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Abstract

An emerging research area in computational biology and biotechnology is devoted
to mathematical modeling and prediction of gene-expression patterns; it nowadays
requests mathematics to deeply understand its foundations. This paper surveys
data mining and machine learning methods for an analysis of complex systems
in computational biology. It mathematically deepens recent advances in modeling
and prediction by rigorously introducing the environment and aspects of errors and
uncertainty into the genetic context within the framework of matrix and interval
arithmetics.

Given the data from DNA microarray experiments and environmental measure-
ments we extract nonlinear ordinary differential equations which contain parameters
that are to be determined. This is done by a generalized Chebychev approxima-
tion and generalized semi-infinite optimization. Then, time-discretized dynamical
systems are studied. By a combinatorial algorithm which constructs and follows
polyhedra sequences, the region of parametric stability is detected. In addition, we
analyze the topological landscape of gene-environment networks in terms of struc-
tural stability.

As a second strategy, we will review recent model selection and kernel learning
methods for binary classification which can be used to classify microarray data for
cancerous cells or for discrimination of other kind of diseases.

This review is practically motivated and theoretically elaborated; it is devoted
for a contribution to better health care, progress in medicine, a better education
and more healthy living conditions.
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1 Introduction

“Can mathematics under the limitations of modern technology model the com-
plexity of nature?”, “Yes”, but still within the margins of our developing
understanding, the margins of approximation in modeling only. Any new im-
provement to the model gives a chance for a deeper insight into the nature
and a hope for a continuously supported service to the people. Likewise, the
complexity of the environment which also includes psychological or societal
phenomena, and its relation to nature and life of humankind are not an easy
modeling task [53]. This paper bases on four foundations: (i) contemporary
advances in modeling and prediction of gene-expression patterns, (ii) recent
inclusions of the interactions of biological life with the environment and of
(iii) errors in measurement by modern DNA microarray technology or in the
quantification of the environment and various mutual influences, (iv) recent
development in classification techniques and relation with gene networks and
diseases. We aim at a deepening contribution to scientific progress and services
in medicine, health care, food production, industry and education.

There are two quantities coupled for modeling and prediction of gene-expression
patterns: the levels (concentrations, states) of gene-expressions and their rates
of change (dynamics); both of them are of a “primal” importance. For the
environmental effects, a “dual” role can be identified, such that we speak of
some “duality” [53,61] which entirely characterizes our learning problem, rep-
resented by a bilevel problem of optimization and decision [61,62]. Indeed, one
class of variables contains parameters under perturbation whose response is
observed by the other remaining variables that constitute the second class.
For a deep understanding about the states and the variation of genetic and
environmental patterns we use matrices, representing duality and obtained
via least-squares (or maximum likelihood) estimation, and an interpretation
of their algebra.

Matrices include our gene-environment networks by specifying the concrete
dynamical systems on which a testing of the goodness of data fitting and
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prediction base. They represent linear mappings which determine the time-
discrete or time-continuous changes of the states (levels). Their common effect
can be expressed in terms of equilibrium, expansion, contraction, cyclicity or
mixed asymptotic properties; these behaviours contribute to stability or in-
stability. Differently from the time-discrete dynamics which can be called a
forward problem, there is the underlying inverse problem of parameter esti-
mation. Those discrete “forward” orbits are resulting from the matrix mul-
tiplication stepwise performed, and we analyze them by the combinatorial
algorithm of Brayton and Tong [8,52]. This procedure generates and observes
a sequence of compact neighbourhoods of the origin. Choosing these neigh-
bourhoods as polytopes allows a translation into the combinatorial language
of their vertices; on them the construction principle iteratively applies finitely
many matrix multiplications.

Another way of understanding the behaviour or structure of the microarray
data can be finding patterns by outlier detection or classifying genes which
are cancerous or not, or diseased or not. In this survey, we will also give recent
developments in classification tasks to solve these kinds of problems. In [42],
a new model selection tool called “confidence level based model selection” is
developed for pattern analysis of aminoacid sequence data. Likewise, the same
approach can be useful for gene expression or DNA sequence data. Based on
the intuiton of “confidence level” approach in [42], model selection via test
margin is developed in [43] which can be applied on all kind of binary clas-
sification problems. Both of these methods have smaller running time than
existing model selection methods such as cross validation, and have compara-
ble accuracies.

Classically, e.g., in classically science, technology and medicine, stability has
a positive interpretation in terms of some local order, a coming to a rest
(recovering) or as the robustness of system against small perturbations such
as infections or attacks [26]. In contrast, there is also the negative meaning. An
organism, a living being or biosystem which is unable to adapt to a changing
environment is in a serious danger caused by bacteria, viruses, radiation and
other kinds of attacks. What is more, a stability analysis can also serve for
the acceptance or rejection of a mathematical model, i.e., to a testing of the
goodness of data fitting and, if needed, by a model improvement. In fact, if
any state dimension of the model behaves unbounded under slight parametric
variations, then this contradicts the natural-technical limitation of the genetic
of environmental levels by bounded intervals.

Genetic network is an established and yet exciting subject of modern science.
It means a weighted directed graph composed of nodes representing genes,
and of arcs with functional weights standing for the influences between the
genes; but also each node can be equipped with a (level) function of the
other genes’ combined effects on it. For each gene we wish to predict how it



influences the other genes. Various analytic and numerical tools have been de-
veloped for the construction and understanding of such networks [1,11,13,19—-
2224,30,40,41,47,49,52,60-62,64,65]. Genetic networks are nowadays widely
used in computational biology and they have gained significant importance
since the human genome project started. As an example to such applications:
In [25], a genetic network of a mouse is analyzed to further characterize the
differential response to alcohol, and in [66], GenePath is developed which is a
computer-based system that supports the inference of genetic networks from a
set of genetic experiments. GenePath uses abductive inference to explain net-
work constraints based on background knowledge and experimental results.

In [52,53,60-62], we firstly extended genetic networks to gene-environment
networks. A simple additive shift included on the right-hand side of differential
equations served to appropriately extend the model space; then, with our
coauthors, we interpreted the shift by the relevant environmental factors. Now,
the new nodes are environmental items such as poison in soil, groundwater, in
air or food, radiation, but also the welfare and living conditions, temperature
(concerning, e.g., global warming), but also education and campaigns for a
healthy lifestyle.

