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Abstract We consider dynamical gene-environment networks under ellipsoidal un-
certainty and discuss the corresponding set-theoretic regression models. Clustering
techniques are applied for an identification of functionally related groups of genes
and environmental factors. Clusters can partially overlap as single genes possibly
regulate multiple groups of data items. The uncertain states of cluster elements are
represented in terms of ellipsoids referring to stochastic dependencies between the
multivariate data variables. The time-dependent behaviour of the system variables
and clusters is determined by a regulatory system with (affine-) linear coupling rules.
Explicit representations of the uncertain multivariate future states of the system are
calculated by ellipsoidal calculus. Various set-theoretic regression models are in-
troduced in order to estimate the unknown system parameters. Hereby, we extend
our Ellipsoidal Operations Research previously introduced for gene-environment
networks of strictly disjoint clusters to possibly overlapping clusters. We analyze
the corresponding optimization problems, in particular in view of their solvability
by interior point methods and semidefinite programming and we conclude with a
discussion of structural frontiers and future research challenges.
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1 Introduction

The development of microarray technologies enabled researchers in genetics to
monitor the expression values of thousands of genes simultaneously. The availabil-
ity of such huge data sets challenged bioinformatics and mathematics and led to the
development of new methods for knowledge discovery in functional genomic data
sets. Many concepts from data mining and statistical analysis were applied in order
to reveal the cellular processes involved. In particular, clustering techniques were
used for an identification of functionally related groups of genes. Among them were,
for example, techniques as k-means [47, 82], hierarchical clustering [17, 26, 47],
self-organizing maps [44, 36, 52], principle component analysis [63, 79], singular
value decomposition [6, 63] and support vector machines [15, 35]. However, these
methods often resulted in disjoint clusters and in many applications such a hard
clustering is too strict because of the quality of the data or the presence of outliers
and errors. In addition, a single gene (or a group of genes) can have a regulating
effect on various clusters of genes, as for example in context with the identification
of synexpression groups and the analysis of synexpression control networks [37].
Fuzzy-clustering [57] or other methods resulting in a partially overlapping cluster
decomposition can alleviate the effects of noise-prone data and can lead to a more
flexible representation of interconnections between groups of data. Although these
methods - exact or flexible - proved to be sufficient in identifying, e.g., damaged
or cancerous genes and groups of regulating genetic items, they are nevertheless
considered as static methods which do not shed any light on the time-dependent
behaviour of the genetic network. Time-series analysis [27] or related approaches
can be applied to forecast the time-dependent states of the expression values. In our
studies [19, 67], we demonstrate the way how we develop a time-discrete dynamics
whose parameters we identified and how we use the given data in order to test the
goodness of the regression. Since the time-discrete dynamics can be gained by var-
ious kinds of discretization schemes, the aforementioned comparison also helps to
test the quality of these schemes and rank them. It turned out that 3rd order Heun’s
method has a smoothing effect with respect to the prediction, which is regarded to
be very good and ‘natural’ in the (natural) context of gene-environment networks,
and that it leads to a faster convergence to equilibrium points of the dynamics.

In ways such as aforementioned, the gained time-discrete dynamics supports the
prediction. As we explained in [59, 76, 71], we can also in further ways use these
dynamics for a texting of our model, i.e., of the quality of data fitting. Actually, in
various application contexts it is known or at least considered to be guaranteed, that
the ‘expression levels’ of state variables are staying in bounded intervals. If, how-
ever, our discrete dynamics emerged in some direction in an unbounded kind, then
we could conclude that this dynamics, e.g., it parameters identified by us, cannot be
accepted. In such a case, the hypothesis of the model has to be rejected and, within
our entire learning processes, improvements in the model structure be made and the
parameter estimation restarted.

Here, we combine methods from clustering theory and dynamic systems under
the presence of errors and uncertainty. For an analysis of the interconnections be-
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tween clusters of genes and environmental factors and a prediction of their future
states we study gene-environment networks under ellipsoidal uncertainty. In con-
trast to other models of genetic systems, these networks capture and assess the reg-
ulating effects of additional environmental factors. In general, gene-environment
networks consist of two major groups of data items – the genes (or proteins and
other molecules) and the so-called environmental factors, which stand for other cell
components like toxins, transcription factors etc. that often play an important but
nevertheless underestimated role in the regulatory system. We note that beside ge-
netic systems many other examples from life sciences and systems biology refer to
gene-environment networks. Among them are, e.g., metabolic networks [13, 45, 74],
immunological networks [23], networks in toxicogenomics [38], but also social- and
ecological networks [22]. We refer to [21, 28, 53, 54, 55, 80, 81] for applications,
practical examples and numerical calculations. Recent studies on gene-environment
networks focussed on errors and uncertainty. The potential deviation from measure-
ment values and predictions of each gene was measured in terms of error intervals
by imposing bounds on each variable. Various regression models have been de-
veloped and studied with the help of generalized Chebychev approximation and,
equivalently to that approximation, semi-infinite and even generalized semi-infinite
optimization [62, 64, 66, 68, 69, 71, 74, 75, 77]. However, error intervals referring
to single variables do not reflect correlations of the multivariate data within specific
clusters of genetic and environmental items. In our approach we apply clustering
techniques for an identification of functionally related groups of genes (or envi-
ronmental factors) commonly exerting influence on other groups of genes and/or
environmental items. In particular, we focus on possibly overlapping clusters and
by this we further extend the approach from [31], where a strict subdivision of data
was assumed. Each cluster stands for a group of correlated data items. In order to
measure data uncertainty, the multivariate state of genes (or environmental factors)
in a cluster will be represented in terms of ellipsoids. These uncertainty sets refer to
stochastic representations of errors and are directly related to Gaussian distributions
and the corresponding covariance matrices. Error ellipsoids are considered as more
flexible than error intervals where stochastic dependencies among any two of the er-
rors made in the measurement of expression values and environmental levels are not
taken into account explicitly. However, the two approaches are related, because any
confidence ellipsoid can be inscribed into a sufficiently large and suitably oriented
parallelpipe or, in reverse, it can be contained in such a paraxial set.

