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Abstract Complex regulatory networks effected by noise and data uncertainty oc-
cur in many OR applications. The complexity is compounded by the unknown in-
teractions between the system variables that have to be revealed from unprecise
measurement data. The concept of target-environment networks provides a generic
framework for the analysis of complex regulatory systems under uncertainty. Data
mining methods like clustering and classification can be applied for an identifica-
tion of functionally related groups of targets and environmental factors. The effects
of the intricate connections between target and environmental clusters on single en-
tities are determined by a parameterized time-discrete model. A crisp regression
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problem is introduced for parameter estimation and in case of uncertain data, ellip-
soids are used to describe the clusters and error sets what refers to particular robust
counterpart programs.

1 Introduction

The modeling and prediction of regulatory networks is of considerable importance
in many disciplines such as finance, biology, medicine and life sciences. The iden-
tification of the underlying network topology and the regulating effects allows to
gain deeper insights in the hidden relationships between the entities under consider-
ation. This is even more promising as the technical developments of the last decades
have produced a huge amount of data that is still waiting for a deeper analysis. Al-
though many theoretical contributions from various disciplines have focussed on the
analysis of such systems, the identification of regulatory networks from real-world
data is still challenging mathematics. In particular, the presence of noise and data
uncertainty raises serious problems to be dealt with on both the theoretical and com-
putational side. There are many sources of uncertainty in the real world. We refer
here to technological and market uncertainty, noise in observation and experimental
design, incomplete information and vagueness in decision making. Beside this, the
regulatory system has often to be further extended and improved with regard to the
unknown effects of additional parameters and factors which may exert a disturb-
ing influence on the key variables (target variables) under consideration. All these
dynamical networks and multi-modal systems are affected

• by uncertainty in the data, both in their input and their output parts, or, in other
words,

• by uncertainty in the scenarios and by random fluctuation,
• by the necessity to reduce the model complexity, i.e., to regularize, rarefy and

stabilize.

In this regard, we are on the way between complete determinism in processes
and the rich randomness as it can be investigated by stochastic calculus and, espe-
cially, Lévy processes. In 2002, we started our modelling of processes related with
genetic networks in the deterministic case where, then, in the following years, we
included the role of additional environmental factors which yielded us our multi-
modal systems such as gene-environment and eco-finance networks. Since in these
kinds of dynamics, the impact of the environmental items became implied as ad-
ditive ”shift” terms which can also be called as perturbations, we arrived at our
first implication of noise. Having once entered the domain of uncertainty, we went
on working it out, firstly, by interval uncertainty where, however, the dependencies
and correlations between the various items from biology, medicine, these sectors of
ecology, education and finance were not taken into account yet [55, 58]. We treated
those modelling tasks by the help of Chebychev approximation and Generalized
Semi-Infinite Optimization [46, 47, 48, 49, 51, 52, 59, 60]. By turning to the case of
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ellipsoidal uncertainty [25, 26, 27] and, as far as splines were used for approxima-
tion, by applying Multivariate Adaptive Regression Spline instead of Generalized
Additive Models [43, 44, 45], we could overcome that drawback and we included
stochastic dependencies and interactions into our model. Here, the dimensions of
the ellipsoids are motivated by additional information related to the model items
and their similarities, i.e., on how much they are close to each other and how the
distribution of such clusters expresses itself geometrically in ellipsoidal forms. In
game theoretical contexts, we called these clusters (sub) coalitions. In this way, we
arrived at a family or, in particular, sequence of ellipsoids which can be regarded as
the bodies which contain our target or environmental variables at the corresponding
times, i.e., the processes studied, by confidence levels of, e.g., 95%.

As it is clearly understood today, environmental factors constitute an essential
group of regulating components and by including these additional variables the
models performance can be significantly improved. The advantage of such an re-
finement has been demonstrated for example in [29], where it is shown that predic-
tion and classification performances of supervised learning methods for the most
complex genome-wide human disease classification can be greatly improved by
considering environmental aspects. Many other examples from biology and life sci-
ences refer to regulatory systems where environmental effects are strongly involved.
Among them are, e.g., metabolic networks [9, 35, 55], immunological networks [18],
social- and ecological networks [17]. We refer to [1, 13, 12, 15, 16, 19, 20, 21, 40,
41, 42, 32, 54, 61, 62] for applications, practical examples and numerical calcula-
tions.

