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Target-environment networks provide a conceptual framework for the analysis of complex
regulatory systems that are effected by noise and uncertainty. They occur in many disci-
plines and are often referred to as gene-environment networks in computational biology and
eco-finance networks in financial sciences. Clustering and classification can be applied for an
identification of functionally related groups of targets and environmental factors. A param-
eterized linear model is introduced that determines the intricate interactions and synergetic
connections between target and environmental clusters. For an estimation of parameters, a
crisp regression regression problem is considered. In case of uncertain system states, the clus-
ters are represented in terms of polyhedrons and ellipsoids and we derive the corresponding
set-theoretic robust counterpart programs.
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1. Introduction

The modeling and prediction of regulatory networks is of considerable importance
in many disciplines such as finance, biology, medicine and life sciences. The iden-
tification of the underlying network topology allows to gain deeper insights in the
regulating effects and the hidden relationships between the variables under con-
sideration. This is even more promising as the technical developments of the last
decades have produced a huge amount of data that is still waiting for a deeper
analysis. Although many theoretical contributions from various disciplines have
focussed on the analysis of such systems, the identification of regulatory networks
from real-world data is still challenging mathematics. In particular, the presence
of noise and data uncertainty raises serious problems to be dealt with on both the
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theoretical and computational side. Beside this, the regulatory system has often to
be further extended and improved with regard to the unknown effects of additional
parameters and factors which may exert a disturbing influence on the key variables
under consideration. All these dynamical networks are affected

• by uncertainty in the data, both in their input and their output parts, or, in
other words,

• by uncertainty in the scenarios and by random fluctuation,
• by the necessity to reduce the model complexity, i.e., to regularize, rarefy and

stabilize.

In this regard, we are on the way between complete determinism in processes and
the rich randomness as it can be investigated by stochastic calculus and, especially,
Lévy processes. In 2002, we started our modelling of processes related with genetic
networks in the deterministic case where, then, in the following years, we included
the role of the environment which yielded us our gene-environment and eco-finance
networks. Since in these kinds of dynamics, the impact of the environmental items
became implied as additive ”shift” terms which can also be called as perturba-
tions, we arrived at our first implication of noise. Having once entered the domain
of uncertainty, we went on working it out, firstly, by interval uncertainty where,
however, the dependencies and correlations between the various items from biol-
ogy, medicine, these sectors of ecology, education and finance were not taken into
account yet [49, 52]. We treated those modelling tasks by the help of Chebychev
approximation and Generalized Semi-Infinite Optimization. By turning to the case
of ellipsoidal uncertainty [20–22] and, as far as splines were used for approximation,
by applying Multivariate Adaptive Regression Spline instead of Generalized Addi-
tive Models [36–38], we could overcome that drawback and we included stochastic
dependencies and interactions into our model. Here, the dimensions of the ellip-
soids are motivated by additional information related to the model items and their
similarities, i.e., on how much they are close to each other and how the distribution
of such clusters expresses itself geometrically in ellipsoidal forms. In game theoret-
ical contexts, we called these clusters (sub) coalitions. In this way, we arrived at a
family or, in particular, sequence of ellipsoids which can be regarded as the bodies
which contain our target or environmental variables at the corresponding times,
i.e., the processes studied, by confidence levels of, e.g., 95%.

As it is clearly understood today, environmental factors constitute an essen-
tial group of regulating components and by including these additional variables
the models performance can be significantly improved. The advantage of such an
refinement has been demonstrated for example in [24], where it is shown that
prediction and classification performances of supervised learning methods for the
most complex genome-wide human disease classification can be greatly improved
by considering environmental aspects. Many other examples from biology and life
sciences refer to regulatory systems where environmental effects are strongly in-
volved. Among them are, e.g., metabolic networks [2, 28, 49], immunological net-
works [14], social- and ecological networks [13]. We refer to [12, 16, 33–35, 55, 56]
for applications, practical examples and numerical calculations.

Whenever we want to particularly address items to the financial sector among the
target variables or the environmental variables which, in fact, maybe be regarded
in a dual relationship mutually, then we arrive at eco-finance networks [19]. This
interpretation and variety of our studies also represents that the identification
of dynamics related with the Kyoto Protocol, where financial expenditures and
emissions reduced interact in time (TEM model) [16, 18, 23, 29–32]. Financial
negotiation processes, represented in the way of collaborative game theory [44,
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45], and the identification and dynamics of financial processes given by stochastic
differential equations and their time-discretized versions [50, 51], are an important
part our research.

