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Abstract 

 

In emerging areas like engineering, finance and control design, it is supposed that the input data 

are known exactly and equal to some nominal values to construct a model. In real life, however, 

we have noise in both output and input data. In inverse problems of modelling and data mining, 

solutions can represent a remarkable sensitivity with respect to perturbations in the parameters, 

and a computed solution can be highly infeasible, suboptimal, or both. Hence, new models have 

to be developed when optimization results are combined within real-life applications. 

Generalized Partial Linear Model (GPLM) combines of two different regression models each of 

which is employed on different parts of the data set and it is adequate to high dimensional, non-

normal and nonlinear data sets that have the flexibility to effectively consider all anomalies. In 

our previous study, Conic GPLM (CGPLM) was introduced using CMARS and Logistic 

Regression. Moreover, we included the existence of uncertainty regarding future scenarios into 

CMARS and linear/logit regression part in CGPLM, and robustified it through robust 

optimization that is a method to address uncertainty in optimization problems. In this study, we 

apply RCGPLM on the financial market data taken from a real-world data set as a sample and 

represent results according to variance.  
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1. Introduction 

 

With an increased volatility and thus uncertainty factors, financial crises in recent years introduce 

a high “uncertainty” into the data taken form the financial sectors and overall to any data related 

to the financial markets [1]. So, it may be expected that the known statistical models do not give 

trustworthy results. Robust Optimization reaches great attention from both theoretical and 

practical point of view as a modelling framework for immunizing against parametric 

uncertainties. It is a modelling methodology for processing optimization problems in which the 

data are uncertain and only known to belong to some uncertainty set [7].  
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Data are supposed to contain fixed input variables for Multivariate Adaptive Regression Spline 

(MARS) and its modified version Conic MARS (CMARS). But, in reality, data include noise in 

output and input variables. Therefore, in our earlier study, to be able to deal with not only fixed 

but also random type of input data, we included the existence of uncertainty in the future 

scenarios into CMARS [26, 27] and refined it by robust optimization developed by Ben-Tal and 

Nemirovski [3, 4, 5], El-Ghaoui et all [12, 13]. We call it as RCMARS and, through a 

robustification of it, diminish the estimation variance. Therefore, we arrive at the RCMARS 

methods [20, 21, 22].  

In CMARS and its robustification RCMARS, we must solve an extra problem (by Software 

MARS [17]), etc.), which is the knot selection not required for the linear part. Therefore, in our 

earlier study, Conic Generalized Partial Linear Model (CGPLM) was presented as a 

semiparametric model by using the contribution of a continuous regression model CMARS and a 

discrete regression model Logistic Regression in [10, 28]. Also, Robust Generalized Partial 

Linear Model (RCGPLM) was received by RCMARS in [23, 24]. CGPLM and RCGPLM base 

on partial linear model which splits linear and nonlinear variables and model them individually.  

In this study, we apply RCGPLM on the financial data by using the contribution of a continuous 

regression models RCMARS and Linear Regression. Moreover, we describe the concept of a 

weak robustification, because of the computational effort that RGPLM requires. We propose to 

reduce estimation variance through a robustification in CGPLM.  

The works of some scholar’s demonstrated that financial decision making for a rational agent is 

fundamentally a question of achieving an optimal trade-off between risk and return. In this way, 

robustification is beginning to attract more attention in finance. Therefore, in the financial sector, 

this study may contribute to some existing approaches of pre-processing financial decision 

making as done by, e.g., Resampling and Black-Litterman approaches in portfolio optimization 

[16, 29]. When in these projects, special goals are a sound “diversification” and portfolios which 

are perceived “natural”, in our paper, we focus on the risk aspect and, additionally, provide many 

control variables for a fine tuning by the modeller and, eventually, the decision maker.  