Whenever we want to particularly address items to the financial sector among the
target variables or the environmental variables which, in fact, maybe be regarded in
a dual relationship mutually, then we arrive at eco-finance networks [24, 53]. This
interpretation and variety of our studies also represents that the identification of dy-
namics related with the Kyoto Protocol, where financial expenditures and emissions
reduced interact in time (TEM model) [20, 23, 28, 36, 37, 38, 39]. Financial nego-
tiation processes, represented in the way of collaborative game theory [50, 51], and
the identification and dynamics of financial processes given by stochastic differen-
tial equations and their time-discretized versions [56, 57], are an important part our
research. Incorporating uncertainty in cooperative game theory is motivated by the
need to handle uncertain outcomes in collaborative situations. Interval uncertainty is
a natural instance of uncertainty which influences cooperation. A broader overview
on recent developments on interval solutions and their applications can be found
in [2, 11]. Cooperative games are the games whose characteristic functions are in-
terval valued, i.e., the worth of a coalition is not a real number, but a compact interval
of real numbers. This means that one observes a lower and an upper bound of the
considered coalitions. This is very important from computational and algorithmic
viewpoint. We notice that the approach is general, since the characteristic function
interval-values may result from solving general optimization problems. Cooperative
interval games and interval solution concepts are useful tools for modeling various
economic and Operations Research situations where payoffs are affected by interval
uncertainty. The interval Baker-Thompson rule for solving the aircraft fee problem
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of an airport with one runway when there is uncertainty regarding the costs of the
pieces of the runway is presented and identified in [5] and an axiomatic character-
ization of the interval Baker-Thompson rule is given in [3]. Further, one-machine
sequencing situations with interval data are considered in [4] for which they present
different possible scenarios and extend to the interval setting classical results regard-
ing well known rules and sequencing games. Two classical bankruptcy rules, namely
the proportional rule and the rights-egalitarian rule, are extended in [10] using a co-
operative interval game approach. They show that interval allocations generated by
such rules belong to the interval core of related cooperative interval games. Finally,
[30] deal with cost allocation problems arising from connection situations where
edge costs are closed intervals of real numbers, and to solve such problems, they
extend classical solutions from the theory of minimum cost spanning tree games.

Recent studies on target-environment and gene-environment networks focussed
on systems with functionally related groups of target and environmental factors.
These groups are identified in a preprocessing step of clustering and classification
and the corresponding uncertain multivariate states are represented by ellipsoids [25,
26, 27]. The interaction of clusters is determined by affine-linear equations based on
ellipsoidal calculus. Various regression problems are introduced for an identification
of unknown system parameters from (ellipsoidal) measurement data. In addition,
problems of network rarefication and the corresponding mixed-integer regression
problems as well as a further relaxation by means of continuous optimization have
been addressed in [27]. For further details on the underlying set-theoretic regression
theory and the solvability by semi-definite programming we refer to [25, 26, 27].

In this paper, we further extend this approach and offer a new perspective where
potentially overlapping clusters of targets and groups of environmental factors take
influence on the states and values of single targets and single environmental vari-
ables.

The comparison of measurements and predictions of the model leads to a regres-
sion model for parameter estimation. Since clusters can be affected by noise and
errors, the uncertain multivariate states are represented by ellipsoids what refers to
the concept of robustness for mathematical programming problems. This approach
complements and further extends the framework developed in [25, 26, 27] for multi-
modal systems under ellipsoidal uncertainty.

The chapter is organized as follows: In Section 2 some basic facts and notation
about target and environmental variables as well as the partitioning of data in pos-
sibly overlapping clusters are provided. Then, in Section 3, a time-discrete linear
model is introduced that relates the single variables and the multivariate states of
groups of target and environmental factors. The corresponding regression model
for parameter estimation is addressed in Section 4. In a further step, data uncer-
tainty becomes included into our modelling in Section 5 and Section 6, where the
multivariate states of clusters are represented in terms of ellipsoids. Hereby, the cor-
responding regression models can be reformulated in terms of robust counterpart
programs.
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2 Target-Environment Networks

The time-discrete target-environment regulatory systems under consideration con-
sist of n targets and m environmental factors and, thus, constitutes a two-modal
system. The expression values of the target variables are given by the vector
X =

[
X1, . . . ,Xn

]′ and the vector E =
[
E1, . . . ,Em

]′ denotes the states of the en-
vironmental variables, where [ · ]′ stands for the transposition of a matrix or vector.
Data mining methods like clustering and classification as well as statistical data
analysis can be used for an identification of functionally related groups of targets
and environmental factors. These groups can show a direct interaction, but they can
also have a regulating effect on single targets or environmental factors. In this paper,
we focus on the interactions between clusters and single targets or environmental
factors. For a deeper analysis of inter-cluster regulatory networks under ellipsoidal
uncertainty we refer to [25, 26, 27].

When a cluster partition is established, the set of targets can be divided in R
clusters Cr ⊂ {1, . . . ,n}, r = 1, . . . ,R. Similarly, the set of all environmental items is
divided in S clusters Ds ⊂ {1, . . . ,m}, s = 1, . . . ,S. Depending on the data structure
and the data mining method used, the clusters might be disjoint or overlapping [22].
We note that in case of a strict sub-division of variables, the relations Cr1 ∩Cr2 = /0
for all r1 ̸= r2 and Ds1 ∩Ds2 = /0 for all s1 ̸= s2 are fulfilled. However, in many
applications a single entity might be involved in more than one regulating cycle
and for this reason we do not explicitly impose such restrictions and refer to the
more general situation of overlapping clusters. According to the cluster structure,
we introduce the sub-vector Xr ∈R|Cr | of X as the restriction of X given by elements
of Cr. In the same way, the sub-vector Es ∈ R|Ds| is defined as the restriction of E
given by elements of Ds.

3 The Time-Discrete Model

In this section, we introduce a time-discrete model for the states of the targets X j,
j = 1, . . . ,n, and environmental factors Ei, i = 1, . . . ,m. Four types of interactions
and regulating effects are involved:

(TT) target cluster → target variable,
(ET) environmental cluster → target variable,
(TE) target cluster → environment variable,
(EE) environmental cluster → environment variable.

When we refer to cluster partitions with potentially overlapping clusters, single
entities can refer to more than one group of data items. In such a situation, the target-
environment regulatory model can be formulated as follows:
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X(κ+1)
j = ζ T

j0+
R

∑
r=1

[
X (κ)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ)

s
]′Θ ET

js ,

E(κ+1)
i = ζ E

i0 +
R

∑
r=1

[
X (κ)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ)

s
]′Θ EE

is

 (CM)

with κ ≥ 0, where (CM) stands for cluster model. The initial values X(0) and
E(0) can be given by the first measurements of targets and environmental factors,
i.e., X(0) := X(0)

and E(0) := E(0)
. The vectors Θ T T

jr and Θ T E
ir are |Cr|-subvectors

of the parameter vectors Θ T T
j ∈ Rn and Θ T E

i ∈ Rn, respectively. These subvectors
are given by the indices of cluster Cr. Similarly, the vectors Θ ET

js and Θ EE
is are |Ds|-

subvectors of the parameter vectors Θ ET
j ∈ Rm and Θ EE

i ∈ Rm. The additional pa-
rameters ζ T

j0,ζ E
i0 ∈ R are intercepts. We note that if all clusters are disjoint, the

aforementioned subvectors correspond to distinct parts of the parameter vectors, but
we do not make this restriction here.

4 The Regression Problem

We now turn to an estimation of parameters of the cluster model (CM). For a re-
gression analysis, the predictions of (CM) have to be compared with the states
of targets X(κ)

=
[
X(κ)

1 , . . . ,X(κ)
n

]′ ∈ Rn and environmental observations E(κ)
=[

E(κ)
1 , . . . ,E(κ)

m
]′ ∈ Rm, κ = 0,1, . . . ,T , which are obtained from measurements

taken at sampling times t0 < t1 < .. . < tT . By inserting these measurements in model
(CM) we obtain the following predictions:

X̂(κ+1)
j = ζ T

j0 +
R

∑
r=1

[
X (κ)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ)

s
]′Θ ET

js ,

Ê(κ+1)
i = ζ E

i0 +
R

∑
r=1

[
X (κ)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ)

s
]′Θ EE

is ,

where κ = 0,1, . . . ,T − 1. We use the initial values X̂(0)
j := X(0)

j , Ê(0)
i := E(0)

i and

define the vectors X̂(κ) =
[
X̂(κ)

1 , . . . , X̂(κ)
n

]′ and Ê(κ) =
[
Ê(κ)

1 , . . . , Ê(κ)
m

]′, where κ =
0,1, . . . ,T ; i = 1, . . . ,n; j = 1, . . . ,m.

When we compare measurements and predictions, we obtain the following re-
gression problem:

Minimize
T

∑
κ=1

{ n

∑
j=1

∣∣∣X̂(κ)
j −X(κ)

j

∣∣∣+ m

∑
i=1

∣∣∣Ê(κ)
i −E(κ)

i

∣∣∣}. (RP)
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5 Ellipsoidal Uncertainty

Ben-Tal and Nemirovski introduced the concept of robustness for programming
problems where data is subject to ellipsoidal uncertainty [6, 8]. In general, an el-
lipsoid in Rp will be parameterized in terms of its center c ∈ Rp and a symmetric
non-negative definite configuration (or shape) matrix Σ ∈ Rp×p as

E (c,Σ) = {Σu+ c |∥u∥2 ≤ 1}.

In order to include data uncertainty into our model, we now assume that the states
of the clusters of target variables and environmental factors are subject to ellipsoidal
uncertainty. That means, our regression analysis will be based on set-valued data

X (κ)
r ∈ E

(
X (κ)

r ,Σ (κ)
r

)
⊂ R|Cr |,

E(κ)
s ∈ E

(
E(κ)

s ,Π (κ)
s

)
⊂ R|Ds|,

with κ = 0,1, . . . ,T . The measurements X (κ)
r and E(κ)

s determine the centers of the
ellipsoids and the corresponding symmetric shape matrices Σ (κ)

r and Π (κ)
s are given

by the variance-covariance matrices of cluster data what also refers to partial corre-
lations and partial variances of cluster elements.

6 Robust Regression under Ellipsoidal Uncertainty

Measurements and observations of targets and environmental factors are usually
affected by uncertainty. The regression problem (RP) depends on crisp (numerical)
measurements and does not reflect the disturbing influence of unprecise data. For
this reason, we now turn to robust regression models with regard to data sets with
(overlapping) cluster partition. There are several ways to describe data uncertainty
from a set-theoretic perspective. When an individual error can be assigned to each
target and environmental factor, the corresponding states of variables are given by
intervals, whereas the states of clusters are represented by hyperrectangles. When
errors of clusters elements are correlated, non-paraxial sets have to be considered
and the polyhedral uncertainty sets can be replaced by error ellipsoids.

In order to include data uncertainty in the regression problem (RP) it is conve-
nient to reformulate this model as follows:
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Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}

such that
∣∣∣∣X̂(κ)

j −X(κ)
j

∣∣∣∣≤ p(κ)j (κ = 1, . . . ,T ; j = 1, . . . ,n),∣∣∣∣Ê(κ)
i −E(κ)

i

∣∣∣∣≤ q(κ)i (κ = 1, . . . ,T ; i = 1, . . . ,m).

This problem can be equivalently written as

Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j+
m

∑
i=1

q(κ)i

}

such that
∣∣∣∣ζ T

j0 +
R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js − X(κ)
j

∣∣∣∣≤ p(κ)j ,

∣∣∣∣ζ E
i0 +

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is − E(κ)
i

∣∣∣∣ ≤ q(κ)i

(κ = 1, . . . ,T ; j = 1, . . . ,n; i = 1, . . . ,m).

We assume that the constraints are satisfied for all realizations of the states X (κ)
r ∈

E
(
X (κ)

r ,Σ (κ)
r

)
and E(κ)

s ∈ E
(
E(κ)

s ,Π (κ)
s

)
and in this way we obtain the following

robust regression problem with uncertain ellipsoidal states:

Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}

such that
∣∣∣∣ζ T

j0 +
R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js − X(κ)
j

∣∣∣∣≤ p(κ)j ,

∣∣∣∣ζ E
i0 +

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is − E(κ)
i

∣∣∣∣≤ q(κ)i

(κ = 1, . . . ,T ; j = 1, . . . ,n; i = 1, . . . ,m)

∀X (κ)
r ∈ E

(
X (κ)

r ,Σ (κ)
r

)
(κ = 0, . . . ,T −1; r = 1, . . . ,R),

∀E(κ)
s ∈ E

(
E(κ)

s ,Π (κ)
s

)
(κ = 0, . . . ,T −1; s = 1, . . . ,S).