The dynamics of the uncertain (ellipsoidal) states of genes and environmental
factors are represented by a time-dependent regulatory model. The coupling rules
of this model are based on ellipsoidal calculus and they determine the interactions
between the various clusters. With this model, predictions of the future states can be
calculated explicitly. In addition, we introduce an iterative procedure for calculating
the centers and shape matrices of the ellipsoidal states. The parameter constellation
of the regulatory model refers to the topology and the degree of connectivity of the
underlying gene-environment network. For an estimation of the unknown parame-
ters, various set-theoretic regression models are introduced. These models are heav-
ily effected by the cluster decomposition and the overlap of clusters. The associated
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objective functions of the regression models compare the ellipsoidal predictions of
the regulatory model and the results from microarray experiments and environmen-
tal measurements, however, in a set-theoretic sense. They depend on the distance of
cluster centers and on nonnegative criteria functions which measure, e.g., the sum
of squares of semiaxes (which corresponds to the trace of the configuration matrix)
or the length of the largest semiaxes (which corresponds to the eigenvalues of the
shape matrix). We note that semi-definite programming and interior point methods
can be applied for solution.

In general, gene-environment networks comprise thousands of genes and ad-
ditional factors. For this reason, the underlying network has a high number of
branches. Often the connections between the clusters are weak so that the related
contribution to the system is negligible. In order to reduce complexity we delete
weak connections. This could be achieved by introducing bounds on the number of
incoming branches. By imposing such additional constraints we obtain mixed inte-
ger regression problems. Since these constraints are very strict, we turn to a further
relaxation that could be achieved by replacing binary constraints with continuous
constraints leading to regression models based on continuous optimization.

The Chapter is organized as follows: In Section 2, we review basic facts about
ellipsoidal calculus required for a representation of the dynamic states of multivari-
ate noise prone data. In Section 3, the time-dependent regulatory model for over-
lapping groups of genes and environmental factors under ellipsoidal uncertainty is
introduced. In addition, we provide an algorithm that allows to calculate predic-
tions of future states of groups of genes and environmental items in terms of centers
and shape matrices of the corresponding ellipsoids. In Section 4, we turn to a set-
theoretic regression analysis for parameter estimation of the dynamic (ellipsoidal)
system. Various regression models are introduced and we discuss their solvability
by means of semi-definite programming. Finally, we address a reduction of com-
plexity by network rarefication in Section 5, where we further extend the dynamic
model and discuss related mixed integer approximation and a relaxation based on
continuous optimization.

2 Ellipsoidal Calculus

The time-dependent multivariate states of the gene-environment network under con-
sideration will be represented in terms of ellipsoidal sets. Predictions of the future
ellipsoidal states are calculated with a time-discrete model based on ellipsoidal cal-
culus. Here, we shortly review the basic operations of ellipsoidal calculus such as
sums, intersections (fusions) and affine-linear transformations of ellipsoids. The
family of ellipsoids in Rp is closed with respect to affine-linear transformations
but neither the sum nor the intersection is generally ellipsoidal, so both must be
approximated by ellipsoidal sets.
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2.1 Ellipsoidal Descriptions

An ellipsoid in Rp will be parameterized in terms of its center c ∈ Rp and a sym-
metric non-negative definite configuration (or shape) matrix Σ ∈ Rp×p as

E (c,Σ) = {Σ 1/2u+ c |‖u‖ ≤ 1},

where Σ 1/2 is any matrix square root satisfying Σ 1/2(Σ 1/2)T = Σ . When Σ is of full
rank, the non-degenerate ellipsoid E (c,Σ) may be expressed as

E (c,Σ) = {x ∈ Rp |(x− c)T Σ−1(x− c)≤ 1}.

The eigenvectors of Σ point in the directions of principal semiaxes of E . The
lengths of the semiaxes of the ellipsoid E (c,Σ) are given by

√
λi, where λi are

the eigenvalues of Σ for i = 1, . . . , p. The volume of the ellipsoid E (c,Σ) is given
by volE (c,Σ) = Vp

√
det(Σ), where Vp is the volume of the unit ball in Rp, i.e.,

Vp =





π p/2

(p/2)! , for even p,

2pπ(p−1)/2((p−1)/2)!
p! , for odd p.

2.2 Affine Transformations

The family of ellipsoids is closed with respect to affine transformations. Given an
ellipsoid E (c,Σ)⊂Rp, matrix A ∈Rm×p and vector b ∈Rm we get AE (c,Σ)+b =
E (Ac+b,AΣAT ). Thus, ellipsoids are preserved under affine transformation. If the
rows of A are linearly independent (which implies m ≤ p), and b = 0, the affine
transformation is called projection [34].

2.3 Sums of K Ellipsoids

Given K bounded ellipsoids of Rp, Ek = E (ck,Σk), k = 1, . . . ,K, their geometric
(Minkowksi) sum E1 +E1 = {z1 + z2 |z1 ∈ E1, z2 ∈ E2} is not generally an ellipsoid.
However, it can be tightly approximated by parameterized families of external ellip-
soids. We adapt the notion of the minimal trace ellipsoid from [20] and introduce the
outer ellipsoidal approximation E (σ ,P) =⊕K

k=1Ek containing the sum S = ∑K
k=1 Ek

of ellipsoids which is defined by

σ =
K

∑
k=1

ck
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and

P =
( K

∑
k=1

√
TrΣk

)( K

∑
k=1

Σk√
TrΣk

)
.

2.4 Intersection of Ellipsoids

The intersection of two ellipsoids is generally not an ellipsoid. For this reason we
replace this set by the outer ellipsoidal approximation of minimal volume and adapt
the notion of fusion of ellipsoids from [49]. Given two non-degenerate ellipsoids
E (c1,Σ1) and E (c2,Σ2) in Rp with E (c1,Σ1)∩E (c2,Σ2) 6= /0 we define an ellipsoid

Eλ (c0,Σ0) := {x ∈ Rp |λ (x− c1)T Σ−1
1 (x− c1)

+(1−λ )(x− c2)T Σ−1
2 (x− c2)≤ 1},

where λ ∈ [0,1]. The ellipsoid Eλ (c0,Σ0) coincides with E (c1,Σ1) and E (c2,Σ2)
for λ = 1 and λ = 0, respectively. In order to determine a tight external ellipsoidal
approximation Eλ (c0,Σ0) of the intersection of E (c1,Σ1) and E (c2,Σ2), we intro-
duce

X := λΣ−1
1 +(1−λ )Σ−1

2

and
τ := 1−λ (1−λ )(c2− c1)T Σ−1

2 X −1Σ−1
1 (c2− c1).

The ellipsoid Eλ (c0,Σ0) is given by the center

c0 = X −1(λΣ−1
1 c1 +(1−λ )Σ−1

2 c2)

and shape matrix
Σ0 = τX −1.