For a large number of genes the expression levels can easily be monitored by
DNA-microarray technology [10]. Despite the fast advances in this high tech-
nology, it is nevertheless affected with different uncertainties and measurement
ambiguities. Therefore, we included these errors into our model [53,62]. Like-
wise for the environmental levels and concentrations, we are facing measure-
ment and reliability problems, such that we represent them in error terms, too.
As introduced in [53,62], we will represent various kinds of errors by intervals.

In general, genetic and gene-environment networks are too large to be eas-
ily investigated. Therefore, we imply bounds into the parameter estimation
problem which force the number of edges to diminish and make the parameter
estimation become a mixed continuous-discrete programming problem. Relax-
ing the inequality constraints to become continuous and depending on the
environmental items, maybe also on time intervals and, what is more, on er-
rors and uncertainties located in intervals, the problem becomes a one from
semi-infinite programming (SIP). In addition, by allowing dependence of the
domain of combined external effects on the unknown environmental parame-
ters, we obtain a generalized semi-infinite programming (GSIP) problem. By
this, we permit regulation of the network’s edge density in a more refined way
and we can more confidently guarantee existence and tractability of genetic
and metabolic processes.

In [53,60-62] we connected the discrete mathematics of networks with GSIP,
by this introducing a new and pioneering scientific approach into computa-
tional biology. GSIP is an advancing wide problem class with many moti-



vations, results, future challenges and many practical applications even to-
day [44,46,57]. In computational biology, a sound modeling, prediction and
process optimization are very important for a well-understanding of genetic
processes, of the optimization of cell metabolism, and for their applications in
medicine, health care, food production, in industry and energy supply. Today,
in a time of globalization, of rapid information exchange, of mobility and mul-
ticausalities in all kinds of biosystems, communities and societies, the ways
how the environment expresses itself and exercises effects — often in mutually
catalyzing or multiplicative ways, are becoming more and more important.
This paper acknowledges this situation and tries to give a scientific service in
it.

2 Gene-Expression and Environmental Data, Modeling and Dy-
namics

2.1 The Interval-Valued Model

At early stages of modeling, gene-environment networks were represented by
time-continuous systems of ordinary differential equations (ODEs):

E =F(E).

Here, the d-vector E = (E;,E,, ..., E;)” comprises the positive concentration
levels of proteins (or mRNAs, or small components) and certain levels of the
environmental factors, while E (= 4%) represents a continuous change in the
gene-expression data, and F : R? — R? is composed of nonlinear coordinate
functions F; : R? — R that determine the rate of change of each data item
(cf. [11,29,45,52] for different dimensions). In this paper, we offer a parameter
estimation on unknowns implied into the definition of FF, established on ex-
perimental data vectors E of those levels. Since the vectors E obtained from
microarray experiments and from environmental measurements in a widest
sense are merely approximating the actual states E at the sample times of the

experiments, we have the following relations at these times [53]
E,=E; £err; (i=1,2,...,d);

here, err; > 0 is an error likely to be made at the experimental measurements
of the gene- or environmental expression level [E;. For a closed representation
of all cases, we use intervals determined by some maximal measurement error

Err; > 0 which leads us to consider the state E; just to be the interval

[Ez — EI‘I‘»L‘7 Ez + El"l”z']



and, hence, E = (Ei, E,,...,Ey)” to be in the d-dimensional parallelpipe

d
?(1[1[31 — Erry, E; + Erry).
For this approach we suppose that there is no functional dependence among
any two of the errors made in the measurements of the gene-expression levels
E;. We obtain confidence intervals and a confidence parallelpipe here, when
taking into account dependence in some stochastic or statistical sense [6]. In
general, there are confidence regions, e.g., given by confidence levels (yielding
ellipsoids and other kinds of level sets; cf. Subsection 6.2). For further details
and definitions on interval analysis we refer to [59].

This entire wide framework allows us to approximately address the nature of
biological, environmental phenomena, and technical phenomena of measure-
ment and modeling as well; it extends the one from [22,24] such that the
continuous equation looks as follows [52,53,61]:

) E=MEE, E(t)=E®O.

Here, M(E) is a (d x d)-matrix whose entries are intervals and defined by a
family of functions which include unknown parameters. Now, intervals rep-
resent uncertainty with respect to the interactions between the genes and
to the effects between the environment and the genes; herewith, they will
constitute a dynamics. The point E© = (E\” EL . E)T consists of the
interval-valued initial levels, available, e.g., by the first experimental data point
E(ty) = E?. For finding an approximate model and network, the least-squares
optimization problem will finally be restricted by bounds imposed on the num-
ber of regulating effects exercised per gene and depending on the effects of the
environment onto the genes.

2.2 Two Levels of the Task

Concerning the parameterized entries of the model (CE) we have to examine a
bilevel problem [21,22,32,46,53,57,61] of two different problem stages, namely,
optimization and stability analysis. The optimization (approximation) problem
of squared errors bases on the following form:

) () (R

-1
min Z
4 k=0

[e.o]

—~(k
The vector y comprises a subset of all the parameters and the vector E
comprises interval-valued difference quotients based on the xth experimental



data E™ and on step lengths h,, := f,.4+1 —t, between neighbouring samplings
times [19,24,53]:

The stability of the dynamics is investigated with respect to the remaining pa-
rameters. For this a combinatorial algorithm on polyhedra sequences observed
is used to detect the regions of stability. Indeed, the key advantage of (CE) lies
in its structure that allows a time-discretization represented by a sequence of
matrix multiplications. Based on this recursion, a stability analysis of combi-
natorial and geometrical type with polytope series is permitted [22], combined
by us with our matrix algebra [52,53].