Our paper is structured as follows. In Section 2, RCGPLM is presented in theory and method. In 

Section3, robust counterparts of RCGPLM with polyhedral uncertainty are given. Section 4 

belongs to the application part, prepared to use a financial data set and to apply RCGPLM. A 

conclusion and outlook to further investigations are offered in Section 5. 

 

2.  Robust Conic Generalized Partial Linear Model (CGPLM) 

 

Since a data set may contain linear and nonlinear variables, different models obtain models for 

the linear and nonlinear parts separately applying Generalized Partial Linear Models (GPLMs). 

A particular semiparametric model of interest is the GPLM that extends the GLM in which the 

usual parametric terms are enlarged by a nonparametric component [19].  

Let us represent the existence of uncertainty in the future scenarios within CGPLM [11, 15] in 

the following form [23]: 
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noisy variable noisy variable

( , ) ( ( ) ),TE Y G  X T X T

                                            

(1)

                

 

where 
1 2( , ,..., )T

n    is a finite dimensional parameter and ( )   is a smooth function which 

is tried to predict by B-splines. Here, 1 2 ( , ,..., )  T

nX X XX and 1 2( , ,..., )T

pT T TT stand for a 

decomposition of variables, X denoting an n-variate vector of variables with a linear pattern, T

denoting a q-variate vector of variables with a nonlinear pattern to be estimated through a 

nonlinear model. In this study, we shall focus on special types of estimation ( )   by RCMARS. 

 

To obtain the GPLM, we encounter observation values ,  ,   i i iy x t ( 1,2,..., ),i N
 

giving 

( )i iG 
 

and ( ) ( )T

i i i iH     x t  with a smooth function ( )  [28]. Here,  jX

( 1,2,..., )j n  and  ( 1,2,..., )jT j q
 
are assumed to be normally distributed random variables and 

the following configuration is considered for each one of the input variable  jX
 
and  jT [23]:

 

   ( 1,2,..., ).

      ( 1,2,..., ).

j j

j j

X X j n

T T j q





  

                                                             
(2)

           
 

To perform a robustification of CGPLM, we employ robust optimization on the linear and the 

nonlinear parts of CGPLM, and, in the equation (2), we suppose that the input and output 

variables of CGPLM are given by random variables. They lead us to uncertainty sets, which are 

refined to contain confidence intervals (CIs) (for more details, we refer to [21, 22]). In each 

dimension, we incorporate a perturbation or uncertainty into the real input data ,  i ix t , and into 

the output data iy . Then, our model under uncertainty can be stated as an additive semiparametric 

model [23, 24]: 

       
1

, . T

j

n

j jH X    


    X T X T T

                                         

(3) 

To construct a RCGPLM, we consider observation values ,  ,    ( 1,2,..., )i i iy i Nx t  after implying 

the uncertainty. By this, ( )i iG 
 
and ( )i iH   ( )T

i ix t  with a smooth function ( ).   

In the linear part of our estimation, we introduce a new variable preprocY  with the help of 0 , j  

and jx ( 1, 2, , )j n  : 

 
0

1

. preproc T preproc

j

j

n

jY    


    X x

                                         

(4)
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In order to define the knots of MARS with the remaining q nonlinear variables for residual part, 

after getting the regression coefficients with the optimal vector preproc  in (4), the linear least-

squares model preprocX   is subtracted from y . Here, X is the design matrix based on the input 

data. So, for the nonlinear part, the response data vector   is given by [23, 24] 

= . preproc y X                                                          (5)

   

In our model (3), the smooth function (·)  of RCGPLM can be estimated by RCMARS and   

can be represented as a linear combination of basis functions (BFs) m . Consequently, model (5) 

obtains the form 

   0

1

,
M

m

m m

m

H    


   t

                                                        
 (6)                                        

where m   is the unknown coefficient of the mth BF ( 1, 2, , )m m   and 0  is the intercept term. 