The fusion of E (c1,Σ1) and E (c2,Σ2), whose intersection is a nonempty bounded
region, is defined as the ellipsoid Eλ (c0,Σ0) for the value λ ∈ [0,1] that minimizes
its volume [49]. The fusion of E (c1,Σ1) and E (c2,Σ2) is E (c1,Σ1), if E (c1,Σ1) ⊂
E (c2,Σ2); or E (c2,Σ2), if E (c2,Σ2)⊂ E (c1,Σ1); otherwise, it is Eλ (c0,Σ0) defined
as above where λ is the only root in (0,1) of the following polynomial of degree
2p−1:

τ(detX )Tr(co(X )(Σ−1
1 −Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1−2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 −Σ−1
1 )c0− cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

Here, co(X ) denotes the matrix of cofactors of X . Since X −1 = co(X )/detX ,
we represent this polynomial as
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τ(detX )2 Tr(X −1(Σ−1
1 −Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1−2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 −Σ−1
1 )c0− cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

We note that it is also possible to define an inner ellipsoidal approximation. The
method of finding the internal ellipsoidal approximation of the intersection of two
ellipsoids is described in [61].

3 Gene-Environment Systems under Ellipsoidal Uncertainty

3.1 Clusters of Gene-Environment Data

Various approaches from clustering and classification can be applied to analyze the
structure of gene-environment networks. In this way, certain groups of genes and en-
vironmental factors can be identified which exert a more or less regulating influence
on other groups of data items. Usually these groups cannot be divided unambigu-
ously since a single gene can have a regulating effect on various clusters of genes
and, thus, belongs to different clusters. In addition, the quality of the available data
sets may not be sufficient for an identification of disjoint groups. For this reason,
we assume that in the preprocessing step of clustering a number of overlapping
clusters of genes and environmental factors can be identified. Such a partition can
be achieved for example with one of the many variants of fuzzy-c-means cluster-
ing [57]. The specific gene-environment network under consideration consists of n
genes and m environmental factors, where the vector X= (X1, . . . ,Xn)T denotes the
expression values of the genes and the vector E= (E1, . . . ,Em)T stands for the val-
ues of the environmental factors. The set of genes is divided in R overlapping clus-
ters Cr ⊂ {1, . . . ,n}, r = 1, . . . ,R and the set of all environmental items is divided in
S overlapping clusters Ds ⊂ {1, . . . ,m}, s = 1, . . . ,S. We note that the paper [31] fo-
cussed on disjoint clusters assuming a strict sub-division of the variables where the
relations Cr1 ∩Cr2 = /0 for all r1 6= r2 and Ds1 ∩Ds2 = /0 for all s1 6= s2 are fulfilled.

The (crisp) states of the elements of these clusters are given by subsets of the
vectors X and E. That means, we assign a |Cr|-subvector Xr of X to each cluster
of genes which is given by the indices of Cr. Similarly, Es is a |Ds|-subvector of E
given by the indices of Ds.

For a representation of the uncertain states of the aforementioned clusters we
identify the clusters with error ellipsoids. That means, the vectors Xr represent ellip-
soidal states of the genes in cluster Cr given by the ellipsoid E (µr,Σr)⊂R|Cr | and Es
represent the ellipsoidal states of the environmental items in cluster Ds given by the
ellipsoids E (ρs,Πs)⊂R|Ds|. The ellipsoid E (µr,Σr) is characterized by |Cr|+ |Cr|2
coefficients and the ellipsoid E (ρs,Πs) is determined by |Ds|+ |Ds|2 variables. The
number of coefficients can be reduced by assuming symmetric shape matrices what
refers to specific correlation of the data variables. We note that ellipsoids can be
identified with intervals if clusters are singletons. It is also possible that some of the
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variables are exactly known. In this situation, the ellipsoids E (µr,Σr) and E (ρs,Πs)
are flat. However, as we are interested in approximations we can avoid this by im-
posing lower bounds on the semiaxes lengths or an artificial extension in the cor-
responding coordinate directions of length ε > 0. Similarly, degenerate or needle-
shaped ellipsoids can be avoided by imposing upper bounds on the extension of the
semiaxes.

3.2 The Linear Model

In this section, we introduce a dynamic model that allows to predict the time-
dependent (ellipsoidal) states of the clusters in the gene-environment regulatory
network. This model is based on four types of cluster interactions and regulating
effects:

(GG) genetic cluster regulates genetic cluster
(EG) environmental cluster regulates genetic cluster
(GE) genetic cluster regulates environmental cluster
(EE) environmental cluster regulates environmental cluster.

As shown in Section 3.1, each cluster corresponds to a functionally related group
of genes or environmental factors and the uncertain states of these clusters are rep-
resented in terms of parameterized ellipsoids

Xr = E (µr,Σr)⊂ R|Cr |, Es = E (ρs,Πs)⊂ R|Ds|.

With the ellipsoidal calculus introduced in Section 2, the dynamics and interactions
between the various clusters of genetic and environmental items is given by the
linear model

X (κ+1)
j = ξ j0 +

( R⊕

r=1

A GG
jr X (κ)

r

)
+

( S⊕

s=1

A EG
js E(κ)

s

)

E(κ+1)
i = ζi0 +

( R⊕

r=1

A GE
ir X (κ)

r

)
+

( S⊕

s=1

A EE
is E(κ)

s

)