2.8 On the Environment

The interaction between the genes and the environment is frequently charac-
terized as epigenetic. This refers to stable changes of gene expression patterns
in response to environmental factors without any mutations in the DNA se-
quence. DNA methylation is one of the most common epigenetic factors, but
there are also others, such as acetylation, ethylation and phosphorylation, pro-
viding important epigenetic regulations. Studies on identical twins showed that
although they have the same genomic sequences and genes, but no epigenetic
difference during the early stages of life, adult twins exhibited very different
epigenetic patterns affecting their gene-expression portrait [18]. Furthermore,
nutritional conditions of grandparents can have phenotypic consequences in
their grandchildren [17,35]. Life style, nutritional supplementation, and en-
vironmental conditions can have a very important impact on inheritance by
changing the DNA sequence with mutations and also by affecting epigenetic
pattern of DNA through methylation, ethylation, etc., without changing the
DNA sequence. Hence, for a better explanation of the complexity of nature,
genetic networks cannot be studied solely without taking into consideration
the environmental factors which affect epigenetic patterns and, thus, gene ex-
pression patterns [61].

2.4 On FErrors as Further Variables

Beyond the extension from n genes to the m environmental factors, in this
paper, a further dimensional augmentation is implied by the [ errors in data
fitting related with the [ genetic and environmental sample vectors obtained.
These errors can be addressed in a squared or an un-squared form [62], and



they will be detected by minimized upper bounds 7,. Then, the entire string
of variables is displayed by a vector

- n n T
(E17E27"'7En7E17E27"‘7Em77—177—27"'77—l) )

but we could further include the cumulative environmental factor as affecting
each gene (which would imply n+m rather than n environmental dimensions),
or represent the sum of all squares by one level 7 only (cf. Section 6).

2.5 Ezample for a Gene-Network

Let us from now on for a while focus on the n genes and their interactions and,
then, step by step, return to our general model in dimension d > n; actually,
d = m+2n as we will see, with m being the number of environmental items. In
Section 3, we shall return to the d dimensional (extended) model and mainly
add the influence of the environment on the gene.

Example 2.1 The dynamics of n genes can be determined by the following
system of differential equations [23,24]:

. (e 7] ﬂz
Ei=—8E;+ ) (regfN)a+ > (regf )+ (i=1,2,...,n).
a=1 B=1

In this model real- or interval-valued rates of basic synthesis and basic degra-
dation of geme i are represented by ¢; > 0 and 0; > 0 whereas activation
or inhibition by other network components are determined by the two sums.
The activation and inhibition functions reqg f* and reqg f~ have been shown
to possess a sigmoid shape [63]. The resulting (n x n)-matriz M(E), where
E = (B, Es,...,E,)T consists of the first n components of E, has the entries

mg; —1
Ci i .
mii(E) = I —5i+/€iiw (i=1,2,...,n),
B
mij(E) =k ! (i,j=1,2,...,n; i #j)

L R rr—

with k;; and 0,5, m;;(E) being any or nonnegative reals (or intervals), respec-
tively. Now, some or all of the parameters can be estimated based on data from
DNA-microarray experiments.



2.6 Gauss-Chebychev Approximation and Optimization in the Presence of
Intervals

In Chebychev approximation we refer to infinite data, mostly uncountably
many ones in the form of a continuum, and look for a member in a fam-
ily of functions with less complexity which approximates a given complicated
function best, in terms of the “maximal error minimized” [28,31]. If in an
approximate sense the solution E (or E) and E (or E) of initial value prob-
lem over some time interval, or a confidence interval (error of uncertainty), is
given, then the parametric functions can be “uniformly” estimated by finding
the matrix M (E) (or M(E)). Chebychev approximation problems can be re-
formulated as semi-infinite programming (SIP) programs [31]. Sometimes, we
are in between Gaussian and Chebychev approximation [51]. Then, the func-
tions E and F are approximately known by patterns in the piecewise sense
of some subintervals and points which, in this paper, are interval-valued, per
coordinate and state. Such a hybrid kind of approximation is called by us as
Gauss-Chebychev (cf. also Section 6).

3 From the Special to the Extended Dynamics of Gene-Expression
and Environmental Patterns

The dynamics of the n genes and their interaction alone can be described as
follows: .
(CE)gene E=M(E)E.

This model shares with (CE) the same multiplicative structure, which is the
basis of the recursive iteration idea [22]. Not to loose this recursion property by
the shifts proposed in the model extension of (CE)gene by introducing constant
affine linear shifts terms in [64,65], we will reconstruct the form of (CE)gene by
a dimensional model extension. This will even allow to represent our following
affine continuous equation which includes a variable shift vector [47-49,52,61]:

(ACE)gene B = M(E)E + C(E).

Here, the additional column vector C(E) provides a more accurate data fitting
and may represent environmental perturbations or contributions. Differently
from M (FE)E which exhibits E as a factor explicitly, the shift C'(E) does not
need to implicitly possess E as a factor. This shift may be, e.g., exponen-
tial, logarithmic, trigonometric, but also piecewise polynomial. If the interval
entries of M(E) and C(FE) are given in a closed or piecewise form by poly-
nomials, then the vector C'(E) of various environmental effects should reveal
degrees less than the ones in the vector M (E)E. An additive decomposition
as given by (ACE)gene can be called a normal form, an unfolding [5,9,27,32]



or a (generalized) additive model [27,50]. In fact, emissions, poison in water
or food, dangerous drugs, social stress, changes in the lifestyle, (quantifiable)
educational measurements, and other environmental effects are displayed to
form the right-hand side of the system (ACE)gene. In this sense, we distinguish
and display special effects on each gene examinated by any environmental item
itself or cumulatively by all or several items working together or catalyzing
each other. This cumulative effect may not be further divisible or quantifiable
by the single effects.

With (ACE)gene we included the disturbances and genetic changes caused by
the environment, in long and in short term, but we lost the convenient recursive
idea of matrix multiplication first of all. This drawback can be overcome by
increasing the dimension of the state space to d := m + 2n such that we
reconstruct that product structure. This reconstruction presented in [61] but
now modified by interval-valued entries [53], works as follows. We split C'(E)
of (ACE)gene into the sum W(E)E + V(E), which yields

(ACE) E = M(E)E+W(E)E + V(E)

with E(t) = (El (t), Es(t), ... ,Em(t)>T being a specific m-vector (of intervals)
which comprises the levels of the m environmental factors that can affect
the gene-expression levels and their variation. While some of the coordinates
(factors) Ey affect in a short term, the others may affect in a long term. We
may think of £ as constant, but also piecewise constant or, generally, time-
dependent. In the case of a constant component Ej, we can easily normalize
it to unity: E’j =1.