Here, m  ( 1, 2, , )m m   is a basis function, being a product of two or more one-dimensional 

structured linear functions and taken from a set of M linearly independent basis elements. Then, 

by MARS, a set of eligible knots values is chosen and assigned separately for input variables. 

Multiplying an existing basis function with a truncated linear function including a new variable, 

interaction BFs are obtained. Piecewise linear BFs in MARS method are expanded based on the 

new data set that has uncertainties. So, the piecewise linear BFs have the following notation [14]: 

( , )  ( ) ,  ( , )  ( ) ,c x x c x x    

    
                             

(7)                                 

where        := max 0, ,  := max 0, ,q q q q
 

  and   is a univariate knot. Therefore, the 

existing BF and the newly created interaction BF as well are employed in the approximation by 

MARS. Given the observations presented by the data ( ,  ) (  1,2,..., )i iy i Nt , the mth BF  is 

following form [14]: 

1

( ) := [ .( )] .
m

m m m
j j j

K

m

j

s t
  

  



t                                                       (8) 

Here, mK
 
means the number of truncated linear functions multiplied in the mth BF, m

j

t


 means 

the input variable corresponding to the kth truncated linear function in the mth BF, m
j

  means the 

knot value corresponding to the variable m
j

t


 and m
j

s
  

means the selected sign +1 or -1. To predict 

our function ( ) t  in model (6) instead of the backward step-wise algorithm of MARS [17], 

penalty terms are applied in addition to the least-squares estimation to control the lack-of-fit from 

the complexity viewpoint of the estimation. For the GPLM with RCMARS, Penalized Residual 
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Sum of Squares (PRSS), with BFs according to (8) accumulated in the forward stepwise 

algorithm of MARS, are constructed by the equation [22]: 

     

1 2

22 2
2

,

11 1

 , ( )( , )

: ( ) .
max

T

MN
T m m

i i m m r s m
r si m

r s V m

PRSS D d

 

   
 



   
     t t t







                          (9)   

Here, V(m) :{   1,2,...,m

j mj K  } is the variable set used in the mth BF m , 

,1 ,2 ,( , ,..., )T

i i i i qt t tt  show the inputs and m t
1 2

( , ,..., )
Km

T

m m mt t t represents the vector of variables 

that contribute to the mth BF ,m  which are related with the ith link function ( 1,2,..., )i i N  . 

The terms 0m   are in the role of penalty parameters max( 1, 2, , )m M  . Additionally, 

   
1 2,

m mm
m mr s m
r s

D
t t

 




 
    

t t



 shows the first- or second-order derivatives. The integrals of the 

first-order derivatives measure the flatness of the model functions whereas the integrals of the 

second-order derivatives measure the instability and complexity in the model. After the 

discretized form is applied to approximate the multi-dimensional integrals, our PRSS of CGPLM 

in equation (9) may be presented as (see [21, 27] for more details): 

2
2

2
2

( ) .PRSS      t L
                                                  

(10) 

Herewith, our PRRS problem looks like a classical Tikhonov Regularization (TR) problem [2] 

with some 0  , 2   for some .  Let us express the TR problem (10) through Conic 

Quadratic Programming (CQP) which is a convex optimization methodology. Therefore, PRSS 

can be easily formulated as a CQP problem and, indeed, referring to an approximate selection of 

a bound ,M  we state our problem as follows [20]: 

,

2

2

 
minimize ,  

subject to ,

                .

 

( )

 

t

t

M

t

 





  



t

L

                                              (11)     

                                                                            

3. Robust Counterparts of RCGPLM with Polyhedral Uncertainty  

 

In our study, we employ the form of polyhedral sets as our uncertainty sets as we continue to 

elaborate our optimization problem as a CQP problem. Whenever polyhedral uncertainty is 

employed for the linear part of CGPLM, addressing uncertainty sets 1

1U
 
and 1

2U  the robust 

counterpart is represented by [23] 

 

1
1 1

1
1 2

2 2

1 1 2 2
minimize   max ,

U

U






 


 
W

  z

z W K   

                                           

(12)               
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where 1

1  U is a polytope with 2N n
 vertices 

21 2

1 1 1, ,..., .
n

W W W  Actually, it is not exactly known, but 

belongs to a convex bounded uncertain domain  

2 2
1

1 1

1 1

 0 ( {1,2,..., 2 }),  1 ,

N n N n

j N n

j jj
j j

U j  

 



 

  
    
  
 W

                                

(13)

 

i.e., 
21 1 2

1 1 1 1conv{ , ,..., } 
N n

U


 W W W being the convex hull. Furthermore, 1

2U
 
is a polytope with 

2N
 vertices 

1 2 2

1 1 1, ,...,
N

z z z . It is not exactly known, but considered as the convex bounded 

uncertain domain  

2 2
1

2 1

1 1

 0 ( {1,2,..., 2 }),  1 ,

N N

i N

i i i

i i

U i  
 

  
    
  
 z

                                    

(14)

                                

 

i.e., 
1 1 2 2

2 1 1 1conv{ , ,..., }
N

U  z z z . Here, the matrix 
1W and the vector 

1z  with uncertainty are lying in 

Cartesian products of intervals which are parallelpipes [21]. Since 1

1U  and 1

2U  are polytopes they 

can be described via their vertices: 

 

 

1 1 2

1 1 1 1

1 1 2

2 1 1 1

conv , ,..., ,

conv , ,..., .

n

N

U

U





W W W

z z z
                                                      

(15)

           

 

Now, since we employ CQP for the linear part of our RCGPLM, the optimization problem (12) 

can be stated as a standard CQP [6] in the following form [22]: 

1

1
,

1 1 12

12

minimize   ,

subject to   ( 1,2,...,  ;  1,2,..., ),   

                ,

i j i N j n

M




   



z W

K





                       

(16)               

with some selected parameter values of 1M . We can solve this robust CQP problem (16) by the 

help of MOSEK [18]. 

 

If polyhedral uncertainty is implied for the nonlinear part of CGPLM, addressing on uncertainty 

sets 2

1U
 
and 2

2 ,U
 
the robust counterpart is described by [23] 

2
2 1

2 2

2 2

2 2 2 2
minimize   max  

U
U





 


 
W
  z

z W L ,                                            (17)                                 

where 2

1  U is a polytope with max2
N M

 vertices 
max21 2

2 2 2, ,..., .
N M

W W W  Similar to 1

1 ,U  2

1U  is set by 
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max max

max

2 2
2

1 2

1 1

 0 ( {1,2,..., 2 }),  1 ,

N M N M

N Mj

j jj
j j

U j  

 



 

  
    
  
 W

                              

(18)

 

i.e., 
max22 1 2

1 2 2 2conv{ , ,..., }
N M

U


 W W W . Furthermore, 2

2U
 

is a polytope with 2N
 vertices 

1 2 2

2 2 2, ,..., :
N

z z z  

 

2 2
2

2 2

1 1

 0 ( {1,2,..., 2 }),   1 ,

N N

i N

i i i

i i

U i  
 

  
    
  
 z

                                    

(19)

                                  

 

i.e., 
2 1 2 2

2 2 2 2conv{ , ,..., } 
N

U  z z z [21]. Whenever 2

1U  and 2

2U  are polytopes given by 

 

 

max2 1 2

1 2 2 2

2 1 2

2 2 2 2

conv , ,..., ,

conv , ,..., ,

M

N

U

U





W W W

z z z
                                                                

(20) 

and we employ CQP again, then our  robust problem (17) for nonlinear part can be equivalently 

stated as  a standard CQP [6]: 

2

2
,

2 2 2 max2

22

minimize   

subject to    ( 1,2,...,  ;  1,2,..., ),

                .

i jz i N j M

M




   



W

L





                 

(21) 

We can solve this robust CQP problem (21) by the help of MOSEK [18] with some parameter 

values of 1M chosen. 

 

4. Application of RCGPLM in Financial Market 

 

For the implementation of RCGPLM algorithm developed, we use a data set as a sample from the 

real-world financial market data which are chosen as the time series data for the empirical part 

from the website of Central Bank of the Republic of Turkey [9]. The data that cover the time 

horizon between January 1999 and December 2000 include the four economic indicators which 

are the most usually used ones for the interpretation of an economic situation. 

 

 For the financial markets, an index is an imaginary portfolio of securities presenting a particular 

market or a portion of it. In our data set, ISE 100 stock index is the dependent variable because of 

a statistical measure of change in an economy or a securities market. It has its own calculation 

methodology and is usually employed in terms of a change from a base value. Therefore, the 

percentage change is more important than the actual numerical value. The independent variables 

are ISE Trading Volume, Capacity Usage Ratio, and Credit Volume. Additionally, one indicator 
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from the USA is taken for analyze: Fed Funds Interest Rate because of the strong effect of the 

USA on the economy of Turkey and the world. So, we have 4 predictor variables ( [25] for more 

detail ): 

 

1x  :  ISE Trading Volume,  

2x  :  Capacity Usage Ratio, 

3x  :  Credit Volume,  

4x :  Federal Funds Interest Rate,  

with 24 observations.  

For RCGPLM application, the input variables divide two parts. ISE Trading Volume and Federal 

Funds Interest Rate are selected for linear part and Capacity Usage Ratio and Credit Volume are 

chosen for nonlinear part. Firstly, we validate our assumption that the input variables and the 

output variable are distributed normally and we transform the variables into the standard normal 

distribution, the CI is obtained to be the interval (-3, 3). In fact, we have a tradeoff between 

tractability and robustification. Since we do not have enough computer capacity to solve our 

problem for uncertainty matrices, we formulate linear and nonlinear part of our RCGPLM as a 

CQP problem for each observation using the combinatorial approach, which we call as weak 

robustification. Consequently, we generate different weak RCGPLM (WRCGPLM) models for 

both the linear and the nonlinear part. 

To apply the robust optimization technique on the linear part of CGPLM model, the uncertainty 

matrices and vectors based on polyhedral uncertainty sets are obtained by using (13) and (14) 

and, uncertainty is calculated for all input and output values which are represented by CIs. Then, 

perturbation (uncertainty) is included into the real input data ,ix
 
in each dimension, and into the 

output data iy  ( 1, 2, ,24)i   .  

To construct our WRCGPLM model for linear part, we obtain the 24 different models. We solve 

them separately by using MOSEK program [18] and find the 1 values for all auxiliary problems. 

Then, using the worst-case approach, we choose the solution that has the maximum 1  value 

from the equation (16) and we continue our calculations using the parameter value 0 1 2, ,    

which we find from the auxiliary problem that has the highest 2 value.  

After getting the regression coefficients with the optimal vector preproc , we subtract the linear 

least-square model preproc
X from the y and we evaluate the output vector   for the nonlinear 

part. Then, for nonlinear part we obtain the largest model with   by using the Salford MARS 

Version 3 [17]. This largest model has the following BFs:  
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1 2 2 2

3 2 4 2

5 1 2

6 2 7 2

8

( ) max{0,  0.2855},    ( ) max{0,  0.2855 },

( ) max{0,  0.2430},    ( ) max{0, 0.2430 },

( ) max{0,  1.8979} max{0,  0.2430}

( ) max{0,  +0.7508},   ( ) max{0,  0.7508 },

( )

x t x t

x t x t

x t t

x t x t

x

 

 



 



   

    

   

   

 1 2max{0,  1.8979} max{0,  +0.7508}.t t 

 

Thus, the large model is presented as follows: 

0

1

0 1 2 2 2 3 2

4 2 5 1 2

6 2 7 2

 ( ) +  

    = max{0,  0.2855} max{0,  0.2855 } max{0,  0.2430}

      + max{0, 0.2430 } max{0,  1.8979} max{0,  0.2430}

     max{0,  +0.7508} max{0,  0.7508 }

 

M

m m

m

y

t t t

t t t

t t

   

   

 

 



 

     

     

   

 t

8 1 2     + max{0,  1.8979} max{0,  +0.7508} .t t   

 

To employ the robust optimization technique on the nonlinear part of CGPLM model, similar to 

linear part, the uncertainty matrices and vectors based on polyhedral uncertainty sets are 

constructed by using (18) and (19) and, uncertainty is evaluated for all input and output values 

which are represented by CIs. Then perturbation (uncertainty) is incorporated into the real input 

data ,it  
in each dimension, and into the output data i  (i=1,2,…,24).  

Afterward, similar to linear part, we obtain 24 different WRCGPLM models for nonlinear part, 

and solve them by using MOSEK program [18]. After getting the 2 values for all auxiliary 

problems, using the worst-case approach, we choose the solution which has the maximum 2

value from the equation (21). Then we continue our calculations using the parameter value 

0 1 2 3 4 5 6 7 8and, , , , , , ,             which we find from the auxiliary problem that has the highest 

2 value by using the worst-case approach. Therefore, for our optimal problem, we evaluate the 

regression coefficients and variances of linear and nonlinear parts of RCGPLM in Table 1. 

 

Table1.  Parameter values and variances for linear and nonlinear parts of RCGPLM 

 

α0 α1 α2 α3 α4 α5 α6 α7 α8 variance 

linear  
part 0,026 0,595 0,233             0,577 

nonlinear  
part 0,586 -0,708 -0,929 0,153 -0,249 0,088 0,063 -0,189 0,000 0,501 
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5. Conclusion and Further Studies 

 

In this investigation, we solve our data analysis and robustify CGPLM by both a robust approach 

and a combinatorial approach, called the weakly robust case, to tackle uncertainties that exist in 

real-world data and to make our refined approach feasible. Herewith, we purpose to diminish the 

estimation variance. For this aim, we have developed a theory and method, and also programmed 

it to be able to implement the method. We used both the efficient Interior Point Methods of 

MOSEK [18], together with MATLAB and some developed parts of the statistical software of 

MARS, called Salford MARS [17]. This has proved to be an excellent symbiosis of codes, and 

we want to develop and refine that interface in the future. 

The “goodness” of RCGPLM expresses itself through a tradeoff between exactness and stability; 

the first goal which is the classical one in model identification, is compromised (via some 

parameters) with robustness concerning the response variables. As our new contribution, 

robustification enters into the input variables and, herewith, in the model design. Via further 

“control” parameters, we provide a tuning of how much risk averse the modeller wishes to be.  

Aiming at a precise choice of any of these parameters, we will apply comparison criteria from 

statistics, as we did before [21, 22, 25]. An additional performance measure might also come 

from geometry and clustering theory: by our separation between “linearly” and “nonlinearly” 

involved groups of variables X and T from equation (2), we benefit from the “shape” and 

structure of the data. This is a main advantage of partially linear models, PLMs; we go one 

generalizing step further and permit two main working fields of supervised learning to be 

addressed at once now: regression and classification, modelled by GPLMs. Together with our 

robustification and the excellent numerical and complexity properties of Interior Point Methods 

which we use [8, 30], a tremendous improvement of our earlier works which appear as special 

cases now, and that it will mean a great achievement in future studies.     

Then, we will work on our new introduced process version of GPLM [24] for modelling, 

optimization and robustification of dynamical networks. We shall study a real-world application 

of this approach to validate and to investigate the performance of our GPLM, CGPLM, RGPLM 

and RCGPLM for target environment networks and we shall develop our method under other 

distributional assumptions for the data than being normal.  
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