(EC)

with κ ≥ 0 and j = 1,2, . . . ,R, i = 1,2, . . . ,S. The system (EC) is defined by (affine)
linear coupling rules, what implies that all future states of genetic and environ-

mental clusters are ellipsoids themselves. In particular, the sums
R⊕

r=1

A GG
jr X (κ)

r and

S⊕

s=1

A EG
js E(κ)

s describe the cumulative effects of all genetic and environmental clus-

ters exerted on the elements of cluster C j in a set theoretic or ellipsoidal sense. In

the same way, the (ellipsoidal) sums
R⊕

r=1

A GE
ir X (κ)

r and
S⊕

s=1

A EE
is E(κ)

s refer to the
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additive genetic and environmental effects on cluster Di. The degree of connectiv-
ity between the individual clusters is given by the (unknown) interactions matrices
A GG

jr ∈R|C j |×|Cr |, A EG
js ∈R|C j |×|Ds|, A GE

ir ∈R|Di|×|Cr |, and A EE
is ∈R|Di|×|Ds|. These

matrices are in turn sub-matrices of the general interaction matrices A GG ∈ Rn×n,
A EG ∈ Rn×m, A GE ∈ Rm×n, A EE ∈ Rm×m. In case of disjoint clusters, the afore-
mentioned sub-matrices constitute distinct building blocks of the interaction ma-
trices [31, 32]. For overlapping clusters, the structure of the interaction matrices
is much more complicated; it reflects the cluster structure and the sub-matrices
are partly composed of the same elements. This also holds for the intercepts
ξ j0 ∈ R|C j | and ζi0 ∈ R|Di| which are partly overlapping sub-vectors of the vectors
ξ0 = (ξ10, . . . ,ξn0)T ∈Rn and ζ0 = (ζ10, . . . ,ζm0)T ∈Rm, respectively. We note that
the initial values of the linear system (EC) can be defined by the first genetic and
environmental measurements, i.e., X (0)

j = X (0)
j and E(0)

i = E(0)
i .

The unknown parameters of the linear model (EC) have to be determined by a
regression analysis based on ellipsoidal data sets. Since all matrices and vectors of
(EC) are parts of the general interaction matrices and intercepts, n2 + 2nm + m2 +
n + m = (n + m)2 + n + m unknown parameters have to be determined. We will
provide more details on regression analysis in Section 4.

REMARK (Gene-environment networks). The clusters of genes and environmen-
tal factors can be considered as the nodes of a so-called gene-environment network.
Such a network usually consists of a high number of branches what refers to the in-
herent connections between the clusters. The branches between the nodes (or clus-
ters) are weighted by the matrices and intercept vectors of the linear coupling rules
of model (EC) and the nodes are weighted by the time-dependent ellipsoidal states
of the clusters. Hereby, network analysis and concepts from discrete mathematics
become applicable and features like connectedness, cycles and shortest paths can be
investigated [29].

3.3 Algorithm

The regulatory system (EC) allows to predict the ellipsoidal states of genes and
environmental factors with the set-theoretic calculus introduced in Section 2. In or-
der to avoid set-valued calculations we propose to determine the centers and shape
matrices of the predictions X (κ+1)

j and E(κ+1)
s of (ellipsoidal) genetic and environ-

mental cluster states by an iterative procedure. Throughout this section we assume
κ ≥ 0. The states of the genetic clusters C j, j = 1,2, . . . ,R, are given by the ellipsoids

X (κ+1)
j = E

(
µ(κ+1)

j ,Σ (κ+1)
j

)

with center
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µ(κ+1)
j = ξ j0 +

R

∑
r=1

AGG
jr µ(κ)

r +
S

∑
s=1

AEG
js ρ(κ)

s

and shape matrix

Σ (κ+1)
j =

(√
TrG (κ)

j +
√

TrH (κ)
j

)
·
(

G
(κ)
j√

TrG (κ)
j

+
H

(κ)
j√

TrH (κ)
j

)
,

where

G
(κ)
j =

( R

∑
r=1

√
TrGGG

jr

)
·
( R

∑
r=1

GGG
jr√

TrGGG
jr

)
,

H
(κ)
j =

( S

∑
s=1

√
TrHEG

js

)
·
( S

∑
s=1

HEG
js√

TrHEG
js

)

and
GGG

jr = AGG
jr Σ (κ)

r (AGG
jr )T , HEG

js = AEG
js Π (κ)

s (AEG
js )T .

Similarly, the states of the environmental cluster Di, i = 1,2, . . . ,S, can be repre-
sented in terms of ellipsoids

E(κ+1)
i = E

(
ρ(κ+1)

i ,Π (κ+1)
i

)

with center

ρ(κ+1)
i = ζi0 +

R

∑
r=1

AGE
ir µ(κ)

r +
S

∑
s=1

AEE
is ρ(κ)

s

and shape matrix

Π (κ+1)
i =

(√
TrM (κ)

i +
√

TrN (κ)
i

)
·
(

M
(κ)
i√

TrM (κ)
i

+
N

(κ)
i√

TrN (κ)
i

)
,

where

M
(κ)
i =

( R

∑
r=1

√
TrMGE

ir

)
·
( R

∑
r=1

MGE
ir√

TrMGE
ir

)
,

N
(κ)

i =
( S

∑
s=1

√
TrNEE

is

)
·
( S

∑
s=1

NEE
is√

TrNEE
is

)

and
MGE

ir = AGE
ir Σ (κ)

r (AGE
ir )T , NEE

is = AEE
is Π (κ)

s (AEE
is )T .
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4 Regression Analysis Under Ellipsoidal Uncertainty

4.1 The Regression Problem

The linear model (EC) depends on (n + m)2 + n + m unknown parameters which
define the system dynamics but also the strength of the interconnections between
the genetic and environmental clusters. In this section, we introduce our main re-
gression model for an estimation of these parameters and, thus, of the entries of the
interaction matrices A GG

jr , A EG
js , A GE

ir , A EE
is as well as the intercepts ξ j0 and ζi0

for overlapping clusters. Since the model (EC) is based on ellipsoidal sets, a set-
theoretic regression analysis has to be established. The input data is given in terms
of ellipsoidal genetic and environmental observations

X (κ)
r = E

(
µ(κ)

r ,Σ (κ)
r

)⊂ R|Cr |, E(κ)
s = E

(
ρ(κ)

s ,Π (κ)
s

)⊂ R|Ds|,

with r = 1,2, . . . ,R, s = 1,2, . . . ,S and κ = 0,1, . . . ,T which are taken at sampling
times t0 < t1 < .. . < tT . These measurements have to be compared with the first T
predictions of the model (EC) given by

X̂ (κ+1)
j = E

(
µ̂(κ+1)

j , Σ̂ (κ+1)
j

)
:= ξ j0 +

( R⊕

r=1

A GG
jr X (κ)

r

)
+

( S⊕

s=1

A EG
js E(κ)

s

)
,

Ê(κ+1)
i = E

(
ρ̂(κ+1)

i , Π̂ (κ+1)
i

)
:= ζi0 +

( R⊕

r=1

A GE
ir X (κ)

r

)
+

( S⊕

s=1

A EE
is E(κ)

s

)
,

with j = 1,2, . . . ,R, i = 1,2, . . . ,S and κ = 0,1, . . . ,T −1.