By the weight matrix W = (Wzg) i—1...n , the effects of the factors E, on the
=1,

yeen, M

gene-expression data F; become 1ncorporated into the system, and the n genes
and the m environmental factors are individually matched. Differently and
complementary to this, the column vector V(E) = (v;);=1,..., represents all the
cumulative effects of all (or several) environmental items influencing the genes
together. This cumulative effect could also be represented by a new, (m+ 1)st
environmental item, taken into account for each gene. In the time-continuous
(instantaneous) system (ACE)gene, the interval value Y7, wi(E)E, + v; is
interpreted as the total effect of the environment on the expression level E;

of gene i. Now, we overcome the more complex form of (ACE)gene by an idea
introduced in [47-49,52] and refined in [53,61]:

W(E)E +V(E) = M(E)E".

Here, the gene-environment matrix M(E) := ( (E) | diag(V(E))) consists
of n-(m+n) intervals; its second block represents V(E) as a diagonal matrix
with mtervals on the dlagonal. Now, putting EY := (ET,e")” with the n-
vector el := (1,1,...,1) of ones only, we get the following compact form for

10



(Acg)gene:
E = M(E)E+ M(E)E".

Introducing the following d = m + 2n-vector

E .=

E\/
and the (d x d)-matrix

M(E)|W(E) diag(V(E))

M(E) = =
O(m+n)><n O(m+n)><(m+n)

0m><n Ome Omxn ?

OTLX’I’L On><m O’an

we arrive at our extended system (CE) together with an extended initial value
as follows:

E0)

(&) E=M(E)E, E® =E(t) = | _
E\/,O
Now, we learn that there is an equivalence between this initial value problem

and the corresponding initial value problem for (ACE)gene [53]. In general,
. _ —Vv.,0
E© and EV0 are chosen as the first experimental data vectors E? and E

coming from microarray experiments, followed by the environmental observa-

tions. Here, E\A is the initial state of the special or cumulative environmental
factors having an impact on E and being expressed in a physical, chemical,
financial or social dimension. If the ¢th specific environmental factor E, is con-
sidered to affect any gene-expression level, then, initially, the /th component

=) . . . =0
of £ is regarded to be 1, otherwise 0. Here, 1 (0) in F, means that the
(th environmental factor is “switched on” (or “off”, respectively). In contrast,
the cumulative environmental effect is considered to be “switched on” always.

~ (0 —=V,0
The initial state E( ) (or E ) could also be any other vector [52].

In (CE), equipped with the initial value EY(t) = E(O), the time-dependent
variable £V (t) is constant: £V = B We do indeed not include any environ-
mental dynamics, but our modeling framework allows us to do this. In fact, by
turning the 0 matrices in the second and the third (block) columns of M(E)
in (CE) to matrices different from 0, we could accept variable and interacting
factors of the environment. Permitting also the 0 matrices in the first column
to have entries # 0, this would express that genes affect environmental items.
In addition, we could allow dependence of V(E) and W(FE) on the variable F

11



or even EV. Later on, Section 5 would even allow to incorporate such a higher
generality of (CE).

4 The Time-Discretized Model and Stability Analysis
4.1 Time-Discretization

For a numerical analysis of the dynamics of gene-expression patterns the
paper [16] introduced Runge-Kutta methods (RK) into our time-continuous
modeling. Then, the works [47-49] used a different RK method called Heun’s
method in some extended model space. This method is a modification of Eu-
ler’s method; it is more an illustrative, explicit and the simplest RK ap-
proach [14,16,47-49]. Here, but also in the Eulerian case and some other
methods [14,16,22], we can find a representation in “multiplication-form”, that
allows to calculate predictions of future expression values:

(DE) E*+D — MFIE®

Let the given data from DNA microarray experiments and environmental mea-
T
surements be comprised by " := <(E(R))T, (EV”‘)T) (k=0,1,...,01—1).

By E® (k = 0, L...,l— 1) we denote the approximations in the sense of
(DE), and we put E© = E©® . Now, the kth approximation or prediction, E*),
is calculated by

E® (:=E®) = MEDME2 ... (MOMOED)Y)) (k € Ny).

In [47-49,64,65], referring to earlier stages of modeling, we compared the first [
predicted expression vectors with the [ data vectors and, by this, investigated
the quality of prediction, both theoretically and by numerical examples.

Via (DE) we obtain our gene-environment networks by the time-discrete dy-
namics (while our investigation permits a time-continuous approach to the
networks via (CE), too). Indeed, the genes and environmental items are repre-
sented by the nodes (vertices) of our network; the interactions between them
turn to edges weighted with effects (in the time-continuous case: with func-
Bom o
mgk;l) +m+i» are the effects multiplied by Eg-k), Egk) or 1. In this way, at the dis-
crete time step k — k+1 the expression level of the ith gene becomes changed
by the one of the jth gene (or ¢th environmental item or the cumulative en-
vironmental, respectively). Now, the rich arsenal of discrete mathematics and
its network algorithms in both versions, statically and dynamically, becomes

tional values). Namely, the significant entries of M®*) say, m

12



applicable on subjects such as connectedness, components, clusters, cycles,
shortest paths or further subnetworks.

4.2 Stability Analysis

Let M := {My, M;,...,M, 1} be a finite set of z matrices over the intervals
(as entries) be obtained from (DE) with a sufficiently fine discretization of
M, W and V and an entry-wise optimization [47-49,53] (with no confusion
by the previous meaning of M*) as kth iterate). Let M’ be the matrix set
of all the finite matrix multiplications of elements from M. The following
definition originates in [8], but has been extended by us dimensionally and
by interval-valuedness; we also include an alternative for the reader’s possible
preference:

Definition 4.1 [53] The matriz set M (herewith, (D)), is called stable if
for every neighbourhood in C* (or relative neighbourhood in C* x {0/, ,,.}),
U, of the origin 04 (or affine origin 0f, given from 04 by shifting to 1 some
of the middle m coordinates and all of the last n coordinates), there exists a
(relative) neighbourhood V of the origin 04 (or 0);) such that for each M € M’

it holds: MY C U.