Recent studies on target-environment and gene-environment networks focussed
on systems with functionally related groups of target and environmental factors.
These groups are identified in a preprocessing step of clustering and classifica-
tion and the corresponding uncertain multivariate states are represented by ellip-
soids [20–22]. The interaction of clusters is determined by affine-linear equations
based on ellipsoidal calculus. Various regression problems are introduced for an
identification of unknown system parameters from (ellipsoidal) measurement data.
In addition, problems of network rarefication and the corresponding mixed-integer
regression problems as well as a further relaxation by means of continuous opti-
mization have been addressed in [22]. For further details on the underlying set-
theoretic regression theory and the solvability by semi-definite programming we
refer to [20–22].

In this paper, we further extend this approach and offer a new perspective where
clusters of targets and groups of environmental factors take influence on the states
and values of single targets and single environmental variables.

The comparison of measurements and predictions of the model leads to a regres-
sion model for parameter estimation. Since the clusters can be affected by noise
and errors, the uncertain multivariate states are represented by polyhedrons and
ellipsoids what refers to the concept of robustness for mathematical programming
problems.

The paper is organized as follows: In Section 2 some basic facts and notation
about target and environmental variables as well as the partitioning of data in
clusters are provided. Then, in Section 3, a time-discrete linear model is introduced
that relates the single variables and the multivariate states of groups of target and
environmental factors. The corresponding regression model for parameter estima-
tion is addressed in Section 4. In a further step, data uncertainty becomes included
into our modelling in Section 5 and Section 6, where the multivariate states of
clusters are represented in terms of polyhedrons and ellipsoids. Hereby, the cor-
responding regression models can be reformulated in terms of robust counterpart
programs.

2. Target-Environment Networks

In this study, we consider time-discrete target-environment regulatory systems with
n targets and m environmental factors. The vector X =

[
X1, . . . ,Xn

]′ denotes the
expression values of the targets and E =

[
E1, . . . ,Em

]′ represents the environmental
variables, where [ · ]′ stands for the transposition of a matrix or vector. Often,
functionally related groups of targets and environmental items can be identified in
a preprocessing step of clustering and classification. These groups exert a more or
less regulating influence on single targets or environmental factors. For this reason,
the set of targets is divided in R disjoint clusters Cr ⊂ {1, . . . , n}, r = 1, . . . , R.
Similarly, the set of all environmental items is divided in S disjoint clusters Ds ⊂
{1, . . . ,m}, s = 1, . . . , S. Here, we focus on non-overlapping clusters and assume
a strict sub-division of the variables, so that the relations Cr1 ∩ Cr2 = ∅ for all
r1 6= r2 and Ds1 ∩ Ds2 = ∅ for all s1 6= s2 are fulfilled. According to the cluster
structure, we introduce the sub-vector Xr ∈ R|Cr| of X as the restriction of X given
by elements of Cr. In the same way, the sub-vector Es ∈ R|Ds| is defined as the
restriction of E given by elements of Ds.
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3. The Linear Model

In this section, we introduce a time-discrete model for the states of the targets Xj ,
j = 1, . . . , n, and environmental factors Ei, i = 1, . . . ,m. Four types of interactions
and regulating effects are involved: (TT) target → target, (ET) environment →
target, (TE) target → environment, (EE) environment → environment. A general
linear model is given by

X(κ+1)
j = ζTj0 +

[
X(κ)

]′ΘTT
j +

[
E(κ)

]′ΘET
j ,

E(κ+1)
i = ζEi0 +

[
X(κ)

]′ΘTE
i +

[
E(κ)

]′ΘEE
i ,

with κ ≥ 0, where ΘTT
j ,ΘTE

i ∈ Rn, ΘET
j ,ΘEE

i ∈ Rm denote the vectors of parame-
ters, ζTj0, ζ

E
i0 ∈ R are intercepts. This model depends on (n+m)(n+m+1) unknown

parameters. The initial values X(0) and E(0) can be given by the first measurements
of targets and environmental factors, i.e., X(0) := X(0) and E(0) := E(0).

Referring to the classification in terms of clusters, the model under consideration
can be reformulated as follows:

X(κ+1)
j = ζTj0+

R∑
r=1

[
X(κ)
r

]′ΘTT
jr +

S∑
s=1

[
E(κ)
s

]′ΘET
js ,

E(κ+1)
i = ζEi0 +

R∑
r=1

[
X(κ)
r

]′ΘTE
ir +

S∑
s=1

[
E(κ)
s

]′ΘEE
is


(LCM)

with κ ≥ 0, where (LCM) stands for linear cluster model. The vectors ΘTT
jr

and ΘTE
ir are |Cr|-subvectors of the parameter vectors ΘTT

j and ΘTE
i , respectively.

These subvectors are given by the indices of cluster Cr. Similarly, the vectors ΘET
js

and ΘEE
is are |Ds|-subvectors of the parameter vectors ΘET

j and ΘEE
i . Since all

clusters are disjoint, the aforementioned subvectors correspond to distinct parts of
the parameter vectors.

4. The Regression Problem

We now turn to an estimation of parameters of the linear cluster model (LCM). For
a regression analysis, the predictions of (LCM) have to be compared with the states
of targets X(κ) =

[
X(κ)

1 , . . . ,X(κ)
n

]′ ∈ Rn and environmental observations E(κ) =[
E(κ)

1 , . . . ,E(κ)
m

]′ ∈ Rm, κ = 0, 1, . . . , T , which are obtained from measurements
taken at sampling times t0 < t1 < . . . < tT . By inserting these measurements in
model (LCM) we obtain the following predictions:

X̂(κ+1)
j = ζTj0 +

R∑
r=1

[
X

(κ)
r

]′ΘTT
jr +

S∑
s=1

[
E

(κ)
s

]′ΘET
js ,

Ê(κ+1)
i = ζEi0 +

R∑
r=1

[
X

(κ)
r

]′ΘTE
ir +

S∑
s=1

[
E

(κ)
s

]′ΘEE
is ,
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where κ = 0, 1, . . . , T − 1. We set X̂(0)
j := X(0)

j and Ê(0)
i := E(0)

i as well as X̂(κ) =[
X̂(κ)

1 , . . . , X̂(κ)
n

]′ and Ê(κ) =
[
Ê(κ)

1 , . . . , Ê(κ)
m

]′, where κ = 0, 1, . . . , T ; i = 1, . . . , n;
j = 1, . . . ,m.

The comparison of measurements and predictions leads to the following regres-
sion problem:

Minimize
T∑
κ=1

{∥∥∥X̂(κ) − X(κ)
∥∥∥
∗

+
∥∥∥Ê(κ) − E(κ)

∥∥∥
∗

}
.

The norm ‖ ·‖∗ can be for example the 1-, 2-,∞-norm or, in general, also the ‖ ·‖p-
norm. We note that we have analyzed the regression problem for all these norms
with both polyhedral and ellipsoidal data and we will address these approaches in
forthcoming papers.

In this paper, we will restrict ourselves to the 1-norm and we consider the fol-
lowing regression problem:

Minimize
T∑
κ=1

{ n∑
j=1

∣∣∣X̂(κ)
j − X(κ)

j

∣∣∣+
m∑
i=1

∣∣∣Ê(κ)
i − E(κ)

i

∣∣∣}. (RP)

In the following sections, data uncertainty will become included. For this reason
it is convenient to reformulate the regression problem (RP) as follows:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣X̂(κ)

j −X(κ)
j

∣∣∣∣≤ p(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),∣∣∣∣Ê(κ)

i −E(κ)
i

∣∣∣∣≤ q(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m).

This problem can be equivalently written as

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣ζTj0 +

R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js − X(κ)

j

∣∣∣∣≤ p(κ)
j ,

∣∣∣∣ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is − E(κ)

i

∣∣∣∣ ≤ q(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m).
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5. Robust Regression with Polyhedral Uncertainty

Measurements and observations of targets and environmental factors are usually
effected by uncertainty. The regression problem (RP) depends on crisp (numerical)
measurements and does not reflect the disturbing influence of unprecise data. For
this reason, we now turn to robust regression models with regard to data sets with
cluster partition. There are several ways to describe data uncertainty from a set-
theoretic perspective. When an individual error can be assigned to each target and
environmental factor, the corresponding states of variables are given by intervals,
whereas the states of clusters are represented by hyperrectangles. When errors of
clusters elements are correlated, non-paraxial sets have to be considered and the
polyhedral uncertainty sets can be replaced by error ellipsoids. In this section,
we consider the case of paraxial error sets and refer to polyhedral uncertainty.
Correlation between cluster elements and ellipsoidal uncertainty will be addressed
in Section 6.

In order to represent data uncertainty in terms of error intervals, we now assume
that there is - a possibly time-dependent - maximal error for each target and envi-
ronmental factor that is denoted by (errT )(κ)

j ≥ 0 and (errE)(κ)
i ≥ 0, respectively.

The maximal errors are the elements of the vectors

(ErrT )(κ) =
[
(errT )(κ)

1 , . . . , (errT )(κ)
n

]′
,

(ErrE)(κ) =
[
(errE)(κ)

1 , . . . , (errE)(κ)
m

]′
,

with κ = 0, 1, . . . , T . Since an individual error is assigned to each single variable, we
assume that the states of clusters of targets and environmental factors are subject to
polyhedral uncertainty. The states of clusters are given in terms of hyperrectangles
where the corresponding measurement value defines its center:

X(κ)
r ∈ Q

(
X

(κ)
r , (ErrT )(κ)

r

)
⊂ R|Cr|,

E(κ)
s ∈ Q

(
E

(κ)
s , (ErrE)(κ)

s

)
⊂ R|Ds|,

with

Q
(
X

(κ)
r , (ErrT )(κ)

r

)
=
{
X

(κ)
r + diag

(
(ErrT )(κ)

r

)
ur

∣∣∣ur ∈ R|Cr|, ‖ur‖∞ ≤ 1
}
,

Q
(
E

(κ)
s , (ErrE)(κ)

s

)
=
{
E

(κ)
s + diag

(
(ErrE)(κ)

s

)
vs

∣∣∣ vs ∈ R|Ds|, ‖vs‖∞ ≤ 1
}
,

where κ = 0, 1, . . . , T . The measurements X(κ)
r and E

(κ)
s determine the centers

of the polyhedrons and the corresponding diagonal matrices diag
(
(ErrT )(κ)

r

)
and

diag
(
(ErrE)(κ)

s

)
are given by the errors of cluster elements.
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In the following, we assume that the constraints are satisfied for all realizations of
the states X(κ)

r ∈ Q
(
X

(κ)
r , (ErrT )(κ)

r

)
and E

(κ)
s ∈ Q

(
E

(κ)
s , (ErrE)(κ)

s

)
. This leads

us to a robust regression problem with polyhedral uncertainty:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣ζTj0 +

R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E(κ−1)
s

]′ΘET
js − X(κ)

j

∣∣∣∣≤ p(κ)
j ,

∣∣∣∣ζEi0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is − E(κ)

i

∣∣∣∣≤ q(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m)

∀X(κ)
r ∈ Q

(
X

(κ)
r , (ErrT )(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ Q

(
E

(κ)
s , (ErrE)(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).

The next problem results from a reformulation of the absolute values:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E(κ−1)
s

]′ΘET
js − X(κ)

j ≤ p
(κ)
j ,

−ζTj0 −
R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr −

S∑
s=1

[
E(κ−1)
s

]′ΘET
js + X(κ)

j ≤ p
(κ)
j ,

ζEi0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is − E(κ)

i ≤ q(κ)
i ,

−ζEi0 −
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir −

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is + E(κ)

i ≤ q(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m)

∀X(κ)
r ∈ Q

(
X

(κ)
r , (ErrT )(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ Q

(
E

(κ)
s , (ErrE)(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).

By considering the sets

Ur :=
{
ur ∈ R|Cr|

∣∣∣ ‖ur‖∞ ≤ 1
}
, r = 1, . . . , R,

Vs :=
{
vs ∈ R|Ds|

∣∣∣ ‖vs‖∞ ≤ 1
}
, s = 1, . . . , S

another equivalent problem can be obtained:
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Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0+
R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr +

R∑
r=1

max
ur∈Ur

{
u′r diag

(
(ErrT )(κ−1)

r

)
ΘTT
jr

}
+

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js +

S∑
s=1

max
vs∈Vs

{
v′s diag

(
(ErrE)(κ−1)

s

)
ΘET
js

}
− X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

−ζTj0−
R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr −

R∑
r=1

max
ur∈Ur

{
u′r diag

(
(ErrT )(κ−1)

r

)
ΘTT
jr

}
−

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js −

S∑
s=1

max
vs∈Vs

{
v′s diag

(
(ErrE)(κ−1)

s

)
ΘET
js

}
+ X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir +

R∑
r=1

max
ur∈Ur

{
u′r diag

(
(ErrT )(κ−1)

r

)
ΘTE
ir

}
+

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is +

S∑
s=1

max
vs∈Vs

{
v′s diag

(
(ErrE)(κ−1)

s

)
ΘET
is

}
− E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m),

−ζEi0−
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir −

R∑
r=1

max
ur∈Ur

{
u′r diag

(
(ErrT )(κ−1)

r

)
ΘTE
ir

}
−

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is −

S∑
s=1

max
vs∈Vs

{
v′s diag

(
(ErrE)(κ−1)

s

)
ΘET
is

}
+ E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m).

With the equations

max
ur∈Ur

{
u′r Σ(κ)

r ΘTT
jr

}
= max

ur∈Ur

{
−u′r Σ(κ)

r ΘTT
jr

}
=
∥∥∥Σ(κ)

r ΘTT
jr

∥∥∥
∞
,

max
ur∈Ur

{
u′r Σ(κ)

r ΘTE
ir

}
= max

ur∈Ur

{
−u′r Σ(κ)

r ΘTE
ir

}
=
∥∥∥Σ(κ)

r ΘTE
ir

∥∥∥
∞
,

max
vs∈Vs

{
v′s Π(κ)

s ΘET
is

}
= max

vs∈Vs

{
−v′s Π(κ)

s ΘET
is

}
=
∥∥∥Π(κ)

s ΘET
is

∥∥∥
∞
,

max
vs∈Vs

{
v′s Π(κ)

s ΘEE
is

}
= max

vs∈Vs

{
−v′s Π(κ)

s ΘEE
is

}
=
∥∥∥Π(κ)

s ΘEE
is

∥∥∥
∞

the regression problem can be represented as follows:
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Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣ζTj0 +

R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr

+
S∑
s=1

[
E

(κ−1)
s

]′ΘET
js − X(κ)

j

∣∣∣∣
+

R∑
r=1

∥∥diag
(
(ErrT )(κ−1)

r

)
ΘET
jr

∥∥
∞

+
S∑
s=1

∥∥diag
(
(ErrE)(κ−1)

s

)
ΘET
js

∥∥
∞ ≤ p

(κ)
j ,

∣∣∣∣ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir

+
S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is − E(κ)

i

∣∣∣∣
+

R∑
r=1

∥∥diag
(
(ErrT )(κ−1)

r

)
ΘTE
ir

∥∥
∞

+
S∑
s=1

∥∥diag
(
(ErrE)(κ−1)

s

)
ΘEE
is

∥∥
∞ ≤ q

(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m).
With

ΘG
j =

[
ζTj0,Θ

TT
j1 , . . . ,Θ

TT
jR ,Θ

ET
j1 , . . . ,Θ

ET
jS

]T
,

ΘE
i =

[
ζEi0,Θ

TE
i1 , . . . ,ΘTE

iR ,ΘEE
i1 , . . . ,ΘEE

iS

]T
,

c(κ) =
[
1, X(κ)

1 , . . . , X
(κ)
R , E

(κ)
1 , . . . , E

(κ)
S

]T
we obtain the robust counterpart program for an estimation of the parameters of
linear cluster model (LCM) based on polyhedral uncertainty:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣[c(κ−1)

]′ΘT
j − X(κ)

j

∣∣∣∣ +
R∑
r=1

∥∥diag
(
(ErrT )(κ−1)

r

)
ΘTT
jr

∥∥
∞

+
S∑
s=1

∥∥diag
(
(ErrE)(κ−1)

s

)
ΘET
js

∥∥
∞ ≤ p

(κ)
j ,

∣∣∣∣[c(κ−1)
]′ΘE

i − E(κ)
i

∣∣∣∣ +
R∑
r=1

∥∥diag
(
(ErrT )(κ−1)

r

)
ΘTE
ir

∥∥
∞

+
S∑
s=1

∥∥diag
(
(ErrE)(κ−1)

s

)
ΘEE
is

∥∥
∞ ≤ q

(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m). (RCPP)



10 E. Kropat and G.-W. Weber

For numerical examples and practical applications related to robust regression with
polyhedral uncertainty we refer to [26, 42].

6. Robust Regression with Ellipsoidal Uncertainty

Ben-Tal and Nemirovski introduced the concept of robustness for programming
problems where data is subject to ellipsoidal uncertainty [3, 5]. In general, an
ellipsoid in Rp will be parameterized in terms of its center c ∈ Rp and a symmetric
non-negative definite configuration (or shape) matrix Σ ∈ Rp×p as

E(c,Σ) = {Σu+ c | ‖u‖2 ≤ 1}.

In order to include data uncertainty into our model, we now assume that the
states of the clusters of target variables and environmental factors are subject to
ellipsoidal uncertainty. That means, our regression analysis will be based on set-
valued data

X(κ)
r ∈ E

(
X

(κ)
r ,Σ(κ)

r

)
⊂ R|Cr|,

E(κ)
s ∈ E

(
E

(κ)
s ,Π(κ)

s

)
⊂ R|Ds|,

with κ = 0, 1, . . . , T . The measurements X(κ)
r and E

(κ)
s determine the centers of

the ellipsoids and the corresponding symmetric shape matrices Σ(κ)
r and Π(κ)

s are
given by the variance-covariance matrices of cluster data what also refers to partial
correlations and partial variances of cluster elements.

We assume that the constraints are satisfied for all realizations of the states
X

(κ)
r ∈ E

(
X

(κ)
r ,Σ(κ)

r

)
and E

(κ)
s ∈ E

(
E

(κ)
s ,Π(κ)

s

)
and in this way we obtain the

following robust regression problem with uncertain ellipsoidal states:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣ζTj0 +

R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E(κ−1)
s

]′ΘET
js − X(κ)

j

∣∣∣∣≤ p(κ)
j ,

∣∣∣∣ζEi0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is − E(κ)

i

∣∣∣∣≤ q(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m)

∀X(κ)
r ∈ E

(
X

(κ)
r ,Σ(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ E

(
E

(κ)
s ,Π(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).
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The above problem can be rewritten:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E(κ−1)
s

]′ΘET
js − X(κ)

j ≤ p
(κ)
j ,

−ζTj0 −
R∑
r=1

[
X(κ−1)
r

]′ΘTT
jr −

S∑
s=1

[
E(κ−1)
s

]′ΘET
js + X(κ)

j ≤ p
(κ)
j ,

ζEi0 +
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is − E(κ)

i ≤ q(κ)
i ,

−ζEi0 −
R∑
r=1

[
X(κ−1)
r

]′ΘTE
ir −

S∑
s=1

[
E(κ−1)
s

]′ΘEE
is + E(κ)

i ≤ q(κ)
i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m)

∀X(κ)
r ∈ E

(
X

(κ)
r ,Σ(κ)

r

)
(κ = 0, . . . , T − 1; r = 1, . . . , R),

∀E(κ)
s ∈ E

(
E

(κ)
s ,Π(κ)

s

)
(κ = 0, . . . , T − 1; s = 1, . . . , S).

This problem has an infinite number of constraints as it depends on all possible
realizations of ellipsoidal states of targets and environmental factors. Another re-
formulation of this problem can be obtained when the ellipsoids are represented as
follows:

E
(
X

(κ)
r ,Σ(κ)

r

)
=
{
X

(κ)
r + Σ(κ)

r ur

∣∣∣ ‖ur‖2 ≤ 1
}
,

E
(
E

(κ)
s ,Π(κ)

s

)
=
{
E

(κ)
s + Π(κ)

s vs

∣∣∣ ‖vs‖2 ≤ 1
}
.

With

Ur :=
{
ur ∈ R|Cr|

∣∣∣ ‖ur‖2 ≤ 1
}
, r = 1, . . . , R,

Vs :=
{
vs ∈ R|Ds|

∣∣∣ ‖vs‖2 ≤ 1
}
, s = 1, . . . , S

we then obtain the equivalent problem
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Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that ζTj0+
R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr +

R∑
r=1

max
ur∈Ur

{
u′r Σ(κ−1)

r ΘTT
jr

}
+

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js +

S∑
s=1

max
vs∈Vs

{
v′s Π(κ−1)

s ΘET
js

}
− X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

−ζTj0−
R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr −

R∑
r=1

max
ur∈Ur

{
u′r Σ(κ−1)

r ΘTT
jr

}
−

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js −

S∑
s=1

max
vs∈Vs

{
v′s Π(κ−1)

s ΘET
js

}
+ X(κ)

j ≤ p
(κ)
j (κ = 1, . . . , T ; j = 1, . . . , n),

ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir +

R∑
r=1

max
ur∈Ur

{
u′r Σ(κ−1)

r ΘTE
ir

}
+

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is +

S∑
s=1

max
vs∈Vs

{
v′s Π(κ−1)

s ΘEE
is

}
− E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m),

−ζEi0−
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir −

R∑
r=1

max
ur∈Ur

{
u′r Σ(κ−1)

r ΘTE
ir

}
−

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is −

S∑
s=1

max
vs∈Vs

{
v′s Π(κ−1)

s ΘEE
is

}
+ E(κ)

i ≤ q
(κ)
i (κ = 1, . . . , T ; i = 1, . . . ,m).

The equations

max
ur∈Ur

{
u′r Σ(κ)

r ΘTT
jr

}
= max

ur∈Ur

{
−u′r Σ(κ)

r ΘTT
jr

}
=
∥∥∥Σ(κ)

r ΘTT
jr

∥∥∥
2
,

max
ur∈Ur

{
u′r Σ(κ)

r ΘTE
ir

}
= max

ur∈Ur

{
−u′r Σ(κ)

r ΘTE
ir

}
=
∥∥∥Σ(κ)

r ΘTE
ir

∥∥∥
2
,

max
vs∈Vs

{
v′s Π(κ)

s ΘET
is

}
= max

vs∈Vs

{
−v′s Π(κ)

s ΘET
is

}
=
∥∥∥Π(κ)

s ΘET
is

∥∥∥
2
,

max
vs∈Vs

{
v′s Π(κ)

s ΘEE
is

}
= max

vs∈Vs

{
−v′s Π(κ)

s ΘEE
is

}
=
∥∥∥Π(κ)

s ΘEE
is

∥∥∥
2

lead to a further description of the regression problem:
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Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣ζTj0 +

R∑
r=1

[
X

(κ−1)
r

]′ΘTT
jr +

S∑
s=1

[
E

(κ−1)
s

]′ΘET
js − X(κ)

j

∣∣∣∣
+

R∑
r=1

∥∥Σ(κ−1)
r ΘET

jr

∥∥
2

+
S∑
s=1

∥∥Π(κ−1)
s ΘET

js

∥∥
2
≤ p(κ)

j ,

∣∣∣∣ζEi0 +
R∑
r=1

[
X

(κ−1)
r

]′ΘTE
ir +

S∑
s=1

[
E

(κ−1)
s

]′ΘEE
is − E(κ)

i

∣∣∣∣
+

R∑
r=1

∥∥Σ(κ−1)
r ΘTE

ir

∥∥
2

+
S∑
s=1

∥∥Π(κ−1)
s ΘEE

is

∥∥
2
≤ q(κ)

i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m).

Finally, with the vectors

ΘT
j =

[
ζTj0,Θ

TT
j1 , . . . ,Θ

TT
jR ,Θ

ET
j1 , . . . ,Θ

ET
jS

]T
,

ΘE
i =

[
ζEi0,Θ

TE
i1 , . . . ,ΘTE

iR ,ΘEE
i1 , . . . ,ΘEE

iS

]T
,

c(κ) =
[
1, X(κ)

1 , . . . , X
(κ)
R , E

(κ)
1 , . . . , E

(κ)
S

]T
we obtain the robust counterpart program for an estimation of the parameters of
linear cluster model (LCM) based on ellipsoidal uncertainty:

Minimize
T∑
κ=1

{ n∑
j=1

p
(κ)
j +

m∑
i=1

q
(κ)
i

}

such that
∣∣∣∣[c(κ−1)

]′ΘT
j − X(κ)

j

∣∣∣∣ +
R∑
r=1

∥∥Σ(κ−1)
r ΘTT

jr

∥∥
2

+
S∑
s=1

∥∥Π(κ−1)
s ΘET

js

∥∥
2
≤ p(κ)

j ,

∣∣∣∣[c(κ−1)
]′ΘE

i − E(κ)
i

∣∣∣∣ +
R∑
r=1

∥∥Σ(κ−1)
r ΘTE

ir

∥∥
2

+
S∑
s=1

∥∥Π(κ−1)
s ΘEE

is

∥∥
2
≤ q(κ)

i

(κ = 1, . . . , T ; j = 1, . . . , n; i = 1, . . . ,m). (RCPE)

For further details on robust optimization and the numerical treatment of the corre-
sponding uncertainty-affected programming problems with ellipsoidal uncertainty
we refer to [6, 25].

7. Conclusion

In this paper, we offer a new perspective for the identification of the intrinsic pa-
rameters of complex target-environment networks under polyhedral and ellipsoidal
uncertainty. By this we further extend earlier approaches that are based on in-
terval arithmetics where Chebychev approximation and generalized semi-infinite
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optimization is applied. In addition, the robust regression approach complements
the recently introduced regression analysis for clusters in target-environment net-
works that is based on ellipsoidal calculus. In future work, combinations of both
approaches have to considered so that clusters may take influence on target and en-
vironmental clusters as well as single genes and single environmental factors simul-
taneously. Furthermore, the introduction of least squares type regression problems
as well as Chebychev and general p-norm regression models with both polyhe-
dral and ellipsoidal uncertainty can contribute to the rich variety of methods for
parameter estimation of gene-environment and eco-finance networks.
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[27] S. Özöğür, Mathematical modelling of enzymatic reactions, simulation and parameter estimation,
MSc. thesis at Institute of Applied Mathematics, METU, Ankara (2005).

[28] M. Partner, N. Kashtan, and U. Alon, Environmental variability and modularity of bacterial metabolic
network, BMC Evolutionary Biology 7 (2007), 169doi:10.1186/1471-2148-7-169.

[29] S. Pickl, Der τ -value als Kontrollparameter - Modellierung und Analyse eines Joint-Implementation
Programmes mithilfe der dynamischen kooperativen Spieltheorie und der diskreten Optimierung, The-
sis, Darmstadt University of Technology, Department of Mathematics, 1998.

[30] S. Pickl, An iterative solution to the nonlinear time-discrete TEM model - the occurence of chaos and
a control theoretic algorithmic approach, AIP Conference Proceedings 627(1) (2002), pp. 196–205.

[31] S. Pickl, E. Kropat, and H. Hahn, The impact of uncertain emission trading markets on interactive
resource planning processes and international emission trading experiments, Climatic Change (2010),
DOI 10.1007/s10584-010-9912-8.

[32] S. Pickl and G.-W. Weber, Optimization of a time-discrete nonlinear dynamical system from a prob-
lem of ecology - an analytical and numerical approach, Journal of Computational Technologies 6(1)
(2001), pp. 43–52.
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[43] G.-W. Weber, S.Z. Alparslan-Gök, and B. Söyler, A new mathematical approach in environmental and
life sciences: gene-environment networks and their dynamics, Environmental Modeling & Assessment



16 REFERENCES

14(2) (2009), pp. 267-288.
[44] G.-W. Weber, R. Branzei, and S.Z. Alparslan Gök, On cooperative ellipsoidal games, 24th Mini

EURO Conference - On Continuous Optimization and Information-Based Technologies in the Finan-
cial Sector, MEC EurOPT 2010, Selected Papers, ISI Proceedings, Izmir, Turkey, June 23-26, 2010,
pp. 369-372.

[45] G.-W. Weber, R. Branzei, and S.Z. Alparslan Gök, On the ellipsoidal core for cooperative games
under ellipsoidal uncertainty, in the proceedings of 2nd International Conference on Engineering
Optimization, Lisbon, Portugal, September 6-9 (2010) (on a CD-Rom).
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