In our set-theoretic regression, we try to maximize the overlap of the predictions
and measurement values (both ellipsoids). For this reason, we introduce the ellip-
soidal approximation of the intersection given by

∆X (κ)
r := X̂ (κ)

r ∩X (κ)
r and ∆E(κ)

s := Ê(κ)
s ∩E(κ)

s ,

with r = 1,2, . . . ,R, s = 1,2, . . . ,S and κ = 1, . . . ,T , where ∩ denotes the fusion of
ellipsoids introduced in Subsection 2.4. In addition, the centers of the ellipsoids are
adjusted, so that their squared distance

∥∥∥ µ̂(κ)
r −µ(κ)

r

∥∥∥
2

2
and

∥∥∥ ρ̂(κ)
s −ρ(κ)

s

∥∥∥
2

2

becomes minimized (cf. Figure 1). This leads us to the following regression prob-
lem:
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(R) Maximize
T

∑
κ=1

{ R

∑
r=1

[∥∥∥∆X (κ)
r

∥∥∥
∗
−

∥∥∥ µ̂(κ)
r −µ(κ)

r

∥∥∥
2

2

]

+
S

∑
s=1

[∥∥∥∆E(κ)
s

∥∥∥
∗
−

∥∥∥ ρ̂(κ)
s −ρ(κ)

s

∥∥∥
2

2

]}
.

Here, ‖ · ‖∗ denotes a measure that reflects the geometrical size of the intersections
(fusions) and we assume that ‖∆X (κ)

r ‖∗ = 0, if ∆X (κ)
r = /0 and ‖∆E(κ)

s ‖∗ = 0, if
∆E(κ)

s = /0. There exist various measures related to the shape of the intersections,
e.g., the volume (which corresponds to the ellipsoid matrix determinant), the sum of
squares of semiaxes (which corresponds to the trace of the configuration matrix) or
the length of the largest semiaxes (which corresponds to the eigenvalues of the shape
matrix). For further details on geometrical (ellipsoidal) measures and the related
regression problems we refer to [32].

X̂ (κ)
r

X(κ)
r

µ̂(κ)
r =µ(κ)

rX(κ)
r

X̂ (κ)
r

µ̂(κ)
r

µ(κ)
r

Fig. 1 Overlap of ellipsoids: The intersections of the two ellipsoids X̂ (κ)
r and X (κ)

r have the same
geometrical size with the same measure of fusions on the left and the right side. On the right side,
the centers µ̂(κ)

r and µ(κ)
r are adjusted in order to minimize the difference between the centers of

ellipsoids.

4.2 Variants of the Regression Problem

In this section, we introduce specific formulations of the regression model (R). As
mentioned above, the objective function of this model depends on a measure of the
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geometrical size of the intersections (fusions) ∆X (κ)
r and ∆E(κ)

s which is related to
the corresponding shape matrices. In general, nonnegative-valued criteria functions
ψ(E (0,Q)) defined on the set of all nondegenerate ellipsoids can be applied to mea-
sure the size of a p-dimensional ellipsoid E (0,Q). These functions are monotonous
by increasing with respect to inclusion, i.e., ψ(E1) ≤ ψ(E2) if E1 ⊆ E2. Such mea-
sures are, e.g.,

(a) the trace of Q,
ψT (E (0,Q)) := TrQ = λ1 + . . .+λp,

where λi are the eigenvalues of Q (i.e., TrQ is equal to the sum of the squares
of the semiaxes),

(b) the trace of square of Q,

ψT S(E (0,Q)) := TrQ2,

(c) the diameter,
ψDia(E (0,Q)) := diam(E (0,Q)) := d,

where

max{λi ∈ R | i = 1, . . . , p}=
(

d
2

)2

,

so that d/2 is the radius of the smallest p-dimensional ball that includes
E (0,Q).

For further details on criteria functions we refer to [33], p. 101. The measures stated

above lead to different representations of the regression problem (R) and in the
following sections we study them in more detail.

REMARK (Representation of fusions). For numerical calculations and an esti-
mation of parameters of the regression problem (R), explicit representations of the
fusions ∆X (κ)

r and ∆E(κ)
s are required. In the following we explain how these rep-

resentations can be calculated with the ellipsoidal calculus of Section 2:

The fusion ∆X (κ)
r = X̂ (κ)

r ∩X (κ)
Cr

is an ellipsoid E
(
∆ µ(κ)

r , ∆Σ (κ)
r

)
with center

∆ µ(κ)
r =

[
X

(κ)
r

]−1(λ
[
Σ̂ (κ)

r
]−1µ̂(κ)

r +(1−λ )
[
Σ (κ)

r
]−1µ(κ)

r
)

and shape matrix
∆Σ (κ)

r = ξ (κ)
r

[
X

(κ)
r

]−1
,

where
X

(κ)
r := λ

[
Σ̂ (κ)

r
]−1 +(1−λ )

[
Σ (κ)

r
]−1

and

ξ (κ)
r := 1−λ (1−λ )

(
µ(κ)

r − µ̂(κ)
r

)T [
Σ (κ)

r
]−1[

X
(κ)

r
]−1[Σ̂ (κ)

r
]−1(µ(κ)

r − µ̂(κ)
r

)
.
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The parameter λ is the only root in (0,1) of the following polynomial of degree
2|Cr|−1:

ξ (κ)
r

(
detX (κ)

r
)2 Tr

([
X

(κ)
r

]−1
([

Σ̂ (κ)
r

]−1− [
Σ (κ)

r
]−1

))
−|Cr|

(
detX (κ)

r
)2

×
(

2
[
∆ µ(κ)

r
]T [

Σ̂ (κ)
r

]−1µ̂(κ)
r −2

[
∆ µ(κ)

r
]T [

Σ (κ)
r

]−1µ(κ)
r

+
[
∆ µ(κ)

r
]T

([
Σ (κ)

r
]−1− [

Σ̂ (κ)
r

]−1
)

∆ µ(κ)
r − [

µ̂(κ)
r

]T [
Σ̂ (κ)

r
]−1µ̂(κ)

r

+
[
µ(κ)

r
]T [

Σ (κ)
r

]−1µ(κ)
r

)
= 0.