We note that for the time-continuous system (CE), in case of constant time
shifts, i.e., hy = h(t € Ry), then there is a dynamics (a continuous orbit)
piecewise defined along all the intervals [kh, (k + 1)h). (If, in addition, the
initial section E(t)(t € [0,h)) is a constant parallelpipe, then the dynam-
ics is piecewise constant.) Herewith, a condition of stability can be defined
analogously as in the previous definition. For that case and provided that
we concentrate on Euler discretization, having turned from the scalar- to our
interval-valued model framework, if the function M of the right-hand side of
(CE) is Lipschitzian, we learn the following result from [62]. It is an extension
of the real-valued case where it even holds for some Runge-Kutta discretiza-
tions presented [61] and, indeed, a unifying concept.

Theorem 4.1 Let the map x — M(z) (x € R?) be Lipschitzian. If the
Eulerian time-discrete system E*1 = MFEF (k € Ny), E° € RY, as in (DE),
some appropriate hpyq, > 0 being given, is stable for all values hy € [0, hypaz),
then the time-continuous dynamics defined by the system B = M(E)E (with
h > 0 sufficiently small) is also stable.

The parallelpipes E can (after some dilatation) be embedded into neighbour-
hoods of 0,. Multiplying our matrices and vectors (over intervals) and observ-
ing the resulting discrete orbits can be characterized by the scalar-valued case
that was introduced and investigated in, e.g., [8,22,61]. Indeed, each member
in an orbit of our set-valued products is representable as the convex hull of

13



the corresponding common matrix products that we obtain by focusing on
all of the finitely many combinations of the involved interval endpoints. By
referring to these endpoint combinations, we indeed reduced the stability con-
dition to the classical one for the scalar-valued case [53,61,62]. Herewith, we
have carried over the stability theory and algorithmic methods of our and our
colleagues’ former investigations, e.g., the previous condition of parametric sta-
bility can be characterized analytically, spectrally and by Lyapunov functions.
Our main method of analysis employs discrete orbits provided by stepwisely
applying matrices on a compact neighbourhood of the origin 0,;. Choosing the
initial neighbourbood and, henceforth, each element of a generated sequence,
as a polytope gives the opportunity to detect parametric regions of stability
and instability. If the polytope sequence is bounded, then there is stability
given for that parametric constellation, otherwise instability. By this stability
analysis we can make a testing of the goodness of data fitting of our model.
A second method which we will present for such a testing will consist in the
investigation on structural stability of the landscapes of gene-environment
networks (cf. Subsection 6.2). We remark that our modeling and dynamical
analysis can also be used for metabolism-environment networks [62].

5 Extracting and Optimizing Gene-Environment Networks in the
Presence of Intervals

5.1  Our Hybrid Model

The hybrid approach from [24] offered a complete dynamical description of
the expression levels of n genes. Then, the papers [53,61] modified it by addi-
tionally matching the n genes with m special items and the cumulative item
of the environmental, and by turning to the interval-valued setting:

E(t) = Ms(t)E(t) +Ws(t)E(t) + Vs(t),With
Q(E()) = (Qi(E(t)), Q2(E(Y)), ..., Qu(E(t))), where
07 Ez(t) < 91"1

(HE)
1, 0,1 < Ei(t) <0;2

Qi(E(t)) ==

di, Qi,di S El(t) (Z = 172, e ,n).

In (HE), thresholds of the expression levels are given by 6,1 < 0,2 < ... < 6, 4,.
At these thresholds instantaneous changes of the parameter constellation can
occur and we have to choose a local model by the special selection of the
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matrices My, Wy and the vector Vi (all three ones over intervals). The
function @) : R” — N implies the threshold constellation, and S(Q(£)) indi-
cates where in the state space the system is placed at E, and which matrices
and vectors M, W, V have to be chosen to specify the system such that the
given data are approximated best. The mapping S : Nj — Ny has to be in-
jective, such that a different triplet (M,W,V) is used whenever a threshold
is traversed. This piecewise linear approach provides an approximation of the
global nonlinearity of nature.

We understand (HE) in the sense of the placement in the set of intervals (cf.
Section 2) and of an extension of () when one or more thresholds are included
in the intervals E;(t) [58]. In such a case, this extension can be made by the
arithmetic mean of the corresponding () values associated with those intervals
between and besides the thresholds which intersect with E;(t); this averaging
is then followed by a rounding to an integer. Based on this definition of s(t), we
find M), Wy and Vg (we could also directly use the averaging technique
for these parameters [53]).

A time-discrete model is sometimes more preferred. Such a version (HDE)
can be found in [53]. It distinguishes between past (k — 1), presence (k) and
future (k 4+ 1), herewith, expressing a time consumption in regulatory genetic
networks. State prediction for time k£ + 1 needs the model at time k which
memorizes the time £ — 1, where it became parametrically preadjusted. We
recall that for the time-continuous system, we also interpreted the (set-valued)
derivative by a (set-valued) difference quotient; this leads to a system with a
forward delay (anticipation), piecewise and in a uniform manner with respect
to the time.

For the parameter estimation of the time-continuous model and the time-
discrete system we have to estimate the thresholds 0;; and to calculate the
matrices and vectors, My, Wy and V), describing the system in between
the thresholds [24,53,61]. The thresholds can be defined by Akaike’s Informa-
tion Criterion [27]. For closer details and concerning the parameter estimation
in the time-discrete case, we refer to [2,3,21,24,39]. Since we are concentrating
on the tasks in continuous optimization, we assume that we already know all

the thresholds.

Now, for any subparallelpipe P* given by the threshold constellation we have
to extract the parametric unknowns M), W) and V) from the measure-
ment data. In P*, the hybrid system (HE) reduces to a system of ordinary
linear differential equations. Hence, we can find analytical solutions for the
corresponding parts of the state space. We may assume that for the spe-
cial environmental factors the times of sampling are just the genetic sam-

pling times, and the same index sets of samplings. The environmental data

E(N) (k =0,1,...,1 — 1) are considered to be binary and constant, but they
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could also be variable in a more refined modeling.