The above problem can be rewritten:
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Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}
such that ζ T

j0 +
R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js − X(κ)
j ≤ p(κ)j ,

−ζ T
j0 −

R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr −
S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js + X(κ)
j ≤ p(κ)j ,

ζ E
i0 +

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is − E(κ)
i ≤ q(κ)i ,

−ζ E
i0 −

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir −
S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is + E(κ)
i ≤ q(κ)i

(κ = 1, . . . ,T ; j = 1, . . . ,n; i = 1, . . . ,m)

∀X (κ)
r ∈ E

(
X (κ)

r ,Σ (κ)
r

)
(κ = 0, . . . ,T −1; r = 1, . . . ,R),

∀E(κ)
s ∈ E

(
E(κ)

s ,Π (κ)
s

)
(κ = 0, . . . ,T −1; s = 1, . . . ,S).

This problem has an infinite number of constraints as it depends on all possible
realizations of ellipsoidal states of targets and environmental factors. Another re-
formulation of this problem can be obtained when the ellipsoids are represented as
follows:

E
(
X (κ)

r ,Σ (κ)
r

)
=
{

X (κ)
r +Σ (κ)

r ur

∣∣∣∥ur∥2 ≤ 1
}
,

E
(
E(κ)

s ,Π (κ)
s

)
=
{

E(κ)
s +Π (κ)

s vs

∣∣∣∥vs∥2 ≤ 1
}
.

With

Ur :=
{

ur ∈ R|Cr |
∣∣∣∥ur∥2 ≤ 1

}
, r = 1, . . . ,R,

Vs :=
{

vs ∈ R|Ds|
∣∣∣∥vs∥2 ≤ 1

}
, s = 1, . . . ,S

we then obtain the equivalent problem
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Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}

such that ζ T
j0+

R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr +
R

∑
r=1

max
ur∈Ur

{
u′r Σ (κ−1)

r Θ T T
jr

}
+

S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js +
S

∑
s=1

max
vs∈Vs

{
v′s Π (κ−1)

s Θ ET
js

}
− X(κ)

j ≤ p(κ)j (κ = 1, . . . ,T ; j = 1, . . . ,n),

−ζ T
j0−

R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr −
R

∑
r=1

max
ur∈Ur

{
u′r Σ (κ−1)

r Θ T T
jr

}
−

S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js −
S

∑
s=1

max
vs∈Vs

{
v′s Π (κ−1)

s Θ ET
js

}
+ X(κ)

j ≤ p(κ)j (κ = 1, . . . ,T ; j = 1, . . . ,n),

ζ E
i0 +

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir +
R

∑
r=1

max
ur∈Ur

{
u′r Σ (κ−1)

r Θ T E
ir

}
+

S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is +
S

∑
s=1

max
vs∈Vs

{
v′s Π (κ−1)

s Θ EE
is

}
− E(κ)

i ≤ q(κ)i (κ = 1, . . . ,T ; i = 1, . . . ,m),

−ζ E
i0 −

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir −
R

∑
r=1

max
ur∈Ur

{
u′r Σ (κ−1)

r Θ T E
ir

}
−

S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is −
S

∑
s=1

max
vs∈Vs

{
v′s Π (κ−1)

s Θ EE
is

}
+ E(κ)

i ≤ q(κ)i (κ = 1, . . . ,T ; i = 1, . . . ,m).

The equations

max
ur∈Ur

{
u′r Σ (κ)

r Θ T T
jr

}
= max

ur∈Ur

{
−u′r Σ (κ)

r Θ T T
jr

}
=
∥∥∥Σ (κ)

r Θ T T
jr

∥∥∥
2
,

max
ur∈Ur

{
u′r Σ (κ)

r Θ T E
ir

}
= max

ur∈Ur

{
−u′r Σ (κ)

r Θ T E
ir

}
=
∥∥∥Σ (κ)

r Θ T E
ir

∥∥∥
2
,

max
vs∈Vs

{
v′s Π (κ)

s Θ ET
is

}
= max

vs∈Vs

{
−v′s Π (κ)

s Θ ET
is

}
=
∥∥∥Π (κ)

s Θ ET
is

∥∥∥
2
,

max
vs∈Vs

{
v′s Π (κ)

s Θ EE
is

}
= max

vs∈Vs

{
−v′s Π (κ)

s Θ EE
is

}
=
∥∥∥Π (κ)

s Θ EE
is

∥∥∥
2

lead to a further description of the regression problem:
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Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}

such that
∣∣∣∣ζ T

j0 +
R

∑
r=1

[
X (κ−1)

