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Abstract: Our recently developed CMARS is powerful in handling complex and heterogeneous data. We 

include into CMARS the existence of uncertainty about the scenarios. Indeed, data include noise in both 

output and input variables. Therefore, solutions of the optimization problem may reveal a remarkable 

sensitivity to perturbations in the parameters of the problem. The data uncertainty results in uncertain 

constraints and objective function. To overcome this difficulty, we refine our CMARS algorithm by a 

robust optimization technique proposed to cope with data uncertainty. In our previous study, we present the 

new Robust CMARS (RCMARS) in theory and method and illustrate it with a numerical example (Özmen 

et al., 20010). In this study, we present RCMARS results with different uncertainty scenarios for our 

numerical example. 
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1. INTRODUCTION 

MARS has been applied successfully to many fields of 

science, economy and technology in recent years. It bases on 

a modern methodology from statistical learning, which is 

important in both regression and classification. MARS builds 

flexible high-dimensional nonparametric regression models, 

and presents a great promise for fitting nonlinear multivariate 

functions. It generates an additive model in two-stage 

process: the forward and backward stepwise algorithms. In 

CMARS method, the backward stepwise algorithm is not 

applied. Instead of this, a Penalized Residual Sum of Squares 

(PRSS) is employed for MARS as a Tikhonov regularization 

(TR) problem. This two-objective optimization problem is 

treated using the continuous optimization technique called 

Conic Quadratic Programming (CQP) (Weber et al., 2009). 

CMARS is an alternative method to a well-known regression 

tool MARS from data mining and estimation theory. With 

this study, we further improve CMARS so that it can treat 

uncertainty in the data. In fact, generally, data may include 

noise in both input and output variable. This means that the 

data of the regression problem are not exactly known or may 

not be exactly measured, or the exact solution of the problem 

may not be carried out because of intrinsic inaccuracy of the 

devices (Boni, 2007). Moreover, the data can undergo small 

changes by variations in the optimal experimental design. 

These altogether leads to uncertainty in the objective function 

and in possible constraints. To handle this, we refine our 

CMARS algorithm by an important robust optimization 

developed by Ben-Tal and Nemirovski (2001, 2002), and El-

Ghaoui and Lebret (1997). 

Robust optimization is a modeling methodology to process 

optimization problems in which the data are uncertain and are 

only known to belong to some uncertainty set, except for 

outliers. The purpose of robust optimization is to find an 

optimal or near optimal solution which is feasible for every 

possible realization of the uncertain scenarios (Bertsimas et 

al., 2009, Werner, 2008). 

Below, we firstly analyze how uncertainty incorporated into 

the CMARS model with complexity terms in the form of 

integrals of squared first- and second-order derivatives of the 

model functions and, then, the discretized TR and, finally, the 

CQP form of the problem. Then, we introduce a 

robustification of CMARS with robust optimization under 

polyhedral uncertainty and ellipsoidal uncertainty (Özmen et 

al., 2010, El-Ghaoui, 2003). Because of the computational 

effort which our robustification of CMARS will easily need, 

we also present the concept of a weak robustification.   

This paper is organized as follows. In Section 2, RCMARS is 

introduced in theory and method. RCMARS results with 

different uncertainty scenarios for the numerical example 

studied in our previous study (Özmen et al., 2010) are 

presented in Section 3. Conclusion and further studies are 

stated in the last section.  

2. RCMARS MODEL 

2.1  CMARS Model with Uncertainty 
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For CMARS, the large model that has the maximum number 

of basis functions (BFs),
max

 M , is created by Salford MARS 

(2009). The following general model is considered to 

represent the relation between the input variables and the 

response: 

                               
 ( )  ,Y f  X

                                     
(1)

 

where Y is the response variable, 
1 2

 ( , , ..., )  
T

p
X X XX is a 

vector of predictor variables, and    is an additive stochastic 

component which is assumed to have zero mean and finite 

variance. The aim is to build reflected pairs for each input 

variable  ( 1, 2,..., )
j

X j p with p-dimensional knots 

,1 ,2 ,
 ( , , ..., )

T

i i i i p
    (i = 1, 2,…,N) at or just nearby each 

input data vectors. Moreover, 
j

X  are assumed to be 

normally distributed random variables. Here, the following 

general model is considered for each input  
j

X : 

   ( 1, 2,..., ).
j j

X X j p  
 

To robustify CMARS, we employ the robust optimization on 

the BFs provided by the MARS model, and we assume that 

the input and output variables of our model are all random 

variables. They lead us to the uncertainty sets, which are 

assumed to contain confidence intervals (CIs) (refer to 

(Özmen et al., 2010) for more details). 