We note that our hybrid model can be further extended and we can in-
clude possible delays in the interaction of the variables. Such history depen-
dent problems have been investigated in [36] and the delays are included in
the state transitions (threshold crossing) in the form Q(E(t)) = (Q1(E(t —
1))y Qu(E(t — 7)), where 7; (i = 1,...,n) represents the delay with re-
gard to the state ¢. For further details on the time-delay hybrid model and a
stability analysis we refer to [36].

5.2 Mixed-Integer Parameter Estimation

For an estimation of parameters we have to minimize the quadratic error

— (Ka)
between the difference quotients £ and the right-hand side of the differen-

tial equations evaluated at the finitely many measurement intervals B €
P* (e« =0,1,...,0* — 1) which are lying in the regarded regime P*:

*—1 2
—(Ka = (Ka _— (Ka)
(HLS) min Y [ B+ WwE™ v E
(m;‘j),(W;‘[),(V;‘) a=0 o]

Parallelpipe expression vectors can affect several neighbouring subparallelpipes
P*, such that we get corresponding problems (HLS). Criteria for which of
them to put special emphasis on consists in where the data vectors as par-
allelpipes are lying, and further empirical evidence given. In (HLS), ||,
stands for the Chebychev norm of the set inserted, i.e., it is the maximum
norm with respect to the vector-valued functions defined by (independent)
parametrization which we get from the interval-valued entries of M*, W* and

V* as well as the ones of the vectors E(M), E(KQ) and F(M), respectively.
For length measurement we use the FEuclidean norm, such that our squared
Chebychev norm is indeed a maximum over sums of squares, but we could also
use the maximum or the sum vector norm (/;-norm) instead of the Euclidean
norm. This reconsideration turns our least-squares or Gaussian approximation
problem of earlier studies (cf., e.g., [61]) to some generalized Chebychev ap-
proximation problem (see Section 2.6). The generalization comes from both
the sum of squares formula where the single Chebychev norms are embedded
and the fact that the left and the right sides of “—” are parametrically decou-
pled from each other. We note that each entry of M*, W* or V* is defined by
two or more scalar values. For the sake of simplicity, we concentrate on two
ones, namely, the two interval endpoints. This means that the dimension of
the problem becomes doubled, compared with the single valued case. In the
following, we shall repeatedly meet this new approach and interpretation. We
could indeed extend this optimization problem in the sense of our note made
after introducing the system (HE); then, we would insert the data vectors into
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our uniform interval-valued framework of arithmetics and approximation.

The classical “scalar” version of (HLS), i.e., Gaussian approximation, can
be canonically treated by building the partial derivatives with respect to the
unknowns and equating them to 0. Then, one has to solve the resulting nor-
mal equations, which are linear in the unknown parameters mj;, w;, and v,
e.g., by Gaussian elimination method. But (HLS) is a generalized Chebychev
approximation problem; since it can equivalently be written as a semi-infinite

optimization problem, we get access to the applicable methodology of SIP.

As nowadays high-throughput technologies are available gene-environment
networks are huge and for practical reasons we have to rarefy them by di-
minishing the number of arcs [53,61]. Here, upper bounds on the outdegrees
of nodes are introduced firstly; later on, these constraints are undergoing a
relaxation. In this section and in Section 6, we shortly recall this process in
our interval-valued generalized Chebychevian way [62]. At first, we introduce
the Boolean matrices and vectors, X = (X4j)ij=1,.n, = = (@-5)2511 ..... n and

=1,...,

Z = (Gi)i=1,..n, representing by the values 1 and 0 whether or not gene j
regulates gene i, environmental item ¢ regulates gene ¢ and the environment
cumulatively regulates gene ¢. The outdegrees > i Xij, >ieq &ie and 20 G
count the numbers of genes regulated by gene j, by environmental item ¢
or by the cumulative environment, respectively. Our network rarefaction by
bounding the outdegrees obeys the principles of least-squares (or maximum
likelihood). We also imply any helpful a priori knowledge into the problem,
especially, about degradation rates, and what is empirically known about the
connectedness structure. Often, a lower bound 0; min on the degradation of
gene 7 is known or there are requests given about the feasibility of special ge-
netic or metabolic processes [24,61]. Herewith, our parameter estimation task
becomes a mized-integer (generalized) Chebychev approzimation problem as
follows:

*—1 2

) —(Ka)

(MICP) (m:j)7(WZ£)7(]\-’,I%1)]7}XU)7(51'2)7((1') s ME" + W*E( Vo E o0
subject to
Yicoxi S  (J=1,2,...,n),
o < B (U=1,2,...,m),
i1 G <7,

Mi; > Gimin (0 =1,2,...,n).

The loss of the edges emenating at a few genes which are considered to play
a very important role in regulation, i.e., to have very high outdegrees, could
strongly restrict the connectivity of the network. Such a loss can be the re-
sult of perturbations caused by the environment and affecting the problem
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(MZICP) with its rigid (exclusive) binary constraints. We therefore make them
“softer” by performing a relazation in the next Section 6.