r
]′Θ T T

jr +
S

∑
s=1

[
E(κ−1)

s
]′Θ ET

js − X(κ)
j

∣∣∣∣
+

R

∑
r=1

∥∥Σ (κ−1)
r Θ ET

jr
∥∥

2 +
S

∑
s=1

∥∥Π (κ−1)
s Θ ET

js
∥∥

2 ≤ p(κ)j ,

∣∣∣∣ζ E
i0 +

R

∑
r=1

[
X (κ−1)

r
]′Θ T E

ir +
S

∑
s=1

[
E(κ−1)

s
]′Θ EE

is − E(κ)
i

∣∣∣∣
+

R

∑
r=1

∥∥Σ (κ−1)
r Θ T E

ir
∥∥

2 +
S

∑
s=1

∥∥Π (κ−1)
s Θ EE

is
∥∥

2 ≤ q(κ)i

(κ = 1, . . . ,T ; j = 1, . . . ,n; i = 1, . . . ,m).

Finally, with the vectors

Θ T
j =

[
ζ T

j0,Θ T T
j1 , . . . ,Θ T T

jR ,Θ ET
j1 , . . . ,Θ ET

jS

]T
,

Θ E
i =

[
ζ E

i0 ,Θ T E
i1 , . . . ,Θ T E

iR ,Θ EE
i1 , . . . ,Θ EE

iS

]T
,

c(κ) =
[
1,X (κ)

1 , . . . ,X (κ)
R ,E(κ)

1 , . . . ,E(κ)
S

]T

we obtain the following program for an estimation of the parameters of the cluster
model (CM) based on ellipsoidal uncertainty:

Minimize
T

∑
κ=1

{ n

∑
j=1

p(κ)j +
m

∑
i=1

q(κ)i

}

such that
∣∣∣∣[c(κ−1)

]′Θ T
j −X(κ)

j

∣∣∣∣ + R

∑
r=1

∥∥Σ (κ−1)
r Θ T T

jr
∥∥

2 +
S

∑
s=1

∥∥Π (κ−1)
s Θ ET

js
∥∥

2 ≤ p(κ)j ,

∣∣∣∣[c(κ−1)
]′Θ E

i −E(κ)
i

∣∣∣∣ + R

∑
r=1

∥∥Σ (κ−1)
r Θ T E

ir
∥∥

2 +
S

∑
s=1

∥∥Π (κ−1)
s Θ EE

is
∥∥

2 ≤ q(κ)i

(κ = 1, . . . ,T ; j = 1, . . . ,n; i = 1, . . . ,m). (RCPE)

To be able to solve the problems like RCPE, stochastic programming, dynamic
programming and robust optimization methods are principle methods which cope
with uncertainty. Although it seems that the areas of them overlap, they are devel-
oped freely of one another. Stochastic programming methods present the uncertain
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data by scenarios which are created in advance while dynamic programming meth-
ods handle stochastic uncertain systems over multiple stages. As an alternative to
stochastic and dynamic programming methods, robust optimization methods deal
with uncertainty as deterministic, but do not limit parameter values to point esti-
mates [14]. The purpose of robust optimization is to find an optimal or near optimal
solution which is feasible for any values of the uncertain parameters in prespecified
uncertainty sets that have special shape such as polyhedral and ellipsoidal. For fur-
ther details on robust optimization and the numerical treatment of the corresponding
uncertainty-affected programming problems with polyhedral and ellipsoidal uncer-
tainty we refer to [7, 31, 33, 34].

7 Conclusion

In this chapter, we analyzed inverse problems for target-environment networks un-
der ellipsoidal uncertainty. This theoretical framework is particularly suited for pa-
rameter identification of gene-environment networks in system genetics and compu-
tational biology as well as eco-finance networks of OR-applications. This approach
constitutes a further extension of our analysis of target-environment networks in OR
that are based on interval arithmetics where Chebychev approximation and gener-
alized semi-infinite optimization are considered. In this paper, we focused on time-
discrete two-modal models that determine the response of single target variables
and environmental factors to the actual states of potentially overlapping clusters or
coalitions of system variables. This complements our recently introduced concept
of target-environment networks for an analysis of the intrinsic interactions and syn-
ergetic connections between clusters. The underlying regression models are based
on ellipsoidal calculus and in future work, combinations of both approaches have to
considered such that clusters may take influence on target and environmental clus-
ters as well as single genes and single environmental factors simultaneously.
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