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Abstract. In this paper, we introduce and analyze time-discrete target-environment regulatory systems (TE-
systems) under ellipsoidal uncertainty. The uncertain states of clusters of target and environmental items of the
regulatory system are represented in terms of ellipsoids and the interactions between the various clusters are defined
by affine-linear coupling rules. The parameters of the coupling rules and the time-dependent states of clusters define
the regulatory network. Explicit representations of the uncertain multivariate states of the system are determined
with ellipsoidal calculus. In addition, we introduce various regression models that allow us to determine the unknown
system parameters from uncertain (ellipsoidal) measurement data by applying semidefinite programming and interior
point methods. Finally, we turn to rarefications of the regulatory network. We present a corresponding mixed integer
regression problem and achieve a further relaxation by means of continuous optimization. We analyze the structure
of the optimization problems obtained, especially, in view of their solvability, we discuss the structural frontiers and
research challenges, and we conclude with an outlook.
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1. Introduction. Regulatory networks are often characterized by the presence of a large
number of variables and parameters resulting in a complexity which is beyond man’s everyday
perception. The development of high throughput technologies led to a generation of massive
quantities of data and this technological progress has been accompanied by the development
of new mathematical methods for the analysis of highly interconnected systems that allows
to gain deeper insights in the dynamic behaviour and the topological aspects of complex
regulatory systems in biology, finance and engineering sciences.

In this paper, we address the special class of so-called TE-regulatory systems (Target-
Environment regulatory systems). These systems are composed of two distinct groups of
data, exhibiting a completely different behaviour, although they are strongly related. The
first group consists of the targets; these are the most important variables of the system and
they depend on an additional group of so-called environmental items. This specific type of
regulatory systems occurs in many applications. For example, in modeling and prediction of
gene-expression and environmental patterns, so-called gene-environment networks are inves-
tigated in order to determine the complex interactions between genes and other components
of cells and tissues. Here, the target variables are the expression values of the genes while the
environmental items are given by toxins, transcription factors, radiation, etc. [1, 17, 20, 21,
22, 23, 24, 25, 31, 33, 49, 51, 60, 61, 62, 69, 70, 76, 77, 82, 83, 84, 85, 88, 89].

In Operational Research, eco-finance networks were introduced in [38] and applied to an
extension of the Technology-Emissions-Means Model (in short: TEM-model), which allows
a simulation of the cooperative economic behaviour of countries/enterprises with the aim of
a reduction of greenhouse gas emissions. Here, the target variables are the emissions that
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the actors wish to reduce and the required financial means act as additional environmental
items [32, 34, 35, 36, 41, 53, 54, 55, 56].

As it is clearly understood today, environmental factors constitute an essential group of
regulating components and by including these additional variables the models performance
can be significantly improved. The advantage of such an refinement has been demonstrated
for example in [42], where it is shown that prediction and classification performances of
supervised learning methods for the most complex genome-wide human disease classification
can be greatly improved by considering environmental aspects. Many other examples from
biology and life sciences refer to TE-regulatory systems where environmental effects are
strongly involved. Among them are, e.g., metabolic networks [15, 52, 82], immunological
networks [28], social- and ecological networks [26]. We refer to [23, 32, 60, 61, 62, 88, 89]
for applications, practical examples and numerical calculations.

TE-models are usually based on measurements which are always effected by random
noise and uncertainty. In order to include errors and uncertainty in TE-regulatory systems
various regression models based on interval arithmetics but also on spline regression and
stochastic differential equations have been developed. In particular, generalized additive
models and models based on multivariate adaptive regression splines (MARS) have been in-
troduced and the related Tikhonov regularization problem was treated by methods from conic
quadratic programming [63, 64, 65, 66, 67, 68, 86, 87]. In general, for data corrupted by ran-
dom noise the probability function is usually assumed to be Gaussian. This assumption has
computational advantages but this approach is not sufficient as in case of real world data one
has to include non-Gaussian or nonwhite noise. To overcome these difficulties, set theoretic
approaches can be used where bounds on the uncertain variable are imposed. Here, we focus
on ellipsoids which have proved to be suitable for data corrupted by noise. Ellipsoids are
very flexible with respect to correlations of the data, while intervals and parallelpipes usually
come from a perspective where stochastic dependencies among any two of the errors made in
the measurements of the expression values of targets and environmental levels are not taken
into account explicitly [7]. Moreover, these sets are usually smaller than the ellipsoids and
their orthogonal projections into the 2-dimensional Cartesian planes, respectively [7]. Indeed,
those confidence ellipsoids are obtained with respect to stochastic dependencies of the error
variables. Those dependencies are the case in reality, e.g., in microarray experiments and in
environmental studies as well. In reverse, any ellipsoid can be inscribed into a sufficiently
large parallelpipe which, in addition, could be suitably located and directed in space around
its eigenaxes.

There is a rich list of roles and performances delivered which are associated and assigned
to ellipsoids. They include: (i) encompassing of objects, (ii) inner or outer approximation of
shapes and bodies, of discrete or continuous kinds of sets, (iii) support for classification of
objects and discrimination of different objects, (iv) defining critical points or contours which
mark tails of higher dimensional and connected versions of tails that describe neighbourhoods
of infinity, usually with small values of small probabilities assigned, (v) set-valued general-
izations of numbers, and generalizations of balls with a reduced wealth of symmetries but still
highly symmetrical, (vi) geometrical representation of linear mappings which execute certain
expansions and contractions (herewith, deformation; e.g., applied to a ball) and rotations,
with respect to axes in an orthogonal system of coordinates, (vi) geometrical representation
of some symmetry breakings, compared with balls, (vii) geometrical representation of depen-
dencies, especially, of variances and correlations, (viii) easy measurability and support for an
approximate measuring of other sets and subsets.

Clustering and classification provides an insight in the structure of the data and allows
to identify groups of data items jointly acting on other clusters of target and environmen-
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tal items. The uncertain states of these clusters are represented by ellipsoids and ellipsoidal
calculus is applied to model the dynamics of the TE-regulatory system. Affine-linear trans-
formations define the coupling rules which describe the multiple interactions between the
clusters and lead to a propagation of ellipsoidal states. The unknown parameters of the time-
discrete TE-model are also arranged in clusters and have to be adapted according to uncertain
(ellipsoidal) measurement data. Various regression models will be introduced which com-
pare measurements and predictions. For parameter estimation we have to measure the size of
certain ellipsoids which will be expressed by nonnegative criteria functions associated with
the configuration matrix of the ellipsoid. The trace, the trace of square, the determinant or
the volume are examples of such measures and they lead to different regression models for
parameter estimation of the TE-model. In particular, semidefinite programming as well as
conic programming and interior point methods can be applied to solve the various regression
models.