6 GSIP Relaxation and Extension
6.1 The GSIP Extension

The mized-integer Chebychev approzimation problem (MZCP) includes rigid
binary constraints. To alleviate the effects of these constraints we replace the
binary variables x;;, & and ¢; by real variables p;;, gi¢, ; € [0, 1] which linearly
depend on the elements of a;;, w;, and v; and assume some reasonable box
constraints [53,61,62]. The values Y7, pi;(mj;), 20, qie(Wi,) and 357 7(vy)
become interval-valued approximations of the number of genes regulated by
gene j, environmental item ¢ and cumulative environment, respectively. Please
recall that the continuous real-valued image of an interval is an interval again.
Having solved the continuous optimization problem, we could return the bi-
nary variables and, hence, network rarefaction, by means of rounding or stay-
ing below some small prescribed values €;;, €, €; € [0, %), respectively [61].
The environment can affect the connectedness between the genes or destroy
some of the connecting paths but also cycles among the genes ( “knockout”; [20]),
and an external stimulus can activate a higher regulation among the genes.
For reasons like these [53,61] implied all the possible convex combinations of
the environmental effects into the inequalities about the bounded outdegrees.
The set of combined environmental effects is defined as the convex hull of all
the vectors Wi e, i—1)+¢ and v; e, i.e.,

YV, W*) = conv({wfeem(i_l)M‘i— 1,2,...,n; £=1,2,... ,m}
i:1,2,...,n}>

* *
= OitWigCm(i—1)+¢ T Z Oi,m+1V; Emn+i

=1,...,n, i:l,‘..,n

*
U {Vz‘ 04,m+1 Emn+i

oir >0(=1,2,....,n; 7=1,2,....om+1), >  o,y=1

with e, denoting the nth ((m+1)n)-dimensional unit vector (0,...,1,...,0)7.
Formally, we can write Y (V*, W*) as a parallelpipe:

,,,,, R

vovowy = Xl x X o,
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however, we underline that the elements y of the Cartesian factors (formal
intervals) are just our parametric intervals. The wealth of how the environment
is implied bases on and applies any given a prior: knowledge about the genes
that helps scientists, practitioners and decision makers when determining and
elaborating the rarefied network. We recall that all intervals y can be encoded
by a tuple of scalar values. Now, we get our relazed (generalized) Chebychev
approzimation problem in the following form:

I*—1 2

) —(ka)

(RCP) (mfj)ﬂr(rvl‘}g)’(vn QZ::O ME +WE™ 4 v _F o
subject to
>ic1 Dij(miyy) < a;(y) (y € Y(V', W),
i1 Gie(Wip y) < Be(y) (y € Y(V5, W),
Xty ri(viyy) < () (y € Y(V', W),
Oimin < Mg (1=1,2,...,n),
my; <mj; <my; (i, =1,2,...,n),

wi < wi < W) (i=1,2,...,n; £=1,2,...,m),

vi <vi<V; (1=1,2,...,n).

We note that, firstly, we could compare m}; and J; min and, then, take the
largest of the two values as a single lower bound instead (provided that
dimin < ;). As given in the objective function by generalized Chebychev
approximation, this uniform interpretation of the “<” conditions amounts to
the SIP character of (RCP). By the additional coupling of our inequality con-
straint set Y (V*, W*) with the states (V*, W*), (RCP) even becomes a GSIP
problem. In the objective function, the terms with the xth Chebychev norm
|||, are nonsmooth max-type functions (k = 0,1,...,l*—1). By the following
standard technique, (RCP) becomes smoothly modeled. For each of them, we
introduce a new coordinate 7., in addition to the unknowns of (RCP), consid-
ered as a new coordinate and as a uniform bound for the squared Euclidean
norms of the elements inside the Chebychev norms (see Subsection 2.4). Here-
with, we minimize the sum of the bounds. As new inequalities we just introduce
these bounding conditions; we write them so that the Euclidean norms of all
the elements inside the Chebychev norms have uniformly to stay below (“<”)
the corresponding bounds. We note that we could also use one single new co-
ordinate 7 for an overall uniform bound. Indeed, we can choose between both
alternatives according to our preferences. In case we replace the squares in the
objective function by absolute values and make a further linearity assump-
tion on the constraints, (RCP) comes close to a GSIP kind of conic quadratic
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programming [31,50,54,57] (cf. Subsection 6.2).

6.2 On GSIP and Structural Stability for Gene-Environment Networks

6.2.1 Introduction

GSIP optimization, revisited for our gene-environment network problem (RCP)
in Section 6, reveals the following general program form [44,46,57]:

minimize f(x) on Mgsz[h,g], where
Pgsz(f,h,g,u,v) Mgsz[h, g] = {m cRYhi(x)=0(Giel),;, (A)
¢ (e.y) 20 (y € Yi(), j€T)}

with finite cardinalities |I|,|J| < oo, and with the sets Y7/ = YJ(x) being
defined as feasible sets in the sense of finitely constrained (F) programming.
Hence, also the sets of inequality constraints possess finitely many elements
only. Moreover, for each x € R? it holds

Yi(z) = Mzl (z,),vi(, )]

9 AQ

::{yERq|uk(x,y):0 (ke K7), v(z,y) >0 (L el’)} A2
where |K7|,|L7| < oo. Moreover, the model (A;)-(Az) allows equality con-
straints on both the upper (z-) level and lower (y-) level representing, e.g.,
further metabolic restrictions, reactions or balance equations [53,61]. Let us
suppose that the outdegree constraints in (RCP) are of class C?, too. The
upper and lower bounds guarantee that the feasible set Mgsz[h, g] is compact
in the projective sense of the original 2(n*+mn+n) unknowns (with intervals
encoded by tuples of endpoints), but not in the “height” dimensions of the new
coordinates 7,.. This noncompactness can be overcome in the way explained
in [54,57]. By their form, the sets Y7(x) are compact indeed. What is more,
we can even state that they fulfill the Linear Independence Constraint Quali-
fication (LICQ), an appropriate choice of the overall box constraints that are
given. The works [46,53,57,61] provide more detailed discussions and possible
generalizations of GSIP.

6.2.2  Stability Theory

Perturbations of our gene-environment networks (f, h, g, u,v) — ( f,h, g,u,0)
are generated or caused, e.g., by outliers of parallelpipes, “perturbed” problems
and networks and certain kinds of errors, imprecision and uncertainty [53,61].
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The strong Whitney topology C% [31] serves as a “measure” of perturbations
so that asymptotic aspects are taken into account.

The character —“genetic (and environmental) fingerprint”— of (RCP) is given
by all the lower level sets of its objective function, which are subsets of the
feasible set. If under arbitrarily slight perturbations and some correspondence
between the levels the perturbed and the unperturbed lower level sets are
homeomorphic to each other, we call (RCP) structurally stable [31,33,54,57].
Now, we can carry over and state the Characterization Theorem on Structural
Stability for Gene-Environment Networks from [53,61] for (RCP). In order not
to overload the exposition, we may avoid giving the full definitions and details
but refer to [34,55-57]. Our main theorem basically states that structural
stability can just be characterized by two well-known regularity conditions
and a more technical one:

Theorem 6.1 (Characterization Theorem on Structural Stability for Gene-
Environment Networks)

The optimization problem Pgsz(f, h,g,u,v) on gene-environment networks is
structurally stable, if and only if the following triplet of conditions, C;— Cs,
18 satisfied:

Cy. The Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ)
holds for the set Mgsz[h,g] defined in Pgsz(f,h,g,u,v).

Cy. All the G-O Kuhn-Tucker points T of Pgsz(f, h, g,u,v) are (G-O) strongly
stable.

Cs. For each two different G-O Kuhn-Tucker points T* # 7% of Pgsz(f, h, g, u,v)
the corresponding critical values are different (separate), too: f(x') #

f(@).

Our Characterization Theorem helps for a well understanding of the topo-
logical “landscape” of gene-environment networks, for their perturbational
behaviour and for the development of numerical procedures. For instance, we
can consider “mountain paths” (saddle points) between any two candidate
networks being given by local minimizers of (RCP). All the points around
candidate solutions can be regarded as potential networks which may be ob-
tained after perturbations, e.g., inward shifts from a genetic or environmental
boundary to an interior position [34,55-57|, or, generally, be the result of a
“forward operator”. They may be outcomes of underlying constellations in the
experimental design which may have to be reconstructed, which is an inverse
problem [6].

Let us give a short explanation about the regularity conditions C; 9 3: EMFCQ
basically guarantees that the feasible set Mgsz[h, g is a topological manifold
with generalized boundary. If this set is compact, then EMFCQ can be char-
acterized by its stability under slight perturbations of the defining functions
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(results for noncompact case are prepared, too) [31,54,57]. The condition of
strong stability on our critical points guarantees their local uniqueness and
continuous dependence on any slight perturbation of the defining functions
[33,34,54,57]. Finally, the more technical condition of separated critical values
makes the unperturbed and any slighly perturbed situation comparable. It
prevents from some different topological situations [31,54].

In terms of testing the goodness of data fitting, the lower level sets can be
interpreted as confidence regions around the parameters estimated. The size
of these regions is basically governed by the steepness of the function around
the solution. In cases where a local or global minimizer is very steep, we
can associate this with stability, whereas flatness is more likely related with
instability. During the resolution of (RCP), we have to understand possible
pathologies in terms of the violation of one or more of the conditions Cy 2 3.

Future research may investigate dynamics within of our networks such as “tec-
tonics” generating “clashes”, “folds”, “reefs”, “volcanoes” and “areas lifted or
dropped”. Here, a well interpretation and prediction of the biological, econom-
ical and social factors are necessary and intended, and a suitable numerical
methodology has to be prepared by all of this. But there are also dynamical
phenomena along different networks such as “cascades” of gene-environment
networks. By the time-discrete dynamics, the networks generate expression
level vectors which can reversely be interpreted as simulated data on which
further models could base.

7 Overview of Classification and Model Selection Methods for Gene
Network Data

There is a growing interest in the application of machine learning techniques
together with optimization to real-world applications such as biological prob-
lems [42], engineering problems etc.. In this review, we will introduce recent
developments in one of the most efficient methods, Support Vector Machines
(SVM). In [42], an efficient and novel model selection algorithm embedded in
a classical SVM to predict pro-peptide cleavage sites in filamentus fungi [42].
Prediction results of the confidence level by an SVM are compared with the
results achieved by the pro-peptide prediction tool ProP1.0 [15]. ProP1.0 is
a bioinformatics and computational biology tool which predicts pro-peptide
cleavage sites on a furin specific based network and a general PC network
separately by using a neural network. ProP1.0 consists of 227 proteins of all
eukaryotes including those of humans and animals. The data set is presented
to the neural network by sparsely encoded moving windows. The output of
a neural network is assessed by a threshold of 0.5 to determine the potential
pro-peptide cleavage site.
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The study in [42] concentrates more on fungal proteins due to the industrial
importance of these organisms in heterologous protein production, including
those of humans. The data set is collected from largely non-homologous fungal
proteins consisting of 72 sequences. Our prediction tool, confidence level SVM
is fed with both binary input vectors and the substitution matrix PAM250
separately and results are reported for both. The sequences are given to the
learning machine by encoded sliding windows through each sequence. Each
protein is tested with different training sets. Rather than splitting the data
set into groups, we have used a different strategy that enables us to use the
whole data for both training and testing. This is explained in detail in the next
section. The construction of the data set from non-homologous sequences is
justified by using ClustalW to construct a phylogenetic tree which is based on
multiple sequence alignment.

7.1 Materials and Methods

The data set is collected from the NCBI databank based on fungal proteins
which are publicly available!. 72 fungal sequences are selected among non-
homologous protein families. This is one of the reasons for the small number of
sequences contained. To reduce further redundancy in the data set and prevent
the training and testing from being homologous, we made a phylogenetic tree
analysis based on multiple sequence alignment by ClustalW. There, in a phy-
logenetic tree many individual main branches are resulted (data not shown)
indicating that the selected proteins are not homologous. In our learning pro-
cess by SVM, we chose symmetric windows around possible cleavage sites,
where the window length varies between 11 to 21 and the results indicates
that the optimum window length lies between 13 and 19. The best accuracy
results are found with window length chosen as 15. These parameters can vary
according to the type of the data set and the kind of problem.

To see the discriminative motifs existing in the sequences, we used MEME
software? . This yielded the motif KR. To check this result, Multiple Sequence
Alignment (MLA ), with the package ClustalWW is applied to the data set which
confirms this observation. The motif KR gives us a clue for the preparation
of the input sequences for the SVM. With MLA, most of the cleavage site
patterns are in the form of either K, R or KR. Therefore, it is sensible to
train the SVM restricted to inputs with K or R residues.

! http://www3.iam.metu.edu.tr /iam /images/1/1a/Datasetsureyya.pdf
2 http://meme.sdsc.edