
js)

T ,

Z′
i0 = (Z′C

i0 ,Z
′W
i0 )T , A′

ir = (A′C
ir ,A

′W
ir )T , B′

is = (B′C
is ,B

′W
is )T .

0

1

AC
jr −AW

jr AC
jr AC

jr +AW
jr

Figure 2: The symmetric triangular fuzzy coefficient A jr = (AC
jr,A

W
jr)

T .

7



Applying interval arithmetics [10], the fuzzy model F j can be rewritten as

F j
(
X (k),E(k))

= Z j0 +
n

∑
r=1

A jrX
(k)
r +

m

∑
s=1

B jsE
(k)
s

= (ZC
j0,Z

W
j0)

T +
n

∑
r=1

(AC
jr,A

W
jr)

T X (k)
r +

m

∑
s=1

(BC
js,B

W
js)

T E(k)
s

=

(
ZC

j0 +
n

∑
r=1

AC
jr ·X

(k)
r +

m

∑
s=1

BC
js ·E

(k)
s , ZW

j0 +
n

∑
r=1

AW
jr ·

∣∣X (k)
r

∣∣+ m

∑
s=1

BW
js ·

∣∣E(k)
s

∣∣)T

.

Thus, F j
(
X (k),E(k)

)
is a symmetric triangular fuzzy number

F j
(
X (k),E(k))= (

FC
j
(
X (k),E(k)),FW

j
(
X (k),E(k)))T

with

FC
j
(
X (k),E(k))= ZC

j0 +
n

∑
r=1

AC
jr ·X

(k)
r +

m

∑
s=1

BC
js ·E

(k)
s ,

FW(
X (k),E(k))= ZW

j0 +
n

∑
r=1

AW
jr ·

∣∣X (k)
r

∣∣+ m

∑
s=1

BW
js ·

∣∣E(k)
s

∣∣.
Similarly, the fuzzy model G can be represented as the symmetric triangular

fuzzy number

Gi
(
X (k),E(k))= (

G C
i
(
X (k),E(k)),G W

i
(
X (k),E(k)))T

,

where

G C
i
(
X (k),E(k))= Z′C

i0 +
n

∑
r=1

A′C
ir ·X

(k)
r +

m

∑
s=1

B′C
is ·E

(k)
s ,

G W
i
(
X (k),E(k))= Z′W

i0 +
n

∑
r=1

A′W
ir ·

∣∣X (k)
r

∣∣+ m

∑
s=1

B′W
is ·

∣∣E(k)
s

∣∣.
According to the basic idea of fuzzy regression, we have to determine fuzzy models
F j and Gi which include all the given input-output sets

((
X(κ)

,E(κ))T ;X (κ+1)
j

)
and

((
X(κ)

,E(κ))T ;E(κ+1)
i

)
in their level sets. The α-cut of F j

(
X (k),E(k)

)
with

α ∈ (0,1] as depicted in Fig. 3 is given by the interval[
F j

(
X (k),E(k))]

α =
[
F L

jα
(
X (k),E(k)), F R

jα
(
X (k),E(k))],

where

F L
jα
(
X (k),E(k))= FC

j
(
X (k),E(k))− (1−α) ·FW

j
(
X (k),E(k)),

F R
jα
(
X (k),E(k))= FC

j
(
X (k),E(k))+(1−α) ·FW

j
(
X (k),E(k)).
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Similarly, the α ′-cut of Gi
(
X (k),E(k)

)
with α ′ ∈ (0,1] takes the form[

Gi
(
X (k),E(k))]

α ′ =
[
G L

iα ′
(
X (k),E(k)), G R

iα ′
(
X (k),E(k))],

where

G L
iα ′
(
X (k),E(k))= G C

i
(
X (k),E(k))− (1−α ′) ·G W

i
(
X (k),E(k)),

G R
iα ′
(
X (k),E(k))= G C

i
(
X (k),E(k))+(1−α ′) ·G W

i
(
X (k),E(k)).

0

1

α

F L
jα FC

j F R
jα

Figure 3: The α-cut of the fuzzy model F j.