Similarly, the fusion ∆E(κ)
s = Ê(κ)

s ∩E(κ)
s is an ellipsoid E

(
∆ρ(κ)

s , ∆Π (κ)
s

)
with

center
∆ρ(κ)

s =
[
Y

(κ)
s

]−1(λ
[
Π̂ (κ)

s
]−1ρ̂(κ)

s +(1−λ )
[
Π (κ)

s
]−1ρ(κ)

s
)

and shape matrix
∆Π (κ)

s = η(κ)
s

[
Y

(κ)
s

]−1
,

where
Y

(κ)
s := λ

[
Π̂ (κ)

s
]−1 +(1−λ )

[
Π (κ)

s
]−1

and

η(κ)
s := 1−λ (1−λ )

(
ρ(κ)

s − ρ̂(κ)
s

)T [
Π (κ)

s
]−1[

Y
(κ)

s
]−1[Π̂ (κ)

s
]−1(ρ(κ)

s − ρ̂(κ)
s

)
.

The parameter λ is the only root in (0,1) of the following polynomial of degree
2|Ds|−1:

η(κ)
s

(
detY (κ)

s
)2 Tr

([
Y

(κ)
s

]−1
([

Π̂ (κ)
s

]−1− [
Π (κ)

s
]−1

))
−|Ds|

(
detY (κ)

s
)2

×
(

2
[
∆ρ(κ)

s
]T [

Π̂ (κ)
s

]−1ρ̂(κ)
s −2

[
∆ρ(κ)

s
]T [

Π (κ)
s

]−1ρ(κ)
s

+
[
∆ρ(κ)

s
]T

([
Π (κ)

s
]−1− [

Π̂ (κ)
s

]−1
)

∆ρ(κ)
s − [

ρ̂(κ)
s

]T [
Π̂ (κ)

s
]−1ρ̂(κ)

s

+
[
ρ(κ)

s
]T [

Π (κ)
s

]−1ρ(κ)
s

)
= 0.

4.2.1 The Trace Criterion

We now turn to the specific formulations of the regression problem (R). The first
criterion is based on the traces of the shape matrices of the fusions ∆X (κ)

r and ∆E(κ)
s .

The geometrical size of these ellipsoids is measured in terms of their (squared)
lengths of semiaxes and, thus, the traces of the shape matrices ∆Σ (κ)

r and ∆Π (κ)
s :
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(RTr) Maximize
T

∑
κ=1

{ R

∑
r=1

[
Tr

(
∆Σ (κ)

r
)−

|Cr |
∑
j=1

(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

[
Tr

(
∆Π (κ)

s
)−

|Ds|
∑
i=1

(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
]}

.

The trace of the shape matrix of an ellipsoid is equal to the sum of the squares of
the semiaxes. For this reason, the regression problem takes the form

(R′Tr) Maximize
T

∑
κ=1

{ R

∑
r=1

|Cr |
∑
j=1

[
λ (κ)

r, j −
(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

|Ds|
∑
i=1

[
Λ (κ)

s,i −
(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
]}

,

where λ (κ)
r, j and Λ (κ)

s,i are the eigenvalues of ∆Σ (κ)
r and ∆Π (κ)

s , respectively.

4.2.2 The Trace of the Square Criterion

When we measure the size of an ellipsoid by the traces of the square of its shape
matrix, we obtain the following regression problem:

(RT S) Maximize
T

∑
κ=0

{ R

∑
r=1

[
Tr

(
∆Σ (κ)

r
)2−

|Cr |
∑
j=1

(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

[
Tr

(
∆Π (κ)

s
)2−

|Ds|
∑
i=1

(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
]}

.

4.2.3 The Diameter Criterion

The maximal extension of the fusions can be used to define a further regression
model. Here, the diameter of the ellipsoids ∆X (κ)

r and ∆E(κ)
s (or the size of the

smallest balls which include the fusions) is used in the objective function :

(RDia) Maximize
T

∑
κ=0

{ R

∑
r=1

[
diam

(
E

(
0,∆Σ (κ)

r
))−

|Cr |
∑
j=1

(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

[
diam

(
E

(
0,∆Π (κ)

s
))−

|Ds|
∑
i=1

(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
]}

.

An equivalent formulation of (RDia) can be given in terms of the eigenvalues of
∆Σ (κ)

r and ∆Π (κ)
s :
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(R′Dia) Maximize
T

∑
κ=1

{ R

∑
r=1

[
2 ·

√
λ (κ)

r −
|Cr |
∑
j=1

(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

[
2 ·

√
Λ (κ)

s −
|Ds|
∑
i=1

(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
}

with λ (κ)
r := max{λ (κ)

r, j | j = 1, . . . , |Cr|} and Λ (κ)
s := max{Λ (κ)

s,i | i = 1, . . . , |Ds|}. As
the objective function of (R′Dia) is nonsmooth with well-understood max-type func-
tions [64, 65, 66] but not Lipschitz-continuous, we also introduce the additional
regression problem

(R′′Dia) Maximize
T

∑
κ=0

{ R

∑
r=1

[
λ (κ)

r −
|Cr |
∑
j=1

(
µ̂(κ)

r, j −µ(κ)
r, j

)2
]

+
S

∑
s=1

[
Λ (κ)

s −
|Ds|
∑
i=1

(
ρ̂(κ)

s,i −ρ(κ)
s,i

)2
]}

as an alternative proposal.

