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Abstract. In this paper, we discuss regression models for gene-environment networks under ellipsoidal
uncertainty. Functionally related groups of genes and environmental factors are identified by clustering
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dependent expression values are determined by a regulatory system where the interactions between the
clusters are defined by (affine-) linear coupling rules. Ellipsoidal calculus is applied to determine explicit
representations of the uncertain multivariate states of the system. Various regression models are intro-
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with an outlook.
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1 Introduction
Genetic systems are often characterized by the presence of a high number of vari-
ables and parameters resulting in an extraordinary complexity of the underlying
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regulatory networks. The technological progress of the last decades and the devel-
opment of high throughput technologies resulted in a generation of massive quanti-
ties of data that can be used to enlighten the hidden network structure. Along with
these developments, the availability of extremely large data sets also challenged
mathematics and bioinformatics and led to new methods for an analysis of highly
interconnected systems. However, for many years, mathematical studies focussed
on genetic items, neglecting the importance of the regulating effects of additional
environmental factors. In this context, the concept of gene-environment networks
was developed [42, 43, 48, 49, 50, 53, 54, 56, 57], supported by twin research and
various other studies. These networks mathematically express and assess the im-
portance of factors such as, e.g., poison, pollution, stress, but also measurements
in education, health care, environmental protection and in the development of the
financial markets, for an estimation of the biological states. In fact, this impact
also holds true in the reverse direction, and as a special class of gene-environment
networks we mention eco-finance networks [24, 51].

Gene-environment networks are composed of two distinct groups of variables.
The first group consists of the genes (proteins or other cell components), the most
relevant data items to be observed. In addition, many other cell components and
factors like toxins, transcription factors, radiation, etc. play an important role in
genetic networks. This additional group of environmental items exerts a strong in-
fluence on the behaviour of the genes. However, the complexity of the data, its
volume and variability, demands for highly developed methods that allow to detect
relationships between changes in gene expression and in additional environmental
factors. In recent years, gene-environment networks under various kinds of uncer-
tainty have been analyzed. These models were based on interval arithmetics, but
also spline regression and stochastic differential equations. We note that this con-
cept encompasses a broader scope of scientific inquiry than when genetic networks
were initially considered. Many other examples from system biology and life sci-
ences refer to the so-called target-environment networks, where environmental ef-
fects have to be considered. Among them are, e.g., metabolic networks [13, 34, 54],
immunological networks [19], networks in toxicogenomics [28], but also social- and
ecological networks [18]. We refer to [17, 22, 38, 39, 40, 59, 60] for applications,
practical examples and numerical calculations.

Gene-environment networks are generally built on measurement data from mi-
croarray experiments and environmental measurements which are always effected
by errors and random noise. Error intervals can capture the deviations from specific
data values by imposing individual bounds on each variable. Various regression
models have been developed and studied with the help of generalized Chebychev
approximation and, equivalently to that approximation, semi-infinite and even gen-
eralized semi-infinite optimization [45, 46, 47, 48, 49, 50, 54, 55, 57]. However,
error intervals referring to single variables do not reflect correlations of the multi-
variate data within specific clusters of genetic and environmental items. A natural
extension is a representation of uncertainty in terms of ellipsoidal sets which are
directly related to multivariate Gaussian distributions and the corresponding covari-
ance matrices. Ellipsoids have proved to be very flexible with respect to correlations
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of the data, whereas intervals and parallelpipes usually come from a perspective
where stochastic dependencies among any two of the errors made in the measure-
ments of the expression values of genes and environmental levels are not taken
into account explicitly [6]. Moreover, paraxial sets are usually smaller than the el-
lipsoids and their orthogonal projections into the 2-dimensional Cartesian planes,
respectively [6]. Indeed, those confidence ellipsoids are obtained with respect to
stochastic dependencies of the error variables. Those dependencies are the case in
reality, e.g., in microarray experiments and in environmental studies as well. In re-
verse, any ellipsoid can be inscribed into a sufficiently large parallelpipe which, in
addition, could be suitably located and directed in space around its eigenaxes.

Clustering and classification allow to identify certain clusters of data commonly
exerting influence on other groups of genes and/or environmental factors. The
uncertain expression values of these clusters are represented by ellipsoidal states.
The multiple interactions of genetic and environmental items are determined by
(affine-) linear coupling rules which define a time-discrete regulatory model. The
future states and predictions of the linear model can be calculated by ellipsoidal cal-
culus and explicit representations of these predictions in terms of centers and shape
matrices can be determined by an iterative procedure. Various regression mod-
els are introduced for an estimation of the unknown parameters of the regulatory
model, which heavily depend on the cluster structure. These models compare the
actual measurements and the (ellipsoidal) predictions of the linear model; however,
in a set-theoretic sense. Beside a notion of distance between centers of ellipsoids,
nonnegative criteria functions associated with the shape matrix of the ellipsoid are
used in the objective function of the regression model. The trace and the determi-
nant are examples of such measures and they establish the basis for the definition of
regression models for parameter estimation of the regulatory system. Semi-definite
programming as well as conic programming and interior point methods can then be
applied for solution.