Therefore, the states X (κ+1)
j and E(κ+1)

i have to fulfill the constraints

F L
jα
(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

jα
(
X(κ)

,E(κ))
,

G L
iα ′
(
X(κ)

,E(κ)) ≤ E(κ+1)
i ≤ G R

iα ′
(
X(κ)

,E(κ))
,

for all κ ∈ {0,1, . . . ,T}. As mentioned before, the inclusion relations for target
and environmental data sets depend on level sets with (unequal) parameters α,α ′ ∈
(0,1]. We introduce also some additional conditions on the size of the coefficients
of the fuzzy models. The constraints

ZW
j0,A

W
jr ,B

W
js ,Z

′W
i0 ,A′W

ir ,B′W
is ≥ 0

ensure that the spread of a fuzzy coefficient is non-negative.
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Now, we introduce two linear regression models for determining the symmetric
triangular fuzzy coefficients of the linear fuzzy model F j and Gi. The first model
is based on the idea used in [28]. The parameters are determined by solving a linear
programming problem with an objective function of minimizing the total spread of
the fuzzy coefficients:

Fuzzy-Regression for Target-Environment Data (FR 1)

Minimize
n

∑
j=1

(
ZW

j0 +
n

∑
r=1

AW
jr +

m

∑
s=1

BW
js

)
+

m

∑
i=1

(
Z′W

i0 +
n

∑
r=1

A′W
ir +

m

∑
s=1

B′W
is

)
,

subject to F L
jα
(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

jα
(
X(κ)

,E(κ))
,

G L
iα ′
(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G R

iα ′
(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZW
j0, Z′W

i0 ≥ 0,
AW

jr , A′W
ir ≥ 0 (r = 1, . . . ,n),

BW
js , B′W

is ≥ 0 (s = 1, . . . ,m)

( j = 1, . . . ,n; i = 1, . . . ,m).

Example 1
In this illustrative example we consider a time-discrete regulatory model with two
target and two environmental factors:

X (κ+1)
1 = 0.25X (κ)

1 +0.55X (κ)
2 +0.20E(κ)

1 +0.45E(κ)
2 ,

X (κ+1)
2 = 0.25X (κ)

1 +0.65X (κ)
2 −0.30E(κ)

1 +0.40E(κ)
2 ,

E(κ+1)
1 = 0.30X (κ)

1 +0.25X (κ)
2 +0.70E(κ)

1 +0.30E(κ)
2 ,

E(κ+1)
2 =−0.35X (κ)

1 +0.50X (κ)
2 +0.50E(κ)

1 +0.30E(κ)
2 .

The crisp initial values are X (0)
1 =−0.50, X (0)

2 =−0.75, E(0)
1 =−0.50, E(0)

2 =
−0.45. Table 1 shows the first six observations of the target and environmental
factors:

Table 1: Measurements of targets and environmental factors.

κ 0 1 2 3 4 5

X (κ)
1 −0.5000 −1.0504 −1.2092 −1.3274 −1.4365 −1.5367

X (κ)
2 −0.7500 −0.7434 −0.7019 −0.6202 −0.5527 −0.4995

E(κ)
1 −0.5000 −1.0922 −1.4784 −1.8020 −2.0834 −2.3321

E(κ)
2 0.4500 −0.7095 −0.7630 −0.8958 −1.0153 −1.1199
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By applying algorithm FR1 with symmetric fuzzy numbers to this data set, we
obtain the results displayed in Fig. 4 (red = original model; fuzzy predictions: blue
= center - width, green = center + width). The prediction follows the general trend
of the original model. However, a relatively large error is obtained for the second
environmental factor (d) which is due to the fact that only extremal data points
determine the structure of the fuzzy model.

(a) (b)

(c) (d)

Figure 4: Results of the fuzzy-regression algorithm FR1 for (a) first target, (b)
second target, (c) first environmental factor and (d) second environmental factor.

Other objective functions for fuzzy regression are given in the literature. For ex-
ample, the total spread of the fuzzy outputs can be used to define an alternative
objective function (cf. [8, 26, 27, 28]). In our model, such kind of objective func-
tions are given by

T

∑
κ=0

{
n

∑
j=0

FW
j
(
X(κ)

,E(κ))
+

m

∑
i=0

G W
i
(
X(κ)

,E(κ))}
,

and we obtain the following regression problem:
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Fuzzy-Regression for Target-Environment Data (FR 2)

Minimize
T

∑
κ=0

{
n

∑
j=1

(
ZW

j0 +
n

∑
r=1

AW
jr ·

∣∣X (κ)
r

∣∣+ m

∑
s=1

BW
js ·

∣∣E(κ)
s

∣∣)
+

m

∑
i=1

(
Z′W

i0 +
n

∑
r=1

A′W
ir ·

∣∣X (κ)
r

∣∣+ m

∑
s=1

B′W
is ·

∣∣E(κ)
s

∣∣)}

subject to F L
jα
(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

jα
(
X(κ)

,E(κ))
,

G L
iα ′
(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G R

iα ′
(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZW
j0, Z′W

i0 ≥ 0,
AW

jr , A′W
ir ≥ 0,(r = 1, . . . ,n),

BW
js , B′W

is ≥ 0,(s = 1, . . . ,m)

( j = 1, . . . ,n; i = 1, . . . ,m).

Example 2
For the data from Example 1, algorithm FR2 leads to the results shown in Fig. 5.
Here, the sum of spreads of the fuzzy outputs is minimized and the width of the
predictions is significantly smaller compared to the results from Example 1 (red =
original model; fuzzy predictions: blue = center - width, green = center + width).

(a) (b)

(c) (d)

Figure 5: Results of the fuzzy-regression algorithm FR2 for (a) first target, (b)
second target, (c) first environmental factor and (d) second environmental factor.
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3.2 Fuzzy Regression Based on Symmetric Triangular Fuzzy Coeffi-
cients with Membership Grades

Data sets obtained by experiments (e.g., microarray data) and environmental mea-
surements are always affected by noise and uncertainty. In a preprocessing step, a
statistical analysis of the measurement values can be performed in order to guaran-
tee the quality of the observed data. In particular, outliers have to be detected and
deleted from the sample. However, it is not always possible to split this sample
unambiguously. For this reason membership grades α jκ ,α ′

iκ ∈ (0,1] are assigned
to the data sets((

X(κ)
,E(κ))T ;X (κ+1)

j
)

and
((
X(κ)

,E(κ))T ;E(κ+1)
i

)
(κ = 0,1, . . . ,T ).

When we include the membership grades in the objective function and the in-
clusion relations of the linear fuzzy regression model (FR2), we obtain the follow-
ing method:

Fuzzy-Regression for Target-Environment Data (FR 3)

Minimize
T

∑
κ=0

{
n

∑
j=1

α jκ ·
(

ZW
j0 +

n

∑
r=1

AW
jr ·

∣∣X (κ)
r

∣∣+ m

∑
s=1

BW
js ·

∣∣E(κ)
s

∣∣)
+

m

∑
i=1

α ′
iκ ·

(
Z′W

i0 +
n

∑
r=1

A′W
ir ·

∣∣X (κ)
r

∣∣+ m

∑
s=1

B′W
is ·

∣∣E(κ)
s

∣∣)}

subject to F L
j α jκ

(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

j α jκ

(
X(κ)

,E(κ))
,

G L
iα ′

iκ

(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G R

iα ′
iκ

(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZW
j0, Z′W

i0 ≥ 0,
AW

jr , A′W
ir ≥ 0 (r = 1, . . . ,n),

BW
js , B′W

is ≥ 0 (s = 1, . . . ,m)

( j = 1, . . . ,n; i = 1, . . . ,m).
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3.3 Fuzzy Regression Based on Asymmetric Triangular Fuzzy Coeffi-
cients

Limitations of fuzzy regression models based on symmetric triangular fuzzy coef-
ficients were pointed out in [8]. One major drawback is that obviously different
data sets may lead to the same linear fuzzy model. This is due to the fact that
extremal data points mainly determine the spread of the models F j and Gi. As
linear fuzzy regression models with symmetric triangular fuzzy coefficients are not
flexible enough to represent the difference between data sets, Ishibuchi and Nii
proposed asymmetric triangular or trapezoidal fuzzy coefficients [8]. In this sec-
tion, we adapt this approach for a regression analysis of target-environment data
based on asymmetric triangular fuzzy numbers. An algorithm for trapezoidal fuzzy
coefficients is presented in Section 3.4.

We now assume that the coefficients of the fuzzy regression model are asym-
metric triangular fuzzy coefficients (cf. Fig. 6). Therefore, they can be represented
in terms of their lower limit (L), center (C) and upper limit (U) as follows:

Z j0 = (ZL
j0,Z

C
j0,Z

U
j0)

T , A jr = (AL
jr,A

C
jr,A

U
jr)

T , B js = (BL
js,B

C
js,B

U
js)

T ,

Z′
i0 = (Z′L

i0 ,Z
′C
i0 ,Z

′U
i0 )

T , A′
ir = (A′L

ir ,A
′C
ir ,A

′U
ir )

T , B′
is = (B′L

is ,B
′C
is ,B

′U
is )

T ,

where r = 1, . . . ,n and s = 1, . . . ,m.

0

1

AL
jr AC

jr AU
jr

Figure 6: The asymmetric triangular fuzzy coefficient A jr = (AL
jr,A

C
jr,A

U
jr)

T .
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When all the fuzzy coefficients are asymmetric triangular, the fuzzy models F j

and Gi are also asymmetric triangular fuzzy numbers (cf. Fig. 7). Therefore, F j is
given by

F j
(
X (k),E(k))= (

F L
j
(
X (k),E(k)), FC

j
(
X (k),E(k)), FU

j
(
X (k),E(k)))T

,

where

F L
j
(
X (k),E(k)) = ZL

j0 +
n

∑
r=1

δ L(X (k)
r )X (k)

r +
m

∑
s=1

ρL(E(k)
s )E(k)

s ,

FC
j
(
X (k),E(k)) = ZC

j0 +
n

∑
r=1

AC
jrX

(k)
r +

m

∑
s=1

BC
jsE

(k)
s ,

FU
j
(
X (k),E(k))= ZU

j0 +
n

∑
r=1

δU(X (k)
r )X (k)

r +
m

∑
s=1

ρU(E(k)
s )E(k)

s

with

δ L(X (k)
r ) =

{
AL

jr , if X (k)
r ≥ 0

AU
jr , if X (k)

r < 0
, ρL(E(k)

s ) =

{
BL

js , if E(k)
s ≥ 0

BU
js , if E(k)

s < 0
,

and

δU(X (k)
r ) =

{
AU

jr , if X (k)
r ≥ 0

AL
jr , if X (k)

r < 0
, ρU(E(k)

s ) =

{
BU

js , if E(k)
s ≥ 0

BL
js , if E(k)

s < 0
.

Similarly,

Gi
(
X (k),E(k))= (

G L
i
(
X (k),E(k)), G C

i
(
X (k),E(k)), G U

i
(
X (k),E(k))),

where

G L
i
(
X (k),E(k)) = Z′L

i0 +
n

∑
r=1

δ ′L(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′L(E(k)
s )E(k)

s ,

G C
i
(
X (k),E(k)) = Z′C

i0 +
n

∑
r=1

A′C
ir X (k)

r +
m

∑
s=1

B′C
is E(k)

s ,

G U
i
(
X (k),E(k))= Z′U

i0 +
n

∑
r=1

δ ′U(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′U(E(k)
s )E(k)

s ,

with

δ ′L(X (k)
r ) =

{
A′L

ir , if X (k)
r ≥ 0

A′U
ir , if X (k)

r < 0
, ρ ′L(E(k)

s ) =

{
B′L

is , if E(k)
s ≥ 0

B′U
is , if E(k)

s < 0
,

and

δ ′U(X (k)
r ) =

{
A′U

ir , if X (k)
r ≥ 0

A′L
ir , if X (k)

r < 0
, ρ ′U(E(k)

s ) =

{
B′U

is , if E(k)
s ≥ 0

B′L
is , if E(k)

s < 0
.
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The α-cut of

F j
(
X (k),E(k))= (

F L
j
(
X (k),E(k)), FC

j
(
X (k),E(k)), FU

j
(
X (k),E(k)))T

is the interval[
F j

(
X (k),E(k))]

α =
[
F L

jα
(
X (k),E(k)), FU

jα
(
X (k),E(k))],

where

F L
jα
(
X (k),E(k))= α ·FC

j
(
X (k),E(k))+(1−α) ·F L

j
(
X (k),E(k)),

FU
jα
(
X (k),E(k))= α ·FC

j
(
X (k),E(k))+(1−α) ·FU

j
(
X (k),E(k)).

Similarly, the α ′-cut of

Gi
(
X (k),E(k))= (

G L
i
(
X (k),E(k)), G C

i
(
X (k),E(k)), G U

i
(
X (k),E(k)))T

is the interval[
Gi
(
X (k),E(k))]

α ′ =
[
G L

iα ′
(
X (k),E(k)), G U

iα ′
(
X (k),E(k))],

where

G L
iα ′
(
X (k),E(k))= α ′ ·G C

i
(
X (k),E(k))+(1−α ′) ·G L

i
(
X (k),E(k)),

G U
iα ′
(
X (k),E(k))= α ′ ·G C

i
(
X (k),E(k))+(1−α ′) ·G U

i
(
X (k),E(k)).

0

1

α

F L
j F L

jα FC
j FU

jαFU
j

Figure 7: The α-cut of the asymmetric triangular fuzzy model F j.
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In order to determine the centers as well as the upper and lower limits of the
asymmetric triangular fuzzy coefficients, we adapt the following hybrid method of
least-squares regression and fuzzy regression [8]:

Fuzzy-Regression for Target-Environment Data (FR 4)

(1) Apply least squares regression in order to determine
the centers FC

j

(
X(κ)

,E(κ))
and G C

i

(
X(κ)

,E(κ))
.

(2) Determine the lower limits F L
j
(
X(κ)

,E(κ))
,

G L
i
(
X(κ)

,E(κ))
and the upper limits

FU
j

(
X(κ)

,E(κ))
, G U

i

(
X(κ)

,E(κ))
by solving

the following linear programming problem:

Minimize
T

∑
κ=0

{ n

∑
j=1

[
FU

j
(
X(κ)

,E(κ))−F L
j
(
X(κ)

,E(κ))]
+

m

∑
i=1

[
G U

i
(
X(κ)

,E(κ))−G L
i
(
X(κ)

,E(κ))]}
subject to F L

jα
(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ FU

jα
(
X(κ)

,E(κ))
,

G L
iα ′
(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G U

iα ′
(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZL
j0 ≤ ZC

j0 ≤ ZU
j0, Z′L

i0 ≤ Z′C
i0 ≤ Z′U

i0 ,

AL
jr ≤ AC

jr ≤ AU
jr, A′L

ir ≤ A′C
ir ≤ A′U

ir ,

BL
js ≤ BC

js ≤ BU
js, B′L

is ≤ B′C
is ≤ B′U

is

( j,r = 1, . . . ,n; i,s = 1, . . . ,m; κ = 0,1, . . . ,T ).

In Step (1), the centers of the fuzzy coefficients are determined while in Step
(2) the lower limits and upper limits of the asymmetric triangular fuzzy coefficients
are calculated. The objective function is defined as the total spread of the fuzzy
outputs from the linear fuzzy models F j and Gi, i.e., the difference between the
upper limit and lower limit of F j and Gi, respectively.
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Example 4
When we are applying the hybrid method FR4 to the numerical data from Exam-
ple 1, we obtain a nearly optimal solution. This is because of the linear structure
of the initial model presented in Example 1.

(a) (b)

(c) (d)

Figure 8: Results of the fuzzy-regression algorithm FR4 for (a) first target, (b)
second target, (c) first environmental factor and (d) second environmental factor.

3.4 Fuzzy Regression Based on Trapezoidal Fuzzy Coefficients

Fuzzy regression models with asymmetric trapezoidal fuzzy coefficients are pro-
posed in [8] in order to reduce unnecessary fuzziness of the output and to avoid
linear programming problems with no feasible solution (cf. Fig. 9). In this section,
we will extend our model in this direction and we will use non-fuzzy data sets and
asymmetric trapezoidal fuzzy coefficients.
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Given the two crisp data sets((
X(κ)

,E(κ))T ;X (κ+1)
j

)
,
((
X(κ)

,E(κ))T ;E(κ+1)
i

)
(κ = 0,1, . . . ,T ),

we denote the coefficients as

Z j0 = (ZL
j0,Z

M
j0,Z

N
j0,Z

U
j0)

T , Z′
i0 = (Z′L

i0 ,Z
′M
i0 ,Z′N

i0 ,Z
′U
i0 )

T ,

A jr = (AL
jr,A

M
jr,A

N
jr,A

U
jr)

T , A′
ir = (A′L

ir ,A
′M
ir ,A′N

ir ,A
′U
ir )

T ,

B js = (BL
js,B

M
js,B

N
js,B

U
js)

T , B′
is = (B′L

is ,B
′M
is ,B′N

is ,B
′U
is )

T ,

where r = 1, . . . ,n and s = 1, . . . ,m.

0

1

AL
jr AM

jr AN
jr AU

jr

Figure 9: The asymmetric triangular fuzzy coefficient A jr = (AL
jr,A

M
jr,A

N
jr,A

U
jr)

T .

The fuzzy models F j and Gi are asymmetric trapezoidal fuzzy numbers. There-
fore, F j is given by

F j
(
X (k),E(k))

=
(
F L

j
(
X (k),E(k)), F M

j
(
X (k),E(k)), F N

j
(
X (k),E(k)), FU

j
(
X (k),E(k)))T

,

where

F L
j
(
X (k),E(k))= ZL

j0 +
n

∑
r=1

δ L(X (k)
r )X (k)

r +
m

∑
s=1

ρL(E(k)
s )E(k)

s ,

F M
j
(
X (k),E(k))= ZM

j0 +
n

∑
r=1

δ M(X (k)
r )X (k)

r +
m

∑
s=1

ρM(E(k)
s )E(k)

s ,

F N
j
(
X (k),E(k))= ZN

j0 +
n

∑
r=1

δ N(X (k)
r )X (k)

r +
m

∑
s=1

ρN(E(k)
s )E(k)

s ,

FU
j
(
X (k),E(k))= ZU

j0 +
n

∑
r=1

δU(X (k)
r )X (k)

r +
m

∑
s=1

ρU(E(k)
s )E(k)

s ,
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with

δ L(X (k)
r ) =

{
AL

jr , if X (k)
r ≥ 0

AU
jr , if X (k)

r < 0
, ρL(E(k)

s ) =

{
BL

js , if E(k)
s ≥ 0

BU
js , if E(k)

s < 0
,

δ M(X (k)
r ) =

{
AM

jr , if X (k)
r ≥ 0

AN
jr , if X (k)

r < 0
, ρM(E(k)

s ) =

{
BM

js , if E(k)
s ≥ 0

BN
js , if E(k)

s < 0
,

δ N(X (k)
r ) =

{
AN

jr , if X (k)
r ≥ 0

AM
jr , if X (k)

r < 0
, ρM(E(k)

s ) =

{
BN

js , if E(k)
s ≥ 0

BM
js , if E(k)

s < 0
,

δU(X (k)
r ) =

{
AU

jr , if X (k)
r ≥ 0

AL
jr , if X (k)

r < 0
, ρU(E(k)

s ) =

{
BU

js , if E(k)
s ≥ 0

BL
js , if E(k)

s < 0
.

Similarly,

Gi
(
X (k),E(k))

=
(
G L

i
(
X (k),E(k)), G M

i
(
X (k),E(k)), G N

i
(
X (k),E(k)), G U

i
(
X (k),E(k)))T

,

where

G L
i
(
X (k),E(k))= Z′L

i0 +
n

∑
r=1

δ ′L(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′L(E(k)
s )E(k)

s ,

G M
i
(
X (k),E(k))= Z′M

i0 +
n

∑
r=1

δ ′M(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′M(E(k)
s )E(k)

s ,

G N
i
(
X (k),E(k))= Z′N

i0 +
n

∑
r=1

δ ′N(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′N(E(k)
s )E(k)

s ,

G U
i
(
X (k),E(k))= Z′U

i0 +
n

∑
r=1

δ ′U(X (k)
r )X (k)

r +
m

∑
s=1

ρ ′U(E(k)
s )E(k)

s ,

with

δ ′L(X (k)
r ) =

{
A′L

ir , if X (k)
r ≥ 0

A′U
ir , if X (k)

r < 0
, ρ ′L(E(k)

s ) =

{
B′L

is , if E(k)
s ≥ 0

B′U
is , if E(k)

s < 0
,

δ ′M(X (k)
r ) =

{
A′M

ir , if X (k)
r ≥ 0

A′N
ir , if X (k)

r < 0
, ρ ′M(E(k)

s ) =

{
B′M

is , if E(k)
s ≥ 0

B′N
is , if E(k)

s < 0
,

δ ′N(X (k)
r ) =

{
A′N

ir , if X (k)
r ≥ 0

A′M
ir , if X (k)

r < 0
, ρ ′N(E(k)

s ) =

{
B′N

is , if E(k)
s ≥ 0

B′M
is , if E(k)

s < 0
,

δ ′U(X (k)
r ) =

{
A′U

ir , if X (k)
r ≥ 0

A′L
ir , if X (k)

r < 0
, ρ ′U(E(k)

s ) =

{
B′U

is , if E(k)
s ≥ 0

B′L
is , if E(k)

s < 0
.
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The α-cut of F j
(
X (k),E(k)

)
is the interval[

F j
(
X (k),E(k))]

α =
[
F L

jα
(
X (k),E(k)), F R

jα
(
X (k),E(k))],

where

F L
jα
(
X (k),E(k))= α ·F M

j
(
X (k),E(k))+(1−α) ·F L

j
(
X (k),E(k)),

F R
jα
(
X (k),E(k))= α ·F N

j
(
X (k),E(k)) +(1−α) ·FU

j
(
X (k),E(k)),

and the α ′-cut of Gi
(
X (k),E(k)

)
is the interval[

Gi
(
X (k),E(k))]

α ′ =
[
G L

iα ′
(
X (k),E(k)), G R

iα ′
(
X (k),E(k))],

where

G L
iα ′
(
X (k),E(k))= α ′ ·G M

i
(
X (k),E(k))+(1−α ′) ·G L

i
(
X (k),E(k)),

G R
iα ′
(
X (k),E(k))= α ′ ·G N

i
(
X (k),E(k)) +(1−α ′) ·G U

i
(
X (k),E(k)).

Now, we can state the fuzzy regression model for non-fuzzy target-environment
data with asymmetric trapezoidal fuzzy coefficients. In the objective function, we
minimize the sum of total spread and inner spread of the fuzzy models which is
given by

n

∑
j=1

[(
FU

j −F L
j
)
+
(
F N

j −F M
j
)]

and
m

∑
i=1

[(
G U

i −G L
i
)
+
(
G N

i −G M
i
)]
,

respectively.
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Beside the inclusion relations, we impose additional constraints in order to
preserve the trapezoidal shape of the fuzzy coefficients:

Fuzzy-Regression for Target-Environment Data (FR 5)

Minimize
T

∑
κ=0

{ n

∑
j=1

[
FU

j
(
X(κ)

,E(κ))−F L
j
(
X(κ)

,E(κ))
+ F N

j

(
X(κ)

,E(κ))−F M
j
(
X(κ)

,E(κ))]
+

m

∑
i=1

[
G U

i
(
X(κ)

,E(κ))−G L
i

(
X(κ)

,E(κ))
+ G N

i

(
X(κ)

,E(κ))−G M
i
(
X(κ)

,E(κ))]}

subject to F L
jα
(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

jα
(
X(κ)

,E(κ))
,

G L
iα ′
(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G R

iα ′
(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZL
j0≤ ZM

j0≤ ZN
j0≤ ZU

j0, Z′L
i0 ≤ Z′M

i0 ≤ Z′N
i0 ≤ Z′U

i0 ,

AL
jr≤ AM

jr≤ AN
jr≤ AU

jr, A′L
ir ≤ A′M

ir ≤ A′N
ir ≤ A′U

ir ,

BL
js≤ BM

js≤ BN
js≤ BU

js, B′L
is ≤ B′M

is ≤ B′N
is ≤ B′U

is
( j,r = 1, . . . ,n; i,s = 1, . . . ,m; κ = 0,1, . . . ,T ).
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3.5 Fuzzy Regression Based on Trapezoidal Fuzzy Coefficients with
Membership Grades

In this section, we assume that individual membership grades α jκ ,α ′
iκ ∈ (0,1] are

assigned to the data sets((
X(κ)

,E(κ))T ;X (κ+1)
j

)
and

((
X(κ)

,E(κ))T ;E(κ+1)
i

)
(κ = 0,1, . . . ,T ).

In this way, the quality of data obtained from a statistical analysis in a preprocess-
ing step can also be reflected in the fuzzy regression with trapezoidal fuzzy coef-
ficients. As in the case of symmetric triangular fuzzy coefficients in Section 3.2,
the fuzzy regression model (FR5) with trapezoidal fuzzy coefficients can now be
further extended and improved with regard to individual membership grades:

Fuzzy-Regression for Target-Environment Data (FR 6)

Minimize
T

∑
κ=0

{ n

∑
j=1

α jκ ·
[

FU
j
(
X(κ)

,E(κ))−F L
j
(
X(κ)

,E(κ))
+ F N

j

(
X(κ)

,E(κ))−F M
j
(
X(κ)

,E(κ))]
+

m

∑
i=1

α ′
iκ ·

[
G U

i
(
X(κ)

,E(κ))−G L
i

(
X(κ)

,E(κ))
+ G N

i

(
X(κ)

,E(κ))−G M
i
(
X(κ)

,E(κ))]}

subject to F L
jα jκ

(
X(κ)

,E(κ))≤ X (κ+1)
j ≤ F R

jα jκ

(
X(κ)

,E(κ))
,

G L
iα ′

iκ

(
X(κ)

,E(κ))≤ E(κ+1)
i ≤ G R

iα ′
iκ

(
X(κ)

,E(κ))
( j = 1, . . . ,n; i = 1, . . . ,m; κ = 0,1, . . . ,T ),

ZL
j0≤ ZM

j0≤ ZN
j0≤ ZU

j0, Z′L
i0 ≤ Z′M

i0 ≤ Z′N
i0 ≤ Z′U

i0 ,

AL
jr≤ AM

jr≤ AN
jr≤ AU

jr, A′L
ir ≤ A′M

ir ≤ A′N
ir ≤ A′U

ir ,

BL
js≤ BM

js≤ BN
js≤ BU

js, B′L
is ≤ B′M

is ≤ B′N
is ≤ B′U

is
( j,r = 1, . . . ,n; i,s = 1, . . . ,m; κ = 0,1, . . . ,T ).

Finally, Table 2 summarizes the regression models together with the corre-
sponding type of coefficients and model outputs as well as the specific form of the
objective function.
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4 Conclusion

The objective of this paper is to introduce fuzzy target-environment networks and
fuzzy evolving networks as further approaches for the analysis of two-modal reg-
ulatory systems affected by errors and uncertainty. The proposed method is based
on a fuzzy model with fuzzy coefficients. Depending on the shape of these un-
certain parameters, various possibilistic regression models are obtained. In future
works, methods from fuzzy least-squares regression based on a minimization of
the total square error of the output can be addressed [5]. In addition, the regres-
sion models can be coupled with different types of fuzzy input vectors. Beside the
crisp input from measurements also fuzzy input data can be considered in the pro-
posed algorithms which is of particular importance with regard to applications in
case of critical operations. For an analysis of nonlinear systems, fuzzy neural net-
works can be used [8]. A further direction of research could discuss the parameter
identification of regulatory systems with interacting groups of variables affected by
fuzzy uncertainty. Such an approach could be based on the set-theoretic regression
analysis of [14, 15, 16], where functionally related groups of targets and environ-
mental entities under ellipsoidal uncertainty are considered. In future applications,
the prediction strategies discussed can be used for a short-time prediction in the
framework of multitarget-multisensor tracking in uncertain environments [18, 19].
Critical operations like NBC-tracking in urban scenarios are very challenging and
require a rapid decision making based on incomplete or partially observable data.
Here, it is of upmost importance to combine the uncertain information in networks
with multiple sensor platforms and to predict the future states of the targets.
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Optimierung. In Aachener Beiträge zur Mathematik 5, H.H. Bock, H.T. Jon-
gen, and W. Plesken, eds., Augustinus publishing house (now: Mainz pub-
lishing house) Aachen (1992)

[35] G.-W. Weber: Generalized semi-infinite optimization and related topics. Hel-
dermann Publishing House, Research and Exposition in Mathematics 29,
Lemgo, K.H. Hofmannn and R. Wille (eds.) (2003)

[36] G.-W. Weber, S.Z. Alparslan-Gök, N. Dikmen: Environmental and life sci-
ences: gene-environment networks - optimization, games and control - a sur-
vey on recent achievements. Invited paper. Special issue of Journal of Organ-
isational Transformation and Social Change 5(3), 197-233 (2008)

[37] G.-W. Weber, S.Z. Alparslan-Gök, and B. Söyler: A new mathematical
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