4.3 Optimization Methods

In this section, we summarize solution methods for the regression models of the
previous subsections. The objective functions of these volume-related programming
problems depend on, e.g., the eigenvalues of symmetric positive semidefinite shape
matrices ∆Σ (κ)

r and ∆Π (κ)
s as well as the distance of the centers ∆ µ(κ)

r and ∆ρ(κ)
s of

the fusions ∆X (κ)
r and ∆E(κ)

s . For this reason, methods from semidefinite program-
ming [14] can be applied. In particular, the regression model (R′Tr) refers to sums
of all eigenvalues of the shape matrices ∆Σ (κ)

r and ∆Π (κ)
s . These objective func-

tions can also be considered as positive semidefinite representable functions ([11],
p. 80) and interior point methods can applied [39, 40, 41, 43]. Alternatively, assco-
ciated bilevel problems can be introduced which could be solved by gradient meth-
ods. In fact, in [42] structural frontiers of conic programming are discussed with
other optimization methods compared, and future applications in machine learning
and data mining prepared. However, we would like to underline that in the areas
regression and classification of statistical learning (cf. e.g., [25, 50]), our optimiza-
tion based methods provided and further promise very good and competitive re-
sults [16, 28, 56, 70, 78].
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5 Network Rarefication Based on Mixed Integer Programming
and Continuous Programming

The gene-environment network of clusters defined by the interaction matrices of the
linear model (EC) is usually highly-interconnected. The regression analysis of the
previous sections allows an identification of the corresponding degrees of connec-
tivity of all branches between the clusters, although its actual influence is small and
negligible. In addition, a particular cluster is generally influenced by a limited (not
too high) number of regulating genetic and environmental clusters and usually it
regulates only a small number of clusters. For this reason, we introduce a method
for diminishing the number of branches with the aim of network rarefication during
the regression process. This goal could be achieved by introducing upper bounds on
the indegrees and outdegrees of nodes of the gene-environment network. In other
words, the number of clusters regulating a specific genetic or environmental cluster
in our network as well as the number of clusters regulated by a particular cluster
has to be bounded. We impose binary constraints in order to decide whether or not
there is a connection between two clusters and by this we obtain a mixed-integer
optimization problem. After this model is provided, we will pass to continuous opti-
mization and introduce a model with continuous constraints. This is because of the
exclusive nature of binary constraints that could even destroy the connectivity of the
gene-environment network.

5.1 Mixed Integer Regression Problem

Given two clusters A,B we use the notation A← B if cluster A is regulated by cluster
B and A 6← B if cluster A is not regulated by cluster B. Now, we define the Boolean
matrices

χGG
jr =

{
1 , if C j ←Cr

0 , if C j 6←Cr,
χEG

js =

{
1 , if C j ← Ds

0 , if C j 6← Ds,

χGE
ir =

{
1 , if Di ←Cr

0 , if Di 6←Cr,
χEE

is =

{
1 , if Di ← Ds

0 , if Di 6← Ds,

indicating whether or not pairs of clusters in our regulatory network are directly
related. If two clusters are not related, the corresponding parts of the matrices AGG,
AGE , AEG, AEE have zero entries in case of a disjoint cluster decomposition.

The indegree of the genetic cluster C j in our regulatory network is defined with
respect to all genetic and environmental clusters by

deg(C j)GG
in :=

R

∑
r=1

χGG
jr and deg(C j)EG

in :=
S

∑
s=1

χEG
js ,
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where j ∈ {1, . . . ,R}. By this, the indegrees deg(C j)GG and deg(C j)EG count the
number of genetic and environmental clusters which regulate cluster C j. The overall
indegree of the genetic cluster C j is defined by

deg(C j)in := deg(C j)GG
in +deg(C j)EG

in .

Similarly, for i ∈ {1, . . . ,S} the indegree of cluster Di with respect to the environ-
mental clusters and the genetic clusters is given by

deg(Di)GE
in :=

R

∑
r=1

χGE
ir and deg(Di)EE

in :=
S

∑
s=1

χEE
is .

In this way, the indegrees deg(Di)GE and deg(Di)EE count the number of genetic and
environmental clusters which regulate cluster Di. The overall indegree of cluster Di
is defined by

deg(Di)in := deg(Di)GE
in +deg(Di)EE

in .

In the same way, bounds on the outdegree, i.e., the number of outgoing branches can
be introduced. Firstly, binary values are defined to determine whether or not there is
an outgoing connection:

ζ GG
jr =

{
1 , if Cr ←C j

0 , if Cr 6←C j,
ζ EG

js =

{
1 , if Ds ←C j

0 , if Ds 6←C j,

ζ GE
ir =

{
1 , if Cr ← Di

0 , if Cr 6← Di,
ζ EE

is =

{
1 , if Ds ← Di

0 , if Ds 6← Di.

Now, the outdegree of genetic cluster C j with respect to all genetic and environmen-
tal clusters can be expressed as

deg(C j)GG
out :=

R

∑
r=1

ζ GG
jr and deg(C j)GE

out :=
S

∑
s=1

ζ GE
js ,

where j ∈ {1, . . . ,R}. The outdegrees deg(C j)GG
out and deg(C j)EG

out count the number
of genetic and environmental clusters regulated by cluster C j. The overall outdegree
of genetic cluster C j is given by

deg(C j)out := deg(C j)GG
out +deg(C j)EG

out .

The outegree of environmental cluster Di with respect to the environmental clusters
and the genetic clusters is defined by

deg(Di)GE
out :=

R

∑
r=1

ζ GE
ir and deg(Di)EE

out :=
S

∑
s=1

ζ EE
is ,
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where i ∈ {1, . . . ,S}. The outdegrees deg(Di)GE
out and deg(Di)EE

out count the number
of genetic and environmental clusters regulated by cluster Di. The overall outdegree
of cluster Di is

deg(Di)out := deg(Di)GE
out +deg(Di)EE

out .

As mentioned above, we introduce upper bounds on the indegrees and the out-
degrees of the nodes (clusters) with the aim of network rarefication. These values
have to be given by the practitioner and they can depend on any a priori informa-
tion. Including these additional constraints, we obtain the following mixed integer
optimization problem:

(MI1)





Maximize
T

∑
κ=1

{ R

∑
r=1

∥∥∥∆X (κ)
r

∥∥∥
∗
−

∥∥∥ µ̂(κ)
r −µ(κ)

r

∥∥∥
2

2

+
S

∑
s=1

∥∥∥∆E(κ)
s

∥∥∥
∗
−

∥∥∥ ρ̂(κ)
s −ρ(κ)

s

∥∥∥
2

2

}

subject to deg(C j)GG
in ≤ αGG

j , j = 1, . . . ,R

deg(C j)EG
in ≤ αEG

j , j = 1, . . . ,R

deg(Di)EG
in ≤ αEG

i , i = 1, . . . ,S

deg(Di)EE
in ≤ αEE

i , i = 1, . . . ,S

deg(C j)GG
out ≤ β GG

j , j = 1, . . . ,R

deg(C j)EG
out ≤ β EG

j , j = 1, . . . ,R

deg(Di)GE
out ≤ β GE

i , i = 1, . . . ,S

deg(Di)EE
out ≤ β EE

i , i = 1, . . . ,S.