Complex regulatory systems usually consist of a large number of interconnected compo-
nents and the TE-regulatory network is highly structured with multiple interactions between
many different clusters. For practical reasons, it may be necessary to reduce the number
of branches of the TE-regulatory network. In this situation, bounds on the indegrees of the
nodes (clusters) can reduce the complexity of the model. Binary constraints can be used to de-
cide whether or not there is a connection between pairs of clusters. Adding these additional
constraints to the objective function of the regression problem, we obtain a mixed integer
optimization problem which corresponds to our network rarefication. However, binary con-
straints are very strict and in some situations they can even destroy the connectivity of the
regulatory network. In order to avoid these difficulties, the binary constraints can be replaced
by more flexible continuous constraints leading to a further relaxation in terms of continuous
optimization.

The paper is organized as follows: In Section 2, we state some basic facts about ellipsoids
and introduce basic operations of ellipsoidal calculus. In Section 3, we introduce the time-
discrete TE-model under ellipsoidal uncertainty. Explicit representations of the predictions
of this model are given in Section 3.2. In Section 4, we turn to an estimation of parameters
of the TE-model and introduce various regression models. We discuss their solvability by
semidefinite programming and interior point methods. Reduction of complexity will be ad-
dressed in Section 5, where an associated mixed integer approximation problem and a further
relaxation based on continuous optimization are introduced.

2. Ellipsoidal Calculus. The states of target and environmental variables of our TE-
model will be represented in terms of ellipsoids. In this section, we introduce the basic
operations needed to deal with ellipsoidal uncertainty such as sums, intersections (fusions)
and affine-linear transformations of ellipsoids. The family of ellipsoids in Rp is closed with
respect to affine-linear transformations but neither the sum nor the intersection is generally
ellipsoidal, so both must be approximated by ellipsoidal sets.

2.1. Ellipsoidal Descriptions. An ellipsoid in Rp will be parameterized in terms of its
center c ∈ Rp and a symmetric non-negative definite configuration matrix Σ ∈ Rp×p as

E(c, Σ) = {Σ1/2u + c | ‖u‖ ≤ 1},
where Σ1/2 is any matrix square root satisfying Σ1/2(Σ1/2)T = Σ. When Σ is of full rank,
the non-degenerate ellipsoid E(c,Σ) may be expressed as

E(c,Σ) = {x ∈ Rp | (x− c)T Σ−1(x− c) ≤ 1}.
The eigenvectors of Σ point in the directions of principal semiaxes of E . The lengths of the
semiaxes of the ellipsoid E(c,Σ) are given by

√
λi, where λi are the eigenvalues of Σ for
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i = 1, . . . , p. The volume of the ellipsoid E(c, Σ) is given by vol E(c,Σ) = Vp

√
det(Σ),

where Vp is the volume of the unit ball in Rp, i.e.,

Vp =





πp/2

(p/2)! , for even p

2pπ(p−1)/2((p− 1)/2)!
p! , for odd p.

2.2. Affine Transformations. The family of ellipsoids is closed with respect to affine
transformations. Given an ellipsoid E(c, Σ) ⊂ Rp, matrix A ∈ Rm×p and vector b ∈ Rm

we get AE(c,Σ) + b = E(Ac + b, AΣAT ). Thus, ellipsoids are preserved under affine
transformation. If the rows of A are linearly independent (which implies m ≤ p), and b = 0,
the affine transformation is called projection [40].

2.3. Sums of two Ellipsoids. Given two non-degenerate ellipsoids E1 = E(c1, Σ1) and
E2 = E(c2, Σ2), their geometric (Minkowksi) sum E1 + E1 = {z1 + z2 | z1 ∈ E1, z2 ∈ E2} is
not generally an ellipsoid. However, it can be tightly approximated by parameterized families
of external ellipsoids. The range of values of E1 + E1 is contained in the ellipsoid

E1 ⊕ E1 := E(c1 + c2, Σ(s))

for all s > 0, where

Σ(s) = (1 + s−1)Σ1 + (1 + s)Σ2.

For a minimal and unique external ellipsoidal approximation an additional condition has to be
fulfilled. The value of s is commonly chosen to minimize either the trace or the determinant
of Σ(s). If we select

s =
(Tr Σ1)1/2

(Tr Σ2)1/2
,

then this value defines the ellipsoid containing the sum that has minimal trace, or, sum of
squares of semiaxes. We note that the minimum trace calculation can be used in case of
degenerate ellipsoids [19, 39, 40].

2.4. Sums of K Ellipsoids. Given K bounded ellipsoids of Rp, Ek = E(ck,Σk), k =
1, . . . , K. We adapt the notion of the minimal trace ellipsoid from [18] and introduce the
outer ellipsoidal approximation E(σ, P ) = ⊕K

k=1Ek containing the sum S =
∑K

k=1 Ek of
ellipsoids which is defined by

σ =
K∑

k=1

ck

and

P =
( K∑

k=1

√
Tr Σk

)( K∑

k=1

Σk√
Tr Σk

)
.
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2.5. Intersection of Ellipsoids. As the intersection of two ellipsoids is generally not
an ellipsoid we replace this set by the outer ellipsoidal approximation of minimal volume.
We adapt the notion of fusion of ellipsoids from [58]. Given two non-degenerate ellipsoids
E(c1, Σ1) and E(c2, Σ2) in Rp with E(c1,Σ1) ∩ E(c2, Σ2) 6= ∅ we define an ellipsoid

Eλ(c0, Σ0) := {x ∈ Rp |λ(x− c1)T Σ−1
1 (x− c1)

+ (1− λ)(x− c2)T Σ−1
2 (x− c2) ≤ 1},

where λ ∈ [0, 1].
The ellipsoid Eλ(c0, Σ0) coincides with E(c1, Σ1) and E(c2,Σ2) for λ = 1 and λ = 0,

respectively. In order to determine a tight external ellipsoidal approximation Eλ(c0, Σ0) of
the intersection of E(c1, Σ1) and E(c2, Σ2), we introduce

X := λΣ−1
1 + (1− λ)Σ−1

2

and

τ := 1− λ(1− λ)(c2 − c1)T Σ−1
2 X−1Σ−1

1 (c2 − c1).

The ellipsoid Eλ(c0, Σ0) is given by the center

c0 = X−1(λΣ−1
1 c1 + (1− λ)Σ−1

2 c2)

and configuration matrix

Σ0 = τX−1.

The fusion of E(c1,Σ1) and E(c2, Σ2), whose intersection is a nonempty bounded region,
is defined as the ellipsoid Eλ(c0, Σ0) for the value λ ∈ [0, 1] that minimizes its volume [58].
The fusion of E(c1,Σ1) and E(c2, Σ2) is E(c1, Σ1), if E(c1, Σ1) ⊂ E(c2, Σ2); or E(c2,Σ2),
if E(c2,Σ2) ⊂ E(c1,Σ1); otherwise, it is Eλ(c0, Σ0) defined as above where λ is the only
root in (0, 1) of the following polynomial of degree 2p− 1:

τ(detX ) Tr (co(X )(Σ−1
1 − Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1 − 2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 − Σ−1
1 )c0 − cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

Here, co(X ) denotes the matrix of cofactors of X . Since X−1 = co(X )/ detX , we represent
this polynomial as

τ(detX )2 Tr (X−1(Σ−1
1 − Σ−1

2 ))− p(detX )2

× (2cT
0 Σ−1

1 c1 − 2cT
0 Σ−1

2 c2 + cT
0 (Σ−1

2 − Σ−1
1 )c0 − cT

1 Σ−1
1 c1 + cT

2 Σ−1
2 c2) = 0.

We note that it is also possible to define an inner ellipsoidal approximation. The method
of finding the internal ellipsoidal approximation of the intersection of two ellipsoids is de-
scribed in [71].
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3. Target-Environment Regulatory Systems under Ellipsoidal Uncertainty. In this
section, we introduce a time-discrete model for TE-regulatory systems under ellipsoidal un-
certainty. This approach is based on clustering of the sets of targets and environmental items
what refers to combinations of variables commonly exerting influence on other groups of
system variables. The uncertain states of these clusters are represented in terms of ellipsoids
which provide a more detailed description of uncertainty that reflects the correlation of data
items. The dynamic behaviour of the clusters and their interactions are determined by clus-
ters of unknown parameters which directly depend on the structure of the system variables.
This approach further extends the time-discrete models developed for an analysis of gene-
environment networks and eco-finance networks where errors and uncertainty are represented
by intervals [38, 78, 79, 81].

3.1. The Time-Discrete Model. In our time-discrete TE-regulatory system, the n-vector
X = (X1, . . . , Xn)T denotes the expression values of the n target variables and the m-vector
E = (E1, . . . , Em)T represents the values of the m environmental items. By a preprocess-
ing step of clustering the set of targets can be divided in R disjoint or overlapping clusters
Cr ⊂ {1, . . . , n}, r = 1, . . . , R. Similarly, the set of all environmental items can be divided
in S (disjoint or overlapping) clusters Ds ⊂ {1, . . . , m}, s = 1, . . . , S. In case of disjoint
clusters the relations Cr1 ∩ Cr2 = ∅ for all r1 6= r2 and Ds1 ∩Ds2 = ∅ for all s1 6= s2 are
fulfilled. The papers [2, 10, 11, 50, 72] introduce into clustering theory as a central element
of unsupervised learning and data mining, and they discuss the questions of how to determine
the number of clusters and of the stability of the clustering. In addition, nearest neighbor
methods can be applied [30], in particular, in combination with the discriminant adaptive
nearest-neighbor metric (DANN) which uses local discriminant information to estimate an
effective metric for classification and identification of ellipsoidal neighborhoods [29]. For
clustering techniques based on nonsmooth optimization we refer to [8, 9]. With each cluster
of targets we assign a |Cr|-subvector Xr of X that is given by the indices of Cr. In reverse,
the n-vector X̃r is obtained from Xr by expanding Xr to a n-vector, where the missing com-
ponents are equal to zero. Similarly, Es is a |Ds|-subvector of E given by the indices of Ds

and Ẽs is its expansion to a m-vector with zero-entries at the missing components.

In the following, we will assign an ellipsoid to each cluster. That means, the vectors
Xr represent ellipsoidal states of the targets given by the ellipsoid E(µr, Σr) ⊂ R|Cr| and Es

represent the ellipsoidal states of the environmental items given by the ellipsoids E(ρs,Πs) ⊂
R|Ds|. These ellipsoids can be expanded to (flat) ellipsoids X̃r ≡ E(µ̃r, Σ̃r) ⊂ Rn and
Ẽs ≡ E(ρ̃s, Π̃s) ⊂ Rm. We note that ellipsoids can be identified with intervals if clusters are
singletons. In addition, flat ellipsoids E(µr, Σr) and E(ρs, Πs) would refer to data sets where
at least one of the variables is exactly known, but, if necessary in the approximating sense, we
can avoid this by an artificial extension in the corresponding coordinate directions of length
ε > 0. In other words, one can impose lower bounds on the semiaxes lengths. Similarly,
one can control the extension by imposing sufficiently large upper bounds and, thus, avoid
needle-shaped or degenerate ellipsoids.

The dynamic behaviour of the time-discrete TE-regulatory system is governed by affine-
linear coupling rules which describe the interactions between the various clusters. These
affine-linear relations have to reflect the mutual dependence of pairs of clusters but also over-
laps of clusters have to be taken into account.
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The regulatory system of the target items is defined by

(1) the interactions between the clusters of target items
(represented by an n× n-interaction matrix ATT and an n-intercept vector V TT ),

(2) the effects of the clusters of environmental items on the target clusters
(represented by an n×m interaction-matrix ATE and an n-intercept vector V TE).

The entries of the interaction matrices ATT , ATE and the intercept vectors V TT , V TE

comprise the unknown parameters of the regulatory system. Clusters of parameters, given by
specific sub-matrices and sub-vectors of ATT , ATE and V TT , V TE , define the affine-linear
coupling rules. In order to describe the interactions between the clusters of target items we
assign a sub-matrix ΓTT

jr ∈ R|Cj |×|Cr| of ATT to each pair Cj and Cr (the elements of Cj and
Cr determine the indices of rows and columns). This sub-matrix can in turn be considered as
a connectivity matrix between the clusters Cj and Cr that represents the (uncertain) degree
of connectivity between the elements of the two clusters of targets. Later we will add an
additional shift (intercept) by the sub-vector ΦTT

j ∈ R|Cj | of V TT . We note that the sub-
matrices ΓTT

jr and sub-vectors ΦTT
j will be partly composed of the same elements in case of

overlapping clusters.
In an analogous manner we can describe the effects of the clusters of environmental items

on the target clusters. For each pair of target clusters Cj and environmental clusters Ds we
define a sub-matrix ΓTE

js ∈ R|Cj |×|Ds| (the elements of Cj and Ds determine the indices of
rows and columns) and a sub-vector ΦTE

j ∈ R|Cj | of V TE . The sub-matrix ΓTE
js acts as a

connectivity matrix between the clusters Cj and Ds and ΦTE
j acts as a shift.

Beside the regulatory system of target variables, there can be an additional environmental
regulatory system which is defined by

(3) the interactions between the clusters of environmental items
(represented by an m×m interaction-matrix AEE and an m-intercept vector V EE),

(4) the effects of the target clusters on the environmental clusters
(represented by an m× n interaction-matrix AET and an m-intercept vector V ET ).

The degree of connectivity between pairs of environmental clusters Di and Ds or a
pair of environmental and target clusters, Di and Cr, is given by the sub-matrices ΓEE

is ∈
R|Di|×|Ds| of AEE and ΓET

ir ∈ R|Di|×|Cr| of AET as well as the sub-vectors ΦEE
i of V EE

and ΦET
i of V ET .

Now we introduce our time-discrete model that allows us to calculate predictions X
(k)
r

and E
(k)
s of the ellipsoidal states targets and environmental variables.
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TE-Model

For k = 0, 1, 2, . . .

For j = 1, 2, . . . , R :
(1) Interactions between the clusters of targets

(A) Effect of cluster Cr on cluster Cj

G
(k)
jr = ΓTT

jr ·X(k)
r + ΦTT

j , r = 1, 2, . . . , R

(B) Sum of the effects of all clusters of targets on cluster Cj

G
(k)
j =

R⊕
r=1

G
(k)
jr

(2) Effects of the environmental clusters on the clusters of targets
(A) Effect of environmental cluster Ds on target cluster Cj

H
(k)
js = ΓTE

js · E(k)
s + ΦTE

j , s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Cj

H
(k)
j =

S⊕
s=1

H
(k)
js

(3) Sum of effects on the target clusters
X

(k+1)
j = G

(k)
j ⊕ H

(k)
j

For i = 1, 2, . . . , S :
(1) Interactions between the clusters of environmental items

(A) Effect of cluster Ds on cluster Di

M
(k)
is = ΓEE

is · E(k)
s + ΦEE

i , s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Di

M
(k)
i =

S⊕
s=1

M
(k)
is

(2) Effects of the target clusters on the clusters of environmental items
(A) Effect of target cluster Cr on environmental cluster Di

N
(k)
ir = ΓET

ir ·X(k)
r + ΦET

i , r = 1, 2, . . . , R

(B) Sum of the effects of all target clusters on environmental cluster Di

N
(k)
i =

R⊕
r=1

N
(k)
ir

(3) Sum of effects on clusters of environmental items

E
(k+1)
i = M

(k)
i ⊕ N

(k)
i
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Since ΓTT
jr ·X(k)

r +ΦTT
j , ΓTE

js ·E(k)
s +ΦTE

j , ΓEE
is ·E(k)

s +ΦEE
i and ΓET

ir ·X(k)
r +ΦET

i

are affine-linear transformations, the sets G
(k)
jr , H

(k)
js , M

(k)
is and N

(k)
ir are ellipsoids. In addi-

tion, G
(k)
j , H

(k)
j , M

(k)
i and N

(k)
i are defined as sums of ellipsoids and, therefore, constitute

ellipsoids themselves. Therefore, the above algorithm allows us to calculate predictions

(
X

(k+1)
1 , . . . , X

(k+1)
R , E

(k+1)
1 , . . . , E

(k+1)
S

)

of the ellipsoidal states of targets and environmental items. In the next subsection, we investi-
gate the structure of the ellipsoids and determine the corresponding centers and configuration
matrices.

REMARK The relations and interconnections between the various clusters of target and
environmental items of the regulatory system can be represented in terms of a highly intercon-
nected TE-regulatory network (Target-Environment regulatory network). The nodes of this
network are given by the clusters and the branches are weighted by the matrices and vectors
that determine the affine linear coupling rules of the TE-model. Additional weights can be as-
signed to the nodes of the network. This can be, e.g., the ellipsoids (or some measures of the
size of the ellipsoids) associated with the clusters. Although the weights of the branches are
static, the evolution of ellipsoids leads to a time-dependent TE-regulatory network. Hereby,
discrete mathematics and its network algorithms in both versions, statically and dynamically,
becomes applicable on subjects such as connectedness, components, clusters, cycles, short-
est paths or further subnetworks. Beside these discrete-combinatorial aspects, combinatorial
relations between graphs and (nonlinear) optimization problems as well as topological proper-
ties of regulatory networks can be analyzed [37]. When we regard the matrices of interactions
as a map, then we can ”navigate” between the different entries [76, 77]. This can be consid-
ered as a focus and control about the dynamics of, e.g., medical, environmental or financial
items and their change rates. This kind of navigation is represented by discrete homotopies
within the matrices and by continuous homotopies between the underlying ellipsoids. This
very much depends on the structures of overlapping or (projective) intersections of these el-
lipsoidal sets, which are of a polynomial definition [12, 14, 27]. Via such intersections and,
covering the paths of navigation, unions of ellipsoids, we in fact arrive at real semialgebraic
sets. Then, these classes represent the uncertainty which we study in this paper and take
the place of σ-algebras that we would employ from an alternative stochastic viewpoint. We
note that the study of our paths of navigation can be analyzed by homotopy theory [27]. The
paper [57] gives example how conic, especially, semidefinite programming comes into play
via introducing semialgebraic sets, and we remark that the normal forms (sums of squares of
polynomials) relate with regression theory where also conic quadratic programming serves
for [12, 14, 27]. In forthcoming papers, we shall work out these various new aspects.

3.2. Algorithm. With the TE-Model we can calculate predictions of the ellipsoidal
states X

(k)
r and E

(k)
s of targets and environmental items in terms of subsets of R|Cr| and

R|Ds|, respectively. Now, we introduce an algorithm that allows us to determine centers and
configuration matrices of the predictions obtained from the TE-model. At time step k ∈ N0

these predictions are given by the ellipsoids X
(k)
r = E(

µ
(k)
r , Σ(k)

r

)
and E

(k)
s = E(

ρ
(k)
s , Π(k)

s

)
.

Applying the ellipsoidal calculus from Section 2, we obtain the following algorithm:
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TE-Model: Centers and Configuration Matrices

For k = 0, 1, 2, . . .

For j = 1, 2, . . . , R :
(1) Interactions between the clusters of targets

(A) Effect of cluster Cr on cluster Cj

g
(k)
jr = ΓTT

jr µ
(k)
r + ΦTT

j , r = 1, 2, . . . , R

G(k)
jr = ΓTT

jr Σ(k)
r (ΓTT

jr )T , r = 1, 2, . . . , R

G
(k)
jr = E(

g
(k)
jr ,G(k)

jr

)
, r = 1, 2, . . . , R

(B) Sum of the effects of all clusters of targets on cluster Cj

g
(k)
j =

R∑
r=1

g
(k)
jr

G(k)
j =

( R∑
r=1

√
TrG(k)

jr

)
·
( R∑

r=1

G(k)
jr√

TrG(k)
jr

)

G
(k)
j = E(

g
(k)
j ,G(k)

j

)

(2) Effects of the environmental clusters on the clusters of targets
(A) Effect of environmental cluster Ds on target cluster Cj

h
(k)
js = ΓTE

js ρ
(k)
s + ΦTE

j , s = 1, 2, . . . , S

H(k)
js = ΓTE

js Π(k)
s (ΓTE

js )T , s = 1, 2, . . . , S

H
(k)
js = E(

h
(k)
js ,H(k)

js

)
, s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Cj

h
(k)
j =

S∑
s=1

h
(k)
js

H(k)
j =

( S∑
s=1

√
TrH(k)

js

)
·
( S∑

s=1

H(k)
js√

TrH(k)
js

)

H
(k)
j = E(

h
(k)
j ,H(k)

j

)

(3) Sum of effects on the target clusters
µ

(k+1)
j = g

(k)
j + h

(k)
j

Σ(k+1)
j =

(√
TrG(k)

j +
√

TrH(k)
j

)
·
( G(k)

j√
TrG(k)

j

+
H(k)

j√
TrH(k)

j

)

X
(k+1)
j = E(

µ
(k+1)
j ,Σ(k+1)

j

)
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TE-Model: Centers and Configuration Matrices (continued)

For i = 1, 2, . . . , S :
(1) Interactions between the clusters of environmental items

(A) Effect of cluster Ds on cluster Di

m
(k)
is = ΓEE

is ρ
(k)
s + ΦEE

i , s = 1, 2, . . . , S

M(k)
is = ΓEE

is Π(k)
s (ΓEE

is )T , s = 1, 2, . . . , S

M
(k)
is = E(

m
(k)
is ,M(k)

is

)
, s = 1, 2, . . . , S

(B) Sum of the effects of all environmental clusters on cluster Di

m
(k)
i =

S∑
s=1

m
(k)
is

M(k)
i =

( S∑
s=1

√
TrM(k)

is

)
·
( S∑

s=1

M(k)
is√

TrM(k)
is

)

M
(k)
i = E(

m
(k)
i ,M(k)

i

)

(2) Effects of the target clusters on the clusters of environmental items
(A) Effect of target cluster Cr on environmental cluster Di

n
(k)
ir = ΓET

ir µ
(k)
r + ΦET

i , r = 1, 2, . . . , R

N (k)
ir = ΓET

ir Σ(k)
r (ΓET

ir )T , r = 1, 2, . . . , R

N
(k)
ir = E(

n
(k)
ir ,N (k)

ir

)
, r = 1, 2, . . . , R

(B) Sum of the effects of all target clusters on environmental cluster Di

n
(k)
i =

R∑
r=1

n
(k)
ir

N (k)
i =

( R∑
r=1

√
TrN (k)

ir

)
·
( R∑

r=1

N (k)
ir√

TrN (k)
ir

)

N
(k)
i = E(

n
(k)
i ,N (k)

i

)

(3) Sum of effects on clusters of environmental items

ρ
(k+1)
i = m

(k)
i + n

(k)
i

Π(k+1)
i =

(√
TrM(k)

i +
√

TrN (k)
i

)
·
( M(k)

i√
TrM(k)

i

+
N (k)

i√
TrN (k)

i

)

E
(k+1)
i = E(

ρ
(k+1)
i , Π(k+1)

i

)
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4. The Regression Problem. We now turn to an estimation of parameters of the time-
discrete TE-model with ellipsoidal states. As mentioned before, the states of predictions of
targets and environmental items depend on the unknown entries of the interaction matrices
ATT , ATE , AEE , AET and vectors V TT

j , V TE
j , V EE

i and V ET
i . For an estimation of pa-

rameters we compare the predictions

X̂(κ)
r = E(

µ̂(κ)
r , Σ̂(κ)

r

)
, Ê(κ)

s = E(
ρ̂(κ)

s , Π̂(κ)
s

)

calculated with the algorithm from Subsection 3.2 with the data

X
(κ)

r = E(
µ(κ)

r , Σ
(κ)

r

)
, E

(κ)

s = E(
ρ(κ)

s , Π
(κ)

s

)
,

obtained from measurements of target and environmental items at sampling times t0 < t1 <

. . . < tT . The initial values of the algorithm may be given by X̂
(0)
r := X

(0)

r and Ê
(0)
s := E

(0)

s

(here, r = 1, . . . , R, s = 1, . . . , S, κ = 0, 1, . . . , T ).
As the predictions and measurement values (both ellipsoids) should overlap as much as

possible, we introduce the ellipsoids

∆X(κ)
r := X̂(κ)

r ∩X
(κ)

r and ∆E(κ)
s := Ê(κ)

s ∩ E
(κ)

s

and state the regression problem

(R) Maximize
T∑

κ=1

{ R∑
r=1

∥∥∥∆X(κ)
r

∥∥∥
∗

+
S∑

s=1

∥∥∥∆E(κ)
s

∥∥∥
∗

}
.

Here, ‖ · ‖∗ denotes a measure that reflects the geometrical size of the intersections (fusions)
and we assume that ‖∆X

(κ)
r ‖∗ = 0, if ∆X

(κ)
r = ∅ and ‖∆E

(κ)
s ‖∗ = 0, if ∆E

(κ)
s = ∅.

There exist various measures that are related to the shape of the intersections, e.g., the vol-
ume (which corresponds to the ellipsoid matrix determinant), the sum of squares of semiaxes
(which corresponds to the trace of the configuration matrix), the length of the largest semiaxes
(which corresponds to the eigenvalues of the configuration matrix). All these examples lead
to specific formulations of the regression problem (R) and they depend on the configuration
matrices of the fusions ∆X

(κ)
r and ∆E

(κ)
s .

The fusion ∆X
(κ)
r = X̂

(κ)
r ∩X

(κ)

Cr
is an ellipsoid E(

∆µ
(κ)
r , ∆Σ(κ)

r

)
with center

∆µ(κ)
r =

[X (κ)
r

]−1(
λ
[
Σ̂(κ)

r

]−1
µ̂(κ)

r + (1− λ)
[
Σ

(κ)

r

]−1
µ(κ)

r

)

and configuration matrix

∆Σ(κ)
r = ξ(κ)

r

[X (κ)
r

]−1
,

where

X (κ)
r := λ

[
Σ̂(κ)

r

]−1 + (1− λ)
[
Σ

(κ)

r

]−1

and

ξ(κ)
r := 1− λ(1− λ)

(
µ(κ)

r − µ̂(κ)
r

)T [
Σ

(κ)

r

]−1[X (κ)
r

]−1[Σ̂(κ)
r

]−1(
µ(κ)

r − µ̂(κ)
r

)
.
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The parameter λ is the only root in (0, 1) of the following polynomial of degree 2|Cr| − 1:

ξ(κ)
r

(
detX (κ)

r

)2 Tr
([X (κ)

r

]−1
([

Σ̂(κ)
r

]−1 − [
Σ

(κ)

r

]−1
))

− |Cr|
(
detX (κ)

r

)2

×
(
2
[
∆µ(κ)

r

]T [
Σ̂(κ)

r

]−1
µ̂(κ)

r − 2
[
∆µ(κ)

r

]T [
Σ

(κ)

r

]−1
µ(κ)

r

+
[
∆µ(κ)

r

]T
([

Σ
(κ)

r

]−1 − [
Σ̂(κ)

r

]−1
)
∆µ(κ)

r − [
µ̂(κ)

r

]T [
Σ̂(κ)

r

]−1
µ̂(κ)

r

+
[
µ(κ)

r

]T [
Σ

(κ)

r

]−1
µ(κ)

r

)
= 0.

Similarly, the fusion ∆E
(κ)
s = Ê

(κ)
s ∩E

(κ)

s is an ellipsoid E(
∆ρ

(κ)
s , ∆Π(κ)

s

)
with center

∆ρ(κ)
s =

[Y(κ)
s

]−1(
λ
[
Π̂(κ)

s

]−1
ρ̂(κ)

s + (1− λ)
[
Π

(κ)

s

]−1
ρ(κ)

s

)

and configuration matrix

∆Π(κ)
s = η(κ)

s

[Y(κ)
s

]−1
,

where

Y(κ)
s := λ

[
Π̂(κ)

s

]−1 + (1− λ)
[
Π

(κ)

s

]−1

and

η(κ)
s := 1− λ(1− λ)

(
ρ(κ)

s − ρ̂(κ)
s

)T [
Π

(κ)

s

]−1[Y(κ)
s

]−1[Π̂(κ)
s

]−1(
ρ(κ)

s − ρ̂(κ)
s

)
.

The parameter λ is the only root in (0, 1) of the following polynomial of degree 2|Ds| − 1:

η(κ)
s

(
detY(κ)

s

)2 Tr
([Y(κ)

s

]−1
([

Π̂(κ)
s

]−1 − [
Π

(κ)

s

]−1
))

− |Ds|
(
detY(κ)

s

)2

×
(
2
[
∆ρ(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s − 2
[
∆ρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

+
[
∆ρ(κ)

s

]T
([

Π
(κ)

s

]−1 − [
Π̂(κ)

s

]−1
)
∆ρ(κ)

s − [
ρ̂(κ)

s

]T [
Π̂(κ)

s

]−1
ρ̂(κ)

s

+
[
ρ(κ)

s

]T [
Π

(κ)

s

]−1
ρ(κ)

s

)
= 0.

As a measure for the size of a p-dimensional ellipsoid E(0, Q) (here, the size of the
fusion) we use nonnegative-valued criteria functions ψ(E(0, Q)) defined on the set of all
nondegenerate ellipsoids and which are monotonous by increasing with respect to inclusion,
i.e., ψ(E1) ≤ ψ(E2) if E1 ⊆ E2. Such measures are, e.g.,
(a) the trace of Q,

ψT (E(0, Q)) := Tr Q = λ1 + . . . + λp,

where λi are the eigenvalues of Q (i.e., Tr Q is equal to the sum of the squares of the
semiaxes),

(b) the trace of square of Q,

ψTS(E(0, Q)) := Tr Q2,
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(c) the determinant of Q,

ψDet(E(0, Q)) := det Q = λ1 · . . . · λp,

which is equal to the product of eigenvalues and proportional to the volume

vol E(0, Q) = π
p
2 (det Q)

1
2
(
Γ
(

p
2 + 1

))−1

of the ellipsoid, where Γ stands for the Gamma-function,

(d) the diameter,

ψDia(E(0, Q)) := diam(E(0, Q)) := d,

where

max{λi ∈ R | i = 1, . . . , p} =
(

d

2

)2

,

so that d/2 is the radius of the smallest p-dimensional ball that includes E(0, Q).
For further details on criteria functions we refer to [39], p. 101. The measures stated above
lead to different representations of the regression problem (R) and we study them now in
more detail.

4.1. The Trace Criterion. The first regression problem is based on the traces of the
configuration matrices of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s :

(RTr) Maximize
T∑

κ=1

{ R∑
r=1

Tr
(
∆Σ(κ)

r

)
+

S∑
s=1

Tr
(
∆Π(κ)

s

)}
.

As the trace of the configuration matrix is equal to the sum of the squares of the semiaxes,
the regression problem takes the form

(R′Tr) Maximize
T∑

κ=1

{ R∑
r=1

|Cr|∑

j=1

λ
(κ)
r,j +

S∑
s=1

|Ds|∑

i=1

Λ(κ)
s,i

}
,

where λ
(κ)
r,j and Λ(κ)

s,i are the eigenvalues of ∆Σ(κ)
r and ∆Π(κ)

s , respectively.

4.2. The Trace of the Square Criterion. Another variant of our regression problem
can be obtained with the traces of the squares of the configuration matrices of the ellipsoids
∆X

(κ)
r and ∆E

(κ)
s :

(RTS) Maximize
T∑

κ=1

{ R∑
r=1

Tr
(
∆Σ(κ)

r

)2 +
S∑

s=1

Tr
(
∆Π(κ)

s

)2
}

.

4.3. The Determinant Criterion. Referring to the determinants of the configuration
matrices of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s , we obtain the following model:

(RDet) Maximize
T∑

κ=1

{ R∑
r=1

det
(
∆Σ(κ)

r

)
+

S∑
s=1

det
(
∆Π(κ)

s

)}
.
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Equivalent formulations of (RDet) can be given in terms of the eigenvalues of the configura-
tion matrices

(R′Det) Maximize
T∑

κ=1

{ R∑
r=1

|Cr|∏

j=1

λ
(κ)
r,j +

S∑
s=1

|Ds|∏

i=1

Λ(κ)
s,i

}

and the volumes of the ellipsoids ∆X
(κ)
r and ∆E

(κ)
s

(R′′Det) Maximize
T∑

κ=1

{ R∑
r=1

[
π

2
|Cr| Γ

( |Cr|
2

+ 1
)

vol
(
∆X(κ)

r

)]2

+
S∑

s=1

[
π

2
|Ds| Γ

( |Ds|
2

+ 1
)

vol
(
∆E(κ)

s

)]2}
.

4.4. The Diameter Criterion. The diameter of the ellipsoids ∆X
(κ)
r and ∆E

(κ)
s can be

used to introduce the following regression model:

(RDia) Maximize
T∑

κ=1

{ R∑
r=1

diam
(E(

0, Σ(κ)
r

))
+

S∑
s=1

diam
(E(

0,Π(κ)
s

))}
.

An equivalent formulation of (RDia) can be given in terms of the eigenvalues of Σ(κ)
r and

Π(κ)
s :

(R′Dia) Maximize
T∑

κ=1

{ R∑
r=1

2 ·
√

λ
(κ)
r +

S∑
s=1

2 ·
√

Λ(κ)
s

}

with λ
(κ)
r := max{λ(κ)

r,j | j = 1, . . . , |Cr|} and Λ(κ)
s := max{Λ(κ)

s,i | i = 1, . . . , |Ds|}. As the
objective function of (R′Dia) is nonsmooth with well-understood max-type functions [73, 74,
75] but not Lipschitz-continuous, we also introduce the additional regression problem

(R′′Dia) Maximize
T∑

κ=1

{ R∑
r=1

λ(κ)
r +

S∑
s=1

Λ(κ)
s

}

as an alternative proposal.

4.5. Optimization Methods. The regression models of the previous subsections depend
on the configuration matrices Σ(κ)

r and Π(κ)
s of the ellipsoids ∆X

(κ)
r and ∆E

(κ)
s . Semidefinite

programming [16] can be applied, because the objective functions of these volume-related
programming problems depend on, e.g., the determinant or eigenvalues of symmetric pos-
itive semidefinite matrices. However, in order to obtain positive semidefinite representable
objective functions [13], some regression models have to be slightly modified. For example,
the objective function of the regression model (RDet) depends directly on the determinant
of the configuration matrices. Unfortunately, det (M) considered as a function of symmetric
positive semidefinite n × n-matrices M (short: M < 0) is neither a convex nor a concave
function of M (if n ≥ 2). However, if p is a rational number with 0 ≤ p ≤ 1

n , then

f(M) =

{
−detp (M) , M < 0
∞ , otherwise
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is positive semidefinite representable ([13], p. 81). Therefore, we introduce the regression
model

(R̃Det) Maximize
T∑

κ=1

{
−

R∑
r=1

detp
(
∆Σ(κ)

r

)−
S∑

s=1

detq
(
∆Π(κ)

s

)}
,

where the rational numbers p, q fulfill the conditions 0 ≤ p ≤ 1
|Cr| and 0 ≤ q ≤ 1

|Ds| . As
det(M) =

∏n
i=1 λi(M), where λi(M) are the eigenvalues of M , we can replace (R′Det) by

(R̃′Det) Maximize
T∑

κ=1

{
−

R∑
r=1

(|Cr|∏

j=1

λ
(κ)
r,j

)p

−
S∑

s=1

(|Ds|∏

i=1

Λ(κ)
s,i

)q}

and instead of (R′′Det) we suggest

(R̃′′Det) Maximize
T∑

κ=1

{ R∑
r=1

[
π

2
|Cr| Γ

( |Cr|
2

+ 1
)

vol
(
∆X(κ)

r

)]2p

+
S∑

s=1

[
π

2
|Ds| Γ

( |Ds|
2

+ 1
)

vol
(
∆E(κ)

s

)]2q}
.

In case of positive definite configuration matrices ∆Σ(κ)
r and ∆Π(κ)

s negative powers of the
determinant can be used. If p is a positive rational, the function

f(M) =

{
det−p (M) , M Â 0
∞ , otherwise

of the symmetric n × n-matrix M is positive semidefinite representable ([13], p. 83). Here,
M Â 0 means that M is positive semidefinite. Now, with two positive rationals p, q we obtain
the additional regression model

(R′′′Det) Maximize
T∑

κ=1

{ R∑
r=1

det−p
(
∆Σ(κ)

r

)
+

S∑
s=1

det−q
(
∆Π(κ)

s

)}
.

The regression model (R′′Dia) directly depends on the largest eigenvalues of the configuration
matrices ∆Σ(κ)

r and ∆Π(κ)
s and, thus, on positive semidefinite representable functions ([13],

p. 78). In (R′Tr), sums of all eigenvalues of the configuration matrices ∆Σ(κ)
r and ∆Π(κ)

s are
considered, which can also be regarded as positive semidefinite representable functions ([13],
p. 80). In general, interior point methods can applied which have a moderate complex-
ity [44, 45, 46, 48]. Alternatively, for regression problems with sums of eigenvalues or max-
imal eigenvalues in the objective function, asscociated bilevel problems can be considered
which could be solved by gradient methods. In fact, in [47] structural frontiers of conic pro-
gramming are discussed with other optimization methods compared, and future applications
in machine learning and data mining prepared.
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5. Mixed Integer Regression Problem. As nowadays high-throughput technologies
are available, regulatory networks are huge and for practical reasons we have to rarefy them
by diminishing the number of branches. Here, upper bounds on the indegrees of nodes are
introduced firstly. That means, the number of clusters regulating a specific target or environ-
mental cluster in our network has to be bounded. We use binary constraints to decide whether
or not there is a connection between two clusters of data and by this we obtain a mixed-integer
optimization problem. As these constraints are very strict and as they can even destroy our
regulatory network, we pass to continuous constraints and introduce a further relaxation in
terms of a continuous optimization problem.

Given two clusters A,B we use the notation A ∼ B if cluster A is regulated by cluster
B and A 6∼ B if cluster A is not regulated by cluster B. Now, we define the Boolean matrices

χTT
jr =

{
1 , if Cj ∼ Cr

0 , if Cj 6∼ Cr,
χTE

js =

{
1 , if Cj ∼ Ds

0 , if Cj 6∼ Ds,

χEE
is =

{
1 , if Di ∼ Ds

0 , if Di 6∼ Ds,
χET

ir =

{
1 , if Di ∼ Cr

0 , if Di 6∼ Cr,

indicating whether or not pairs of clusters in our regulatory network are directly related. If
two clusters are not related, the corresponding parts of the matrices ATT , ATE , AEE , AET

and vectors V TT , V TE , V EE , V ET have zero entries.
For j ∈ {1, . . . , R} we define the indegree of cluster Cj in our regulatory network with

respect to the target clusters and environmental clusters by

deg(Cj)TT :=
R∑

r=1

χTT
jr and deg(Cj)TE :=

S∑
s=1

χTE
js ,

respectively. That means, the indegrees deg(Cj)TT and deg(Cj)TE count the number of
target and environmental clusters which regulate cluster Cj . Similarly, for i ∈ {1, . . . , S}
the indegree of cluster Di with respect to the environmental clusters and the target clusters is
given by

deg(Di)EE :=
S∑

s=1

χEE
is and deg(Di)ET :=

R∑
r=1

χET
ir .

Now, the indegrees deg(Di)EE and deg(Di)ET count the number of environmental and target
clusters which regulate cluster Di.

For network rarefication we introduce upper bounds on the indegrees. The values of
these bounds depend on any a priori information available and they have to be given by the
practitioner. Including these additional constraints, we obtain the following mixed integer
optimization problem:

(RMI)





Maximize
T∑

κ=1

{ R∑
r=1

∥∥∥∆X(κ)
r

∥∥∥
∗

+
S∑

s=1

∥∥∥∆E(κ)
s

∥∥∥
∗

}

subject to deg(Cj)TT ≤ αTT
j , j = 1, . . . , R

deg(Cj)TE ≤ αTE
j , j = 1, . . . , R

deg(Di)EE ≤ αEE
i , i = 1, . . . , S

deg(Di)ET ≤ αET
i , i = 1, . . . , S.



18 E. KROPAT, G.-W. WEBER AND P. C. SEKHAR

We note that our network rarefication can also be achieved by bounding the outdegrees
of the nodes. Such an approach was utilized in [76, 77, 78] in order to obtain a more flexi-
ble representation of gene-environment networks with respect to uncertain states in terms of
intervals and parallelpipes.

The binary constraints of (RMI) are very strict and if the constraints are not appro-
priate, important branches of the regulatory network could be deleted. For this reason, we
use continuous optimization for a relaxation of (RMI) by replacing the binary variables
χTT

jr , χTE
js , χEE

is and χET
ir with real variables PTT

jr , PTE
js , PEE

is , PET
ir ∈ [0, 1], which is

also interpretable as probabilities (we refer to [59] for optimization models with probabilis-
tic constraints). These variables should linearly depend on the corresponding elements of
ΓTT

jr ,ΓTE
js , ΓEE

is , ΓET
ir and ΦTT

j , ΦTE
j , ΦEE

i ,ΦET
i .

The real-valued indegree of cluster Cj in our regulatory network with respect to the target
clusters and environmental clusters are now defined by

deg(Cj)TT :=
R∑

r=1

PTT
jr

(
ΓTT

jr , ΦTT
j

)
and deg(Cj)TE :=

S∑
s=1

PTE
js

(
ΓTE

js ,ΦTE
j

)
,

respectively. Similarly, the real-valued indegree of cluster Di with respect to the environmen-
tal clusters and the target clusters is given by

deg(Di)EE :=
S∑

s=1

PEE
is

(
ΓEE

is , ΦEE
i

)
and deg(Di)ET :=

R∑
r=1

PET
ir

(
ΓET

ir , ΦET
i

)
.

Now, we replace the binary constraints of (RMI) with continuous constraints and obtain
the following optimization problem:

(RC)





Maximize
T∑

κ=1

{ R∑
r=1

∥∥∥∆X(κ)
r

∥∥∥
∗

+
S∑

s=1

∥∥∥ ∆E(κ)
s

∥∥∥
∗

}

subject to
R∑

r=1

PTT
jr

(
ΓTT

jr , ΦTT
j

) ≤ αTT
j , j = 1, . . . , R

S∑
s=1

PTE
js

(
ΓTE

js , ΦTE
j

) ≤ αTE
j , j = 1, . . . , R

S∑
s=1

PEE
is

(
ΓEE

is ,ΦEE
i

) ≤ αEE
i , i = 1, . . . , S

R∑
r=1

PET
ir

(
ΓET

ir , ΦET
i

) ≤ αET
i , i = 1, . . . , S.

REMARK We point out that the methods introduced are particularly applicable in the fi-
nancial sector, e.g., in the modeling of stochastic differential equations and, as a very new
contribution, the optimization of the statistical ROC curve for an improved classification and
prediction of credit default [80]. Here, we point out a new view onto credits given by the
study of our paper. All the interaction among the items that we investigate can be regarded
as a ”credit” taken or given, as a measurement which asks for an appropriate response, such
as an equivalent effect (maybe, plus a gain) in future. There are consumptions of various
kinds, medical treatments, expenditures in education, science and the improvements in en-
vironmental protection. The realization of their purposes has to be priced, discounted and
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compared, the degrees of these achievements can be enforced by penalty terms in our models
of optimization and dynamics. This new view is subject of our future studies.

6. Conclusion. In this paper, we analyzed a time-discrete model of target-environment
networks under ellipsoidal uncertainty. We introduced the power of modern optimization
by means of semidefinite programming and the efficiency of interior point methods for the
modeling of our regression problem and nonsmooth optimization that we use a priori for clus-
tering our items. This pioneering approach offers a new view on parameter estimation and
optimization of TE-regulatory systems depending on various kinds of errors, where the dy-
namics of clusters of targets and environmental items and their mutual effects are determined
by corresponding clusters of parameters. Our research includes clustering theory which we
support by statistical investigations about the number of clusters and their stability and by
means of statistical learning we find the clusters with the help of nonsmooth optimization.
The representation of the dynamic states in terms of ellipsoids was motivated by our and our
colleagues’ studies on gene-environment networks and eco-finance networks, where errors
and uncertainty are modeled by intervals [86, 88, 89]. Here, we extended the interval model
by a representation of errors in terms of ellipsoids what refers to stochastic dependencies be-
tween the various target and environmental items. These uncertainty sets are directly related
to covariance matrices and they provide good approximations of convex sets. In particular,
models based on Gaussian random noise refer to the ellipsoidal approach. However, Gaussian
random distributions are often used as simplifications and in many applications non-Gaussian
probability distributions have to be applied. Therefore, we will further extend our models
based on ellipsoidal calculus and, by this, in future works we will turn to a more set-theoretic
representation of errors and uncertainty based on semi-algebraic sets. We will combine this
new perception with refined optimization methods and by this we will offer a further av-
enue for the analysis of TE-regulatory systems, particularly with regard to applications and
real-world data. Furthermore, we propose that collaborative game theory under uncertainty
which was recently modeled with the help of intervals [3, 4, 5, 6] could become refined by
our ellipsoidal calculus, herewith allowing a great wealth of dependencies and subcoalitions
preassigned.

Acknowledgments. This paper is dedicated to Professor Werner Krabs on the occasion
of his 75th birthday.

REFERENCES
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[38] E. KROPAT, G.-W. WEBER, AND B. AKTEKE-ÖZTÜRK, Eco-Finance networks under uncertainty, in J.
Herskovits, A. Canelas, H. Cortes, and M. Aroztegui, eds., Proceedings of the International Conference
on Engineering Optimization (ISBN 978857650156-5, CD), EngOpt 2008, Rio de Janeiro, Brazil (2008).
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