MARS method employs expansions of piecewise linear BFs 

based on the new dataset that have uncertainties. We prefer 

the following notation for the piecewise linear BFs 

(Friedman, 1991): 

( , )  ( ) ,  ( , )  ( ) ,c x x c x x   
 

 
     

where        := max 0, ,  := max 0, ,q q q q
 

 and   is a 

univariate knot. Incorporating the uncertainty sets 

max

1
,  

N M
U


 and
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N
U  , defined in Section 2.3, into 

the data ( ,  )
i i

yx (  1,2,..., ),i N  the multiplicative form of 

the mth  BF can be written as 
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where 
m

K  is the number of truncated linear functions 

multiplied in the mth basis function. Then, for the CMARS 

model with uncertainty, PRSS will have the following 

representation:     
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where V(m) : {
m

j
  | j= 1,2,...,

m
K }  is the variable set 

associated with the mth basis function. After using the 

discretization to approximate the multi-dimensional integrals 
2

2

, ( )m m

m r s mD t dt    (Weber et al., 2009), our PRSS 

with uncertainty will be as follows: 

                    

2
2

2
2

( )PRSS   y b L   .                    (4) 

 

Here, PRSS problem looks like a classical TR problem with

0  , i.e., 
2

   for some .   Then, it can be coped 

with the CQP (Weber et al., 2009). The second (complexity) 

part of our PRSS model will remain the same as it is in 

CMARS after we incorporate a “perturbation” into the real 

input data 
i

x  in each dimension and into the output data
i

y  

because we do not make any changes for the function in the 

multi-dimensional integrals. 

When we estimate the BFs ( )
m m

j j
i

x
 




 in (2), we can rewrite 

them as the following term: 
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Here, 
m

j
i

  is interpreted and employed as a control variable. 

Since the value of this control variable directly affect the size 

of our uncertainty set
1

 U , and our uncertainty sets are 

unknown but bounded, 
m

j
i

  is restricted by a value .
m

j
i


When we consider the conservative (risk averse) case, “worst 

case” for the value of 
m

j
i

 , it will be equal to 
m

j
i
 . However, 

when the absolute value of our uncertainty set is very high, it 

may take too much time to find a solution or we may not find 

any meaningful solution for our problems. Therefore, we may 

consider the risk friendly case to select the value of 
m

j
i



between zero and the absolute value of 
m

j
i

 ,i.e

[0, ].
m m

j j
i i 
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Here, to simplify notion, we still preserve 

the notion 
m

j
i

 for .
m

j
i

 To estimate the values ( )
m i

 x and 

( )
m i

 x , we can employ (5) in the following form where all 

the “+” and “-” signs belong to each other respectively 

(Özmen et al., 2010): 
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Here, we can obtain the bounding form given below with 

symmetry: 
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So our uncertainty value im
u  can be estimated in the 

following way for each BF (Özmen et al., 2010): 
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 Here, with  A
 
we denote the cardinality size of the set A.  

i
  is also considered to be and applied as a control variable. 

The value of 
i


 
is equal to 2 in cases without outliers, but for 

outliers, it will be greater than 2. For these cases, we will 

have to select different values for 
i

 . When we consider the 

conservative case, we do not want to ignore any outliers. 

Therefore the values of 
i

  may be very large for some 

variables in the input data, and the absolute values of our  

uncertainty set may be very high because of  the values of 

this control variable. If the absolute value of our uncertainty 

set is very high, it may take too much time to find a solution 

or we may not find any meaningful solution for our problem. 

Consequently, instead of the conservative case, we may 

consider a more risk friendly case to select the values of 
i

   

for the outlier case. For visualization, see Figure 1: 

 

Figure 1: The CIs of perturbation  and .x 
 

2.2 Robustification of the CMARS Model 

The CMARS model depends on parameters. Small 

perturbations in data can result in different model parameters. 

This may cause unstable solutions. In CMARS, the purpose 

is to decrease the estimation error while keeping efficiency as 

high as possible. To achieve this purpose, we apply some 

approaches such as usage of more robust estimators, scenario 

optimization and robust counterpart. Using robustification in 

CMARS, we aim to reduce the estimation variance. 

To make reduction in the complexity of the regression 

method MARS, which especially means sensitivity with 

respect to noise in the data, we do a penalization in the form 

of TR and study it as a CQP problem in CMARS model. 

Regularization from CMARS is already some kind of 

robustification, however, in our study, we additionally 

robustify CMARS with the help of the robust optimization 

approach, which is some kind of regularization in the input 

and output domain. Therefore, we have some changes in the 

part of 
2

2
( ) b y  , when we do our robustification of 

CMARS for both the input and output variables by including 

uncertainty with the help of robust optimization. We, 

however, need not any change in the integration function of 

complexity part of PRSS model in the equation (3). 

Therefore, the part of  
2

2
L  is the same as in CMARS.  

2.3 Selecting the Shape of Uncertainty Sets  

The robust optimization approach is based on making the 

optimization models robust regarding constraint violations by 

solving robust counterparts of these problems in prespecified 

uncertainty sets for the uncertain parameters (Fabozzi et al., 

2007). These uncertainty sets base on statistical estimates and 

probabilistic guarantees on the solution. The robust 

optimization problem can be solved efficiently when the 

uncertainty set has a special shape (Fabozzi et al., 2007). 

These special shapes for uncertainty sets can be either 

ellipsoidal or polyhedral. 

If ellipsoidal uncertainty sets are employed, robustification is 

more successful than employing of polyhedral uncertainty 

sets (Schöttle et al., 2006). Nevertheless, using ellipsoidal 

uncertainty sets increase the complexity of optimization 

problems. In this paper, we study our robust CQP (second 

order optimization problem (SCOP)) and we shall find out 

that it remains CQP. Therefore, we will guarantee polyhedral 

uncertainty sets by an interval concept for input and output 

data in our model; our robust CQP (SCOP) will be traced 

back directly as a CQP. Therefore, in this paper, we only 

focus on polyhedral uncertainty with different uncertain 

scenarios. 

2.4 Polyhedral Uncertainty and Robust Counterpart for the 

CMARS Model 

To study the robustness problem, we assume that the given 

model uncertainty is represented by a family of matrices 

 ( )  b b U  and vectors , y y v  where 

1 2
 and  U U U v are unknown but bounded sets. Here, the 

uncertainty matrix 
1

UU and uncertainty vector 
2

Uv

defined by 
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Since we do not want to increase the complexity of our 

optimization problems, we select the uncertainty sets 

1 2
 and U U  as of type polyhedral for both input and output 

data in our model to study our robustness problem. Based on 

these sets,
 
the robust counterpart is defined as follows: 

1
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2 2
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Here, 
1
 U is a polytope with max2

N M
vertices 

1 2
 , ,W W

max2

 ..., .
N M

W  It is not exactly known, but belongs to a convex 

bounded uncertain domain 
1

U  given by 

 
max max
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 where 
max2

1 2

1
conv{ , , ..., } 

N M

U


 W W W is the convex hull. 

Furthermore, 
2
 U is a polytope with 2

N
vertices 

1 2
, ,z z  

2
..., .

N

z  It is not exactly known, but belongs to a bounded 

uncertain domain 
2

U  given by 
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where
1 2 2

2
conv{ , ,..., } 

N

U  z z z is the convex hull. 

Any uncertainty sets 
1

U   and 
2

U can be represented as a 

convex combination of vertices 
j

W  (j=1,2,…, max2
N M

) and 
i

z

(i=1,…, 2
N

) of the polytope. The entries are found to have 

become intervals. Therefore, our matrix W and vector z with 

uncertainty are lying in the Cartesian product of intervals that 

are parallelpipes. To give an easy illustration, the Cartesian 

product of intervals in general and, especially, for three 

entries can be represented by the Figure 2.   

 
 

 

Figure2: Cartesian product of intervals for three entries. 

Here, the matrix W  is represented as a vector with 

uncertainty which generates a parallelpipe. We have a 

max
( )N M -matrix 

max

1,2,...,

1,2,...,

( )
ij i N

j M

w




W = and we can write it as 

a vector 
max

1,2,...,
( )

k k N M
t

 
t , where :

k ij
t u with k =i+(j-1)N. 

So, our W matrix can be canonically represented as a vector 

max
1 2

( , , ..., )
T

k N M
t t t


t  by successively aligning the columns 

of .W  

2.4  Robust CQP with the Polyhedral Uncertainty 

For our CMARS model, the optimization problem is written 

as follows: 

2

2

,

subject to ( ) ,  

                .

min  ,
t

t

M

t

 



b y

L


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When polyhedral uncertainty is used for the CMARS model 

based on the uncertainty sets
1 2

  and U U , the robust 

counterpart is defined by

 1

2

2 2

2 2
min max  

U

U


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W z L
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So, the robust CQP for our optimization problem is 

represented in the following form: 
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If 
1

U  and 
2

U  are polytopes which are described by their 

vertices as 

max2
1 2

1
conv{ , , ..., },

N M

U


 W W W
1 2 2

2
conv{ , , ..., }

N

U  z z z , 

then our robust CQP can be equivalently stated as a standard 

CQP (El-Ghaoui, 2003) as the following: 
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2

,
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Let us use modern methods of continuous optimization 

techniques, especially, from CQP where the basic notation is 

employed (Ben-Tal at al., 2001): 
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In fact, we see that our optimization problem is a CQP with 
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In order to write the optimality condition for this problem, we 

reformulate the problem (10) as follows: 
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3.A  NUMERICAL STUDY   

The implementation of RCMARS algorithm is illustrated by 

a numerical example in our previous study (Özmen et al., 

2010). In that implementation, first, the largest model is 

constructed by using Salford MARS Version 3 (2009). Then, 

to apply the robust optimization technique on the CMARS 

model, we incorporate a perturbation (uncertainty) into the 

real  input data, ,x  in each dimension and into the output 

data, .y For this aim, the uncertainty matrices and vectors 

based on polyhedral uncertainty sets are obtained by using 

(8) and (9). Then, using the equation (6), uncertainty is 

evaluated for all input and output values which are 

represented by CIs. The boundaries of CIs are assumed to be 

(-3, 3) after the variables are transformed into the standard 

normal distribution. However, the uncertainty matrix for 

input data has a huge size, and the computer does not have an 

enough capacity to solve our problem for this uncertainty 

matrix. In fact, we have a tradeoff between tractability and 

robustification. To handle this problem, we obtain different 

weak RCMARS (WRCMARS) models for each observation, 

and solve them by using MOSEK program (2008). After we 

obtain the MOSEK models and find the t values for all 

auxiliary problems, using the worst-case approach, we select 

the solution which has the maximum t value. Then, we 

continue our calculations by using the parameter estimates 

0 1 2 3 4 5
, , , ,  and       obtained from the auxiliary problem 

which has the highest t value (See Özmen et al. (2010) for the 

details). 

In this study, we obtain uncertainty matrices, U, for the  input 

data and uncertainty vectors, v, for the output data as the form 

of (7) by using four different intervals which are ±3, ±3e-6, 

±3e-7, and as a special case, mid-point value of our interval 

(i.e. zero length interval). We calculate our parameters with 

16 different uncertainty scenarios using these values under 

polyhedral uncertainty sets. All of the parameter estimates for 

different uncertainty scenarios are shown in Table I, 2, 3 and 

4. Note here that we defined the values M  by a model-free 

method. When we apply the M  values in our RCMARS 

code and solve by using MOSEK, RCMARS provides us 

several solutions, but, here, we use the M  value which has 

minimum value of PRSS in the equation (4). 

Table 1.  Parameter estimates and the model 

performances I 

v  ±3 

U ±3 ±3e-6 ±3e-6 zero 

α0 0.1230 -0.0634 -0.0773 -0.3732 

α1 -0.3131 -0.0526 -0.0577 0.0274 

α2 0.0000 0.2596 0.3141 0.1136 

α3 0.0109 -0.0029 -0.0044 -0.0700 

α4 0.0000 -0.0206 -0.0315 -0.0657 

α5 0.0000 -0.0021 -0.0016 0.5238 

AAE 0.7822 0.7241 0.7109 0.4885 

RMSE 1.1814 1.1063 1.0862 0.7888 

r 0.2124 0.6516 0.6617 0.7648 

 

Table 2.  Parameter estimates and the model 

performances II 

v  ±3e-6 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0654 -0.0815 -0.3733 

α1 -0.3133 -0.0528 -0.0592 0.0274 

α2 0.0000 0.2592 0.3297 0.1136 

α3 0.0110 -0.0033 -0.0046 -0.0700 

α4 0.0000 -0.0179 -0.0337 -0.0656 

α5 0.0000 0.0001 -0.0018 0.5238 

AAE 0.7822 0.7232 0.7080 0.4885 

RMSE 1.1814 1.1043 1.0809 0.7888 

r 0.2124 0.6536 0.6631 0.7648 



 

Table 3. Parameter estimates and the model 

performances III 

v  ±3e-7 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0597 -0.0838 -0.3733 

α1 -0.3133 -0.0513 -0.0600 0.0274 

α2 0.0000 0.2441 0.3375 0.1136 

α3 0.0110 -0.0023 -0.0045 -0.0700 

α4 0.0000 -0.0150 -0.0347 -0.0656 

α5 0.0000 -0.0031 -0.0017 0.5238 

AAE 0.7822 0.7285 0.7065 0.4885 

RMSE 1.1814 1.1130 1.0781 0.7888 

r 0.2124 0.6443 0.6638 0.7648 

 

Table 4.  Parameter estimates and the model 

performances IV 

v  zero 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0017 -0.0676 -0.3733 

α1 -0.3133 -0.0021 -0.0543 0.0274 

α2 0.0000 0.0074 0.2751 0.1136 

α3 0.0110 0.0000 -0.0029 -0.0700 

α4 0.0000 -0.0001 -0.0239 -0.0656 

α5 0.0000 -0.0001 -0.0016 0.5238 

AAE 0.7822 0.7842 0.7200 0.4885 

RMSE 1.1814 1.2057 1.1001 0.7888 

r 0.2124 0.6191 0.6553 0.7648 

 

Above results indicate that solutions obtained are sensitive to 

the limits of CIs. We obtain better performance results when 

the lengths of CIs are narrow.  Moreover, when we use the 

mid-point of our interval values for both input and output 

data, which is certain data case, we obtain the same 

parameter estimates, and thus, the same model performances 

with the CMARS. This reveals that CMARS is a special case 

of RCMARS. In addition, according to the results, solutions 

are more sensitive to the changes in the CI limits of the input 

data than the output data.  

4. CONCLUSION AND FURTHER STUDIES 

In this paper, we first briefly review the theory and methods 

of RCMARS, a newly developed method for modeling 

uncertain data. Then the results of the sensitivity analysis on 

the parameter estimates, and thus, the model performances 

are presented. As expected, CMARS produces more accurate 

results than RCMARS. As the CIs on the variables become 

narrower, the performance results approaches to that of the 

CMARS.  

As a future research, we are going to run the code for the data 

that include uncertainties, and then, evaluate the results with 

respect to the efficiency as well. In this respect, we will 

discuss stability of our RCMARS model. We will also use 

robust estimators to construct CIs for our data. We will 

develop the method further by considering other 

distributional assumptions than normal for the data.  
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