In model (MI1), individual bounds on the indegrees and outdegrees of each ge-
netic and environmental cluster are imposed what allows us to control the connectiv-
ity of the gene-environment network. This approach is an extension of the regression
problems with bounds on the indegrees in [31, 32]. Similar mixed-integer problems
for an analysis of gene-environment networks based on interval arithmetics were
presented in [68, 69, 71].

In model (MI1) the number of connections of each cluster with genetic and en-
vironmental clusters are considered separately. In a further step, we can combine
these bounds and impose restrictions on the total number of all ingoing or outgoing
branches of each cluster:
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(MI2)





Maximize
T

∑
κ=1

{ R

∑
r=1

∥∥∥∆X (κ)
r

∥∥∥
∗
−

∥∥∥ µ̂(κ)
r −µ(κ)

r

∥∥∥
2

2

+
S

∑
s=1

∥∥∥∆E(κ)
s

∥∥∥
∗
−

∥∥∥ ρ̂(κ)
s −ρ(κ)

s

∥∥∥
2

2

}

subject to deg(C j)in ≤ γ j, j = 1, . . . ,R

deg(Di)in ≤ δi, i = 1, . . . ,S

deg(C j)out ≤ ε j, j = 1, . . . ,R

deg(Di)out ≤ ϕi, i = 1, . . . ,S.

5.2 Continuous Programming

As mentioned above, the binary constraints in (MI1) and (MI2) can lead to restric-
tions of the network connectivity. For this reason, continuous optimization is ap-
plied for a relaxation of (MI1) by replacing the binary variables χGG

jr , χEG
js , χGE

ir

and χEE
is with real variables PGG

jr ,PEG
js ,PGE

ir ,PEE
is ∈ [0,1], which is also interpretable

as probabilities (we refer to [51] for optimization models with probabilistic con-
straints). These variables should linearly depend on the corresponding elements of
A GG

jr ,A EG
js ,A GE

ir ,A EE
is .

The real-valued indegree of cluster C j in our regulatory network with respect to
the genetic and environmental clusters are now defined by

deg(C j)GG
in :=

R

∑
r=1

PGG
jr

(
A GG

jr
)

and deg(C j)EG
in :=

S

∑
s=1

PEG
js

(
A EG

js
)
,

respectively. Similarly, the real-valued indegree of cluster Di is given by

deg(Di)GE
in :=

R

∑
r=1

PGE
ir

(
A GE

ir
)

and deg(Di)EE
in :=

S

∑
s=1

PEE
is

(
A EE

is
)
.

In the same way, we can adapt the outdegrees of clusters by replacing the binary
variables ζ GG

jr , ζ EG
js , ζ GE

ir and ζ EE
is with real variables QGG

jr ,QEG
js ,QGE

ir ,QEE
is ∈ [0,1]

linearly depending on the corresponding elements of A GG
jr ,A EG

js ,A GE
ir ,A EE

is . Now,
the real-valued outdegrees of cluster C j with respect to the genetic and environmen-
tal clusters are defined by

deg(C j)GG
out :=

R

∑
r=1

QGG
jr

(
A GG

jr
)

and deg(C j)EG
out :=

S

∑
s=1

QEG
js

(
A EG

js
)
,

respectively. Similarly, the real-valued outdegree of cluster Di is given by
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deg(Di)GE
out :=

R

∑
r=1

PGE
ir

(
A GE

ir
)

and deg(Di)EE
out :=

S

∑
s=1

QEE
is

(
A EE

is
)
.

When we replace the strict binary constraints of the mixed-integer problem (MI1)
with the aforementioned ‘soft constraints’, we obtain the following continuous pro-
gramming problem:
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We can also combine these real-valued restrictions on the total number of all
ingoing or outgoing branches of each cluster and so we obtain a relaxation of model
(M2) in terms of the following continuous programming problem:



22 Erik Kropat, Gerhard-Wilhelm Weber and Selma Belen
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6 Conclusion

We considered dynamical gene-environment networks under ellipsoidal uncertainty.
The hidden interconnections and regulating effects of possibly overlapping clusters
of genetic and environmental items are revealed by a new set-theoretic regression
methodology. By this, we further extend our Ellipsoidal Operations Research intro-
duced in [31] that was based on our and our colleagues studies on regulatory systems
in computational biology and life sciences with data uncertainty. In these studies,
interval arithmetics was applied to express various kinds of errors and uncertainty.
Here, we further extend this approach by considering stochastic dependencies be-
tween groups of genes and environmental factors. Furthermore, the clusters of data
items are not strictly divided as in [31] and they can overlap what is motivated by
the fact that a single gene or environmental factor can influence more than one other
gene. The representation of data uncertainty in terms of ellipsoids is more flexible
than the error intervals of single variables. In particular, ellipsoids are directly re-
lated to covariance matrices. For this reason, the often used Gaussian random noise
refers to our ellipsoidal approach. However, Gaussian random distributions are often
considered as simplifications. In future works, we will extend our regression mod-
els based on ellipsoidal uncertainty and we will focus on set-theoretic approaches
with semi-algebraic sets and approximations of convex or non-convex error sets.
This new perception will be combined with refined optimization methods that offer
a new perspective for the analysis of regulatory systems under uncertainty.
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21. J. Gebert, M. Lätsch, E.M.P. Quek, G.-W. Weber: Analyzing and optimizing genetic network
structure via path-finding. Journal of Computational Technologies, 9, 3, 3–12 (2004).

22. A. Gökmen, S. Kayalgil, G.-W. Weber, I. Gökmen, M. Ecevit, A. Sürmeli, T. Bali, Y. Ecevit,
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58. Ö. Uğur, S.W. Pickl, G.-W. Weber, R. Wünschiers: Operational research meets biology: An
algorithmic approach to analyze genetic networks and biological energy production. Preprint
no. 50, Institute of Applied Mathematics, METU, 2006. Submitted for the special issue of
Optimization at the occasion of the 5th Ballarat Workshop on Global and Non-Smooth Opti-
mization: Theory, Methods, and Applications (2006).
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