The paper is organized as follows: In Section 2, we review basic facts about
ellipsoidal calculus. In Section 3, the time-discrete model under ellipsoidal uncer-
tainty is introduced. After formulating an algorithm for predictions of ellipsoidal
future states of genetic and environmental factors, we turn to regression analysis
in Section 4. Various regression models are introduced. Their solvability and the
related optimization methods are discussed in Section 5.

2 Ellipsoidal Calculus

The parameter-dependent time-discrete model for gene-environment networks of
this paper and the corresponding regression models will be based on ellipsoidal
calculus. In this first section, we shortly review the basic operations needed to deal
with ellipsoidal uncertainty such as sums, intersections (fusions) and affine-linear
transformations of ellipsoids. The family of ellipsoids in Rp is closed with respect
to affine-linear transformations but neither the sum nor the intersection is generally
ellipsoidal, so both must be approximated by ellipsoidal sets.
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2.1 Ellipsoidal Descriptions
An ellipsoid in Rp will be parameterized in terms of its center c ∈ Rp and a sym-
metric non-negative definite configuration (or shape) matrix Σ ∈ Rp×p as

E(c, Σ) = {Σ1/2u + c | ‖u‖ ≤ 1},

where Σ1/2 is any matrix square root satisfying Σ1/2(Σ1/2)T = Σ. When Σ is of
full rank, the non-degenerate ellipsoid E(c, Σ) may be expressed as

E(c, Σ) = {x ∈ Rp | (x− c)T Σ−1(x− c) ≤ 1}.

The eigenvectors of Σ point in the directions of principal semiaxes of E . The lengths
of the semiaxes of the ellipsoid E(c, Σ) are given by

√
λi, where λi are the eigen-

values of Σ for i = 1, . . . , p. The volume of the ellipsoid E(c,Σ) is given by
vol E(c, Σ) = Vp

√
det(Σ), where Vp is the volume of the unit ball in Rp, i.e.,

Vp =





πp/2

(p/2)! , for even p,

2pπ(p−1)/2((p− 1)/2)!
p! , for odd p.

2.2 Affine Transformations
The family of ellipsoids is closed with respect to affine transformations. Given an
ellipsoid E(c,Σ) ⊂ Rp, matrix A ∈ Rm×p and vector b ∈ Rm we get AE(c,Σ) +
b = E(Ac + b, AΣAT ). Thus, ellipsoids are preserved under affine transformation.
If the rows of A are linearly independent (which implies m ≤ p), and b = 0, the
affine transformation is called projection [27].

2.3 Sums of K Ellipsoids
Given K bounded ellipsoids of Rp, Ek = E(ck,Σk), k = 1, . . . ,K, their geometric
(Minkowksi) sum E1 + E1 = {z1 + z2 | z1 ∈ E1, z2 ∈ E2} is not generally an
ellipsoid. However, it can be tightly approximated by parameterized families of
external ellipsoids. We adapt the notion of the minimal trace ellipsoid from [16]
and introduce the outer ellipsoidal approximation E(σ, P ) = ⊕K

k=1Ek containing
the sum S =

∑K
k=1 Ek of ellipsoids which is defined by

σ =
K∑

k=1

ck

and

P =
( K∑

k=1

√
Tr Σk

)( K∑

k=1

Σk√
Tr Σk

)
.
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2.4 Intersection of Ellipsoids

The intersection of two ellipsoids is generally not an ellipsoid. For this reason we
replace this set by the outer ellipsoidal approximation of minimal volume and adapt
the notion of fusion of ellipsoids from [36]. Given two non-degenerate ellipsoids
E(c1, Σ1) and E(c2,Σ2) inRp with E(c1,Σ1)∩E(c2,Σ2) 6= ∅we define an ellipsoid

Eλ(c0, Σ0) := {x ∈ Rp |λ(x− c1)T Σ−1
1 (x− c1)

+ (1− λ)(x− c2)T Σ−1
2 (x− c2) ≤ 1},

where λ ∈ [0, 1]. The ellipsoid Eλ(c0, Σ0) coincides with E(c1, Σ1) and E(c2, Σ2)
for λ = 1 and λ = 0, respectively. In order to determine a tight external ellip-
soidal approximation Eλ(c0,Σ0) of the intersection of E(c1,Σ1) and E(c2,Σ2), we
introduce

X := λΣ−1
1 + (1− λ)Σ−1

2

and
τ := 1− λ(1− λ)(c2 − c1)T Σ−1

2 X−1Σ−1
1 (c2 − c1).

The ellipsoid Eλ(c0, Σ0) is given by the center

c0 = X−1(λΣ−1
1 c1 + (1− λ)Σ−1

2 c2)

and shape matrix
Σ0 = τX−1.

The fusion of E(c1, Σ1) and E(c2, Σ2), whose intersection is a nonempty bounded
region, is defined as the ellipsoid Eλ(c0, Σ0) for the value λ ∈ [0, 1] that min-
imizes its volume [36]. The fusion of E(c1, Σ1) and E(c2, Σ2) is E(c1, Σ1), if
E(c1, Σ1) ⊂ E(c2,Σ2); or E(c2,Σ2), if E(c2, Σ2) ⊂ E(c1,Σ1); otherwise, it is
Eλ(c0, Σ0) defined as above where λ is the only root in (0, 1) of the following poly-
nomial of degree 2p− 1:

τ(detX ) Tr (co(X )(Σ−1
1 − Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1 − 2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 − Σ−1
1 )c0 − cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

Here, co(X ) denotes the matrix of cofactors of X . Since X−1 = co(X )/ detX , we
represent this polynomial as

τ(detX )2 Tr (X−1(Σ−1
1 − Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1 − 2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 − Σ−1
1 )c0 − cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

We note that it is also possible to define an inner ellipsoidal approximation. The
method of finding the internal ellipsoidal approximation of the intersection of two
ellipsoids is described in [44].
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3 Gene-Environment Systems under Ellipsoidal Un-
certainty

The previous preparations enable us to go on with our Ellipsoidal Operations Re-
search via the dynamics which we present subsequently.

3.1 Time-Discrete Gene-Environment Systems
We consider time-discrete gene-environment regulatory systems with n genes and
m environmental factors. Often, certain groups of genes and environmental items
can be identified which exert a more or less regulating influence on other groups
of data items. For this reason, the set of genes is divided in R disjoint clusters
Cr ⊂ {1, . . . , n}, r = 1, . . . , R in a preprocessing step of clustering. Sim-
ilarly, the set of all environmental items is divided in S disjoint clusters Ds ⊂
{1, . . . , m}, s = 1, . . . , S. Here, motivated by the application in the genetic con-
text, we focus on non-overlapping clusters and assume a strict sub-division of the
variables, so that the relations Cr1 ∩ Cr2 = ∅ for all r1 6= r2 and Ds1 ∩ Ds2 = ∅
for all s1 6= s2 are fulfilled. We note that our method is also applicable for over-
lapping clusters. This particular case will be addressed in a forthcoming paper [25].
There exist many clustering techniques in the fields of unsupervised learning and
data mining and we do not focus on a specific method. One reasonable approach
consists in nearest neighbor methods [21] in combination with the discriminant
adaptive nearest neighbor metric that allow an identification of ellipsoidal neigh-
borhoods [20]. Also clustering methods based on minimal spanning trees [8] or
methods from nonsmooth optimization [7] are suited for the ellipsoidal approach.

Each cluster corresponds to a functionally related group of genes or environ-
mental factors and the uncertain states of these cluster are represented in terms of
ellipsoids

Xr = E(µr, Σr) ⊂ R|Cr|, Es = E(ρs, Πs) ⊂ R|Ds|.

The dynamics and interactions between the various clusters of genetic and envi-
ronmental items are given by the linear model

X
(κ+1)
j = ξj0 +

( R⊕
r=1

AGG
jr X(κ)

r

)
+

( S⊕
s=1

AEG
js E(κ)

s

)

E
(κ+1)
i = ζi0 +

( R⊕
r=1

AGE
ir X(κ)

r

)
+

( S⊕
s=1

AEE
is E(κ)

s

)





(EC)

with κ ≥ 0 and j = 1, 2, . . . , R, i = 1, 2, . . . , S.
In this time-discrete system, four types of cluster interactions and regulating ef-

fects are involved: (GG) gene → gene, (EG) environment → gene, (GE) gene →
environment, (EE) environment → environment. The system (EC) is defined by
(affine) linear coupling rules, what implies that all future states of genetic and envi-

ronmental clusters are ellipsoids themselves. In particular, the sums
R⊕

r=1

AGG
jr X(κ)

r
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and
S⊕

s=1

AEG
js E(κ)

s describe the cumulative effects of all genetic and environmen-

tal clusters exerted on the elements of cluster Cj in a set theoretic or ellipsoidal

sense. In the same way, the (ellipsoidal) sums
R⊕

r=1

AGE
ir X(κ)

r and
S⊕

s=1

AEE
is E(κ)

s

refer to the additive genetic and environmental effects on cluster Ei. The degree
of connectivity between the individual clusters is given by the (unknown) interac-
tions matrices AGG

jr ⊂ R|Cj |×|Cr|, AEG
js ⊂ R|Cj |×|Ds|, AGE

ir ⊂ R|Di|×|Cr|, and
AEE

is ⊂ R|Di|×|Ds|. These matrices are in turn sub-matrices of the general interac-
tion matrices AGG ∈ Rn×n, AEG ∈ Rn×m, AGE ∈ Rm×n, AEE ∈ Rm×m.
Since we assume disjoint clusters, the aforementioned sub-matrices are distinct
building blocks of the general interactions matrices where the elements of the corre-
sponding clusters define the position within the general interactions matrices. The
intercepts ξj0 ∈ R|Cj | and ζi0 ∈ R|Di| are disjoint components of the vectors
ξ0 = (ξ10, . . . , ξR0)T ∈ Rn and ζ0 = (ζ10, . . . , ζS0)T ∈ Rm, respectively. We
note that the initial values of the linear system (EC) can be defined by the first

genetic and environmental measurements, i.e., X
(0)
j = X

(0)

j and E
(0)
i = E

(0)

i .
Remark: We note that the interconnections between the various clusters of

genes and environmental factors can be represented in terms of a highly intercon-
nected gene-environment network. The nodes of this network can be identified with
the clusters, weighted by the (time-dependent) ellipsoidal states. The branches be-
tween the nodes (or clusters) are weighted by the matrices and intercept vectors of
the linear coupling rules of model (EC). Although the parameters and the weights
of the branches are static, the evolution of the ellipsoidal states turns the gene-
environment network in a dynamic graph model. Hereby, network analysis and
concepts from discrete mathematics become applicable and features like connect-
edness, cycles and shortest paths can be investigated [23].

3.2 Algorithm

The linear system (EC) introduced in Section 3.1 refers to the time-discrete be-
haviour of the ellipsoidal states of clusters and environmental variables. By apply-
ing ellipsoidal calculus from Section 2, the centers and configuration matrices of
the predictions X

(κ+1)
j and E

(κ+1)
s of (ellipsoidal) genetic and environmental clus-

ter states can be calculated iteratively. Throughout this section we assume κ ≥ 0.
The state of the genetic cluster Cj , j = 1, 2, . . . , R, is given by the ellipsoid

X
(κ+1)
j = E

(
µ

(κ+1)
j , Σ(κ+1)

j

)

with center

µ
(κ+1)
j = ξj0 +

R∑
r=1

AGG
jr µ(κ)

r +
S∑

s=1

AEG
js ρ(κ)

s
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and configuration matrix

Σ(κ+1)
j =

(√
TrG(κ)

j +
√

TrH(κ)
j

)
·
( G(κ)

j√
TrG(κ)

j

+
H(κ)

j√
TrH(κ)

j

)
,

where

G(κ)
j =

( R∑
r=1

√
Tr

(
AGG

jr Σ(κ)
r (AGG

jr )T
)) ·

( R∑
r=1

AGG
jr Σ(κ)

r (AGG
jr )T

√
Tr

(
AGG

jr Σ(κ)
r (AGG

jr )T
)
)

,

H(κ)
j =

( S∑
s=1

√
Tr

(
AEG

js Π(κ)
s (AEG

js )T
)) ·

( S∑
s=1

AEG
js Π(κ)

s (AEG
js )T

√
Tr

(
AEG

js Π(κ)
s (AEG

js )T
)
)

.

Similarly, the states of the environmental cluster Di, i = 1, 2, . . . , S, can be
represented in terms of the ellipsoid

E
(κ+1)
i = E

(
ρ
(κ+1)
i , Π(κ+1)

i

)

with center

ρ
(κ+1)
i = ζi0 +

R∑
r=1

AGE
ir µ(κ)

r +
S∑

s=1

AEE
is ρ(κ)

s

and configuration matrix

Π(κ+1)
i =

(√
TrM(κ)

i +
√

TrN (κ)
i

)
·
( M(κ)

i√
TrM(κ)

i

+
N (κ)

i√
TrN (κ)

i

)
,

where

M(κ)
i =

( R∑
r=1

√
Tr

(
AGE

ir Σ(κ)
r (AGE

ir )T
)) ·

( R∑
r=1

AGE
ir Σ(κ)

r (AGE
ir )T

√
Tr

(
AGE

ir Σ(κ)
r (AGE

ir )T
)
)

,

N (κ)
i =

( S∑
s=1

√
Tr

(
AEE

is Π(κ)
s (AEE

is )T
)) ·

( S∑
s=1

AEE
is Π(κ)

s (AEE
is )T

√
Tr

(
AEE

is Π(κ)
s (AEE

is )T
)
)

.
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4 Regression Analysis Under Ellipsoidal Uncertainty

4.1 The Regression Problem
The unknown system parameters of model (EC) are given by the entries of the
interaction matrices AGG

jr , AEG
js , AGE

ir , and AEE
is and the intercepts ξj0 and ζi0.

For an estimation of these parameters and, thus, for regression analysis, we have to
compare the predictions of the linear model (EC) and the observations from genetic
and environmental measurements. The (ellipsoidal) measurements

X
(κ)

r = E(
µ(κ)

r , Σ
(κ)

r

) ⊂ R|Cr|, E
(κ)

s = E(
ρ(κ)

s ,Π
(κ)

s

) ⊂ R|Ds|,

with r = 1, 2, . . . , R, s = 1, 2, . . . , S and κ = 0, 1, . . . , T are taken at sampling
times t0 < t1 < . . . < tT and the first T predictions of the linear model are given
by the ellipsoids

X̂
(κ+1)
j = E(

µ̂
(κ+1)
j , Σ̂(κ+1)

j

)
:= ξj0 +

( R⊕
r=1

AGG
jr X

(κ)

r

)
+

( S⊕
s=1

AEG
js E

(κ)

s

)
,

Ê
(κ+1)
i = E(

ρ̂
(κ+1)
i , Π̂(κ+1)

i

)
:= ζi0 +

( R⊕
r=1

AGE
ir X

(κ)

r

)
+

( S⊕
s=1

AEE
is E

(κ)

s

)
,

with j = 1, 2, . . . , R, i = 1, 2, . . . , S and κ = 0, 1, . . . , T − 1.

The main idea of our ellipsoidal regression analysis is to maximize the overlap
of the predictions and measurement values (both ellipsoids). For this reason, we
introduce the ellipsoids

∆X(κ)
r := X̂(κ)

r ∩X
(κ)

r and ∆E(κ)
s := Ê(κ)

s ∩ E
(κ)

s ,

with r = 1, 2, . . . , R, s = 1, 2, . . . , S and κ = 1, . . . , T , where ∩ denotes the fusion
of ellipsoids introduced in Subsection 2.4. In addition, the centers of the ellipsoids
are adjusted, so that their distance becomes minimized (cf. Figure 1). This leads us
to the following regression problem:

(R) Maximize
T∑

κ=1

{ R∑
r=1

∥∥∥∆X(κ)
r

∥∥∥
∗
−

∥∥∥ µ̂(κ)
r − µ(κ)

r

∥∥∥
2

2

+
S∑

s=1

∥∥∥∆E(κ)
s

∥∥∥
∗
−

∥∥∥ ρ̂(κ)
s − ρ(κ)

s

∥∥∥
2

2

}
.

Here, ‖ · ‖∗ denotes a measure that reflects the geometrical size of the intersections
(fusions) and we assume that ‖∆X

(κ)
r ‖∗ = 0, if ∆X

(κ)
r = ∅ and ‖∆E

(κ)
s ‖∗ = 0, if

∆E
(κ)
s = ∅. There exist various measures related to the shape of the intersections,

e.g., the volume (which corresponds to the ellipsoid matrix determinant) or the sum
of squares of semiaxes (which corresponds to the trace of the configuration matrix).
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These examples lead to specific formulations of the regression problem (R) and
they depend on the shape matrices of the fusions ∆X

(κ)
r and ∆E

(κ)
s . For further

details on geometrical (ellipsoidal) measures and the related regression problems
we refer to [25].

X̂(κ)
r

X
(κ)
r

µ̂(κ)
r =µ(κ)

rX
(κ)
r

X̂(κ)
r

µ̂(κ)
r

µ(κ)
r

Figure 1: Overlap of ellipsoids: The intersections of the two ellipsoids X̂
(κ)
r and

X
(κ)

r have the same geometrical size with the same measure of fusions on the left
and the right side. On the right side, the centers µ̂

(κ)
r and µ

(κ)
r are adjusted in order

to minimize the difference between the centers of ellipsoids.

For a deeper analysis of the regression problem (R), explicit representations of

the fusions ∆X
(κ)
r and ∆E

(κ)
s are required. The fusion ∆X

(κ)
r = X̂

(κ)
r ∩X

(κ)

Cr
is

an ellipsoid E(
∆µ

(κ)
r , ∆Σ(κ)

r

)
with center

∆µ(κ)
r =

[X (κ)
r

]−1(
λ
[
Σ̂(κ)

r

]−1
µ̂(κ)

r + (1− λ)
[
Σ

(κ)

r

]−1
µ(κ)

r

)

and shape matrix
∆Σ(κ)

r = ξ(κ)
r

[X (κ)
r

]−1
,

where
X (κ)

r := λ
[
Σ̂(κ)

r

]−1 + (1− λ)
[
Σ

(κ)

r

]−1

and

ξ(κ)
r := 1− λ(1− λ)

(
µ(κ)

r − µ̂(κ)
r

)T [
Σ

(κ)

r

]−1[X (κ)
r

]−1[Σ̂(κ)
r

]−1(
µ(κ)

r − µ̂(κ)
r

)
.
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The parameter λ is the only root in (0, 1) of the following polynomial of degree
2|Cr| − 1:

ξ(κ)
r

(
detX (κ)

r

)2 Tr
([X (κ)

r

]−1
([

Σ̂(κ)
r

]−1 − [
Σ

(κ)

r

]−1
))

− |Cr|
(
detX (κ)

r

)2

×
(
2
[
∆µ(κ)

r

]T [
Σ̂(κ)

r

]−1
µ̂(κ)

r − 2
[
∆µ(κ)

r

]T [
Σ

(κ)

r

]−1
µ(κ)

r

+
[
∆µ(κ)

r

]T
([

Σ
(κ)

r

]−1 − [
Σ̂(κ)

r

]−1
)
∆µ(κ)

r − [
µ̂(κ)

r

]T [
Σ̂(κ)

r

]−1
µ̂(κ)

r

+
[
µ(κ)

r

]T [
Σ

(κ)

r

]−1
µ(κ)

r

)
= 0.

Similarly, the fusion ∆E
(κ)
s = Ê

(κ)
s ∩ E

(κ)

s is an ellipsoid E(
∆ρ

(κ)
s , ∆Π(κ)

s

)
with center

∆ρ(κ)
s =

[Y(κ)
s

]−1(
λ
[
Π̂(κ)

s

]−1
ρ̂(κ)

s + (1− λ)
[
Π

(κ)

s

]−1
ρ(κ)

s

)

and shape matrix
∆Π(κ)

s = η(κ)
s

[Y(κ)
s

]−1
,

where
Y(κ)

s := λ
[
Π̂(κ)

s

]−1 + (1− λ)
[
Π

(κ)

s

]−1

and

η(κ)
s := 1− λ(1− λ)

(
ρ(κ)

s − ρ̂(κ)
s

)T [
Π

(κ)

s

]−1[Y(κ)
s

]−1[Π̂(κ)
s

]−1(
ρ(κ)

s − ρ̂(κ)
s

)
.

The parameter λ is the only root in (0, 1) of the following polynomial of degree
2|Ds| − 1:

η(κ)
s

(
detY(κ)

s

)2
Tr

([Y(κ)
s

]−1
([

Π̂(κ)
s

]−1 − [
Π

(κ)

s

]−1
))

− |Ds|
(
detY(κ)

s

)2

×
(
2
[
∆ρ(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s − 2
[
∆ρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

+
[
∆ρ(κ)

s

]T
([

Π
(κ)

s

]−1 − [
Π̂(κ)

s

]−1
)
∆ρ(κ)

s − [
ρ̂(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s

+
[
ρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

)
= 0.

We now return to the objective function of regression problem (R), where the
geometrical size of the fusions ∆X

(κ)
r and ∆E

(κ)
s is measured. As a measure for

the size of a p-dimensional ellipsoid E(0, Q) nonnegative-valued criteria functions
ψ(E(0, Q)) defined on the set of all nondegenerate ellipsoids can be applied. These
functions are monotonous by increasing with respect to inclusion, i.e., ψ(E1) ≤
ψ(E2) if E1 ⊆ E2. Such measures are, e.g.,

(a) the trace of Q,

ψT (E(0, Q)) := Tr Q = λ1 + . . . + λp,

where λi are the eigenvalues of Q (i.e., Tr Q is equal to the sum of the squares
of the semiaxes),
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(b) the determinant of Q,

ψDet(E(0, Q)) := detQ = λ1 · . . . · λp,

which is equal to the product of eigenvalues and proportional to the volume

vol E(0, Q) = π
p
2 (detQ)

1
2
(
Γ
(

p
2 + 1

))−1

of the ellipsoid, where Γ stands for the Gamma-function.

For further details on criteria functions we refer to [26], p. 101. The measures stated
above lead to different representations of the regression problem (R) and we study
them now in more detail.

4.2 The Trace Criterion
By measuring the size of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s in terms of their (squared)

lengths of semiaxes and, thus, the traces of the shape matrices, we can state the
following regression problem:

(RTr) Maximize
T∑

κ=1

{ R∑
r=1

[
Tr

(
∆Σ(κ)

r

)−
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[
Tr

(
∆Π(κ)

s

)−
|Ds|∑

i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

.

As the trace of the shape matrix of an ellipsoid is equal to the sum of the squares of
the semiaxes, the regression problem takes the form

(R′Tr) Maximize
T∑

κ=1

{ R∑
r=1

[|Cr|∑

j=1

λ
(κ)
r,j −

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[|Ds|∑

i=1

Λ(κ)
s,i −

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

,

where λ
(κ)
r,j and Λ(κ)

s,i are the eigenvalues of ∆Σ(κ)
r and ∆Π(κ)

s , respectively.

4.3 The Determinant Criterion
Another objective function of the regression model can be build with the determi-
nants of the configuration matrices of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s :

(RDet) Maximize
T∑

κ=1

{ R∑
r=1

[
det

(
∆Σ(κ)

r

)−
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[
det

(
∆Π(κ)

s

)−
|Ds|∑

i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

.
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Equivalent formulations of (RDet) can be given in terms of the eigenvalues of the
configuration matrices

(R′Det) Maximize
T∑

κ=1

{ R∑
r=1

[(|Cr|∏

j=1

λ
(κ)
r,j

)
−
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[(|Ds|∏

i=1

Λ(κ)
s,i

)
−
|Ds|∑

i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

,

and the volumes of the ellipsoids ∆X
(κ)
r and ∆E

(κ)
s

(R′′Det) Maximize
T∑

κ=1

{ R∑
r=1

[(
π

2
|Cr| Γ

( |Cr|
2

+ 1
)

vol
(
∆X(κ)

r

))2

−
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[(
π

2
|Ds| Γ

( |Ds|
2

+ 1
)

vol
(
∆E(κ)

s

))2

−
|Ds|∑

i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

.

5 Optimization Methods
We now turn to optimization methods for the regression models of the previous
subsections. These models depend on the shape matrices Σ(κ)

r and Π(κ)
s and the

distance of the centers µ
(κ)
r and ρ

(κ)
s of the fusions ∆X

(κ)
r and ∆E

(κ)
s . In this sit-

uation, methods from semidefinite programming [14] can be applied, because the
objective functions of these volume-related programming problems depend on, e.g.,
the determinant or eigenvalues of symmetric positive semidefinite matrices. In ad-
dition, the squared Euclidean norm is conic representable ([10], p. 88) and, thus,
semidefinite representable ([10], p. 132). However, some of the regression models
introduced above have to be slightly modified in order to obtain positive semidefi-
nite representable objective functions [11]. For example, the objective function of
the regression model (RDet) depends directly on the determinant of shape matri-
ces, but the determinant det (M) considered as a function of symmetric positive
semidefinite n × n-matrices M (short: M < 0) is neither a convex nor a concave
function of M (if n ≥ 2). However, if p is a rational number with 0 ≤ p ≤ 1

n , then

f(M) =

{
−detp (M) , M < 0,

∞ , otherwise,

is positive semidefinite representable ([11], p. 81). For this reason, we introduce
the regression model
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(R̃Det) Maximize
T∑

κ=1

{
−

R∑
r=1

[
detp

(
∆Σ(κ)

r

)
+
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

−
S∑

s=1

[
detq

(
∆Π(κ)

s

)
+
|Ds|∑

i=1

(
ρ̂
(κ)
s,i −ρ

(κ)
s,i

)2
]}

,

where the rational numbers p, q fulfill the conditions 0 ≤ p ≤ 1
|Cr| and 0 ≤ q ≤

1
|Ds| . Since det(M) =

∏n
i=1 λi(M), where λi(M) are the eigenvalues of M , we

can replace (R′Det) by

(R̃′Det) Maximize
T∑

κ=1

{
−

R∑
r=1

[(|Cr|∏

j=1

λ
(κ)
r,j

)p

+
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

−
S∑

s=1

[(|Ds|∏

i=1

Λ(κ)
s,i

)q

+
|Ds|∑

i=1

(
ρ̂
(κ)
s,i −ρ

(κ)
s,i

)2
]}

,

and instead of (R′′Det) we suggest

(R̃′′Det) Maximize
T∑

κ=1

{ R∑
r=1

[(
π

2
|Cr| Γ

( |Cr|
2

+ 1
)

vol
(
∆X(κ)

r

))2p

−
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[(
π

2
|Ds| Γ

( |Ds|
2

+ 1
)

vol
(
∆E(κ)

s

))2q

−
|Ds|∑

i=1

(
ρ̂
(κ)
s,i − ρ

(κ)
s,i

)2
]}

.

We note that in case of positive definite shape matrices ∆Σ(κ)
r and ∆Π(κ)

s negative
powers of the determinant can be used. If p is a positive rational, the function

f(M) =

{
det−p (M) , M Â 0,
∞ , otherwise,

of the symmetric n × n-matrix M is positive semidefinite representable ([11], p.
83). Here, M Â 0 means that M is positive semidefinite. Now, with two positive
rationals p, q we obtain a further regression model

(R′′′Det) Maximize
T∑

κ=1

{ R∑
r=1

[
det−p

(
∆Σ(κ)

r

)
+
|Cr|∑

j=1

(
µ̂

(κ)
r,j − µ

(κ)
r,j

)2
]

+
S∑

s=1

[
det−q

(
∆Π(κ)

s

)
+
|Ds|∑

i=1

(
ρ̂
(κ)
s,i −ρ

(κ)
s,i

)2
]}

.
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In the regression model (R′Tr), sums of all eigenvalues of the configuration ma-
trices ∆Σ(κ)

r and ∆Π(κ)
s are considered, which can also be regarded as positive

semidefinite representable functions ([11], p. 80). In general, interior point meth-
ods can applied which have a moderate complexity [29, 30, 31, 33]. Alternatively,
for regression problems that consider sums of eigenvalues in the objective function,
asscociated bilevel problems can be introduced which could be solved by gradient
methods. In fact, in [32] structural frontiers of conic programming are discussed
with other optimization methods compared, and future applications in machine
learning and data mining prepared. However, we would like to underline that in
the areas regression and classification of statistical learning (cf. e.g., [21, 37]), our
optimization based methods provided and further promise very good and competi-
tive results [15, 22, 41, 52, 58].

REMARK (Future Research). We represented genetic and environmental states
with the help of ellipoids. This model addressed both data and predicted variables,
and it served as an input into design or system matrices. Since we finally arrived at
conic optimization problems, we may also state the corresponding dual problems.
Here we will in future investigate, and also invite the reader to this, which roles the
ellipsoids then play in terms of the outputs of the interactions. This could establish
a Dual Ellipsoidal OR.

Moreover, in [49] we expressed that we can navigate between entries and entire
block matrices, e.g., quadrants, of the interaction and design matrices, a control or
regulatory measurements, e.g., in the context of Kyoto Protocol [35, 50]. A closer
understanding of this navigating in the presence of ellipsoidal uncertainty in the
state variables and, what is more, in the blockwise (clustered) entries of our system
matrices, is subject of future research, too.

6 Conclusion
In this paper, we analyzed a time-discrete regression model for gene-environment
regulatory networks under ellipsoidal uncertainty. The ellipsoidal approach - com-
plemented by powerful optimization methods of semidefinite programming and the
efficiency of interior point methods - offers a new perspective for the analysis of
regulatory systems in systems biology and life sciences, and it could even estab-
lish an Ellipsoidal OR. The representation of the dynamic states of the underlying
system in terms of ellipsoids was motivated by our and our colleagues’ studies on
gene-environment networks and eco-finance networks, where errors and uncertainty
are modeled by intervals [58, 59, 60]. Here, we further extended this approach by
replacing the intervals by more general uncertainty sets. Ellipsoids are more flexible
than intervals and parallelpipes what also refers to stochastic dependencies between
the various genes and environmental factors. Moreover, ellipsoids are directly re-
lated to covariance matrices and they provide good approximations of convex sets.
In particular, models based on Gaussian random noise refer to the ellipsoidal ap-
proach. However, Gaussian random distributions are often used as simplifications,
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and in many applications non-Gaussian probability distributions have to be applied.
In future works, we will further extend our models based on ellipsoidal calculus and
we will turn to a more set-theoretic representation of uncertainty based on semi-
algebraic sets [9, 12]. We will combine this new perception with refined optimiza-
tion methods, and by this we will offer a further avenue for the analysis of regulatory
systems, particularly with regard to applications and real-world data. Furthermore,
we refined collaborative game theory under interval uncertainty [1, 2, 3, 4] by our
ellipsoidal calculus [5], herewith including correlations, as being expressed by sub-
coalitions found by clustering. In terms if, e.g., joint implementation, collaborative
game theory serves for an new interpretation of the TEM model, which is some dy-
namical model related with the Kyoto Protocol and a part of our gene-environment
networks [35, 48, 49]. With this study, we aim scientific advances and the improve-
ment of living conditions on earth.
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meets biology: An algorithmic approach to analyze genetic networks and
biological energy production, Preprint no. 50, Institute of Applied Mathe-
matics, METU, 2006, submitted for the special issue of Optimization at the
occasion of the 5th Ballarat Workshop on Global and Non-Smooth Optimiza-
tion: Theory, Methods, and Applications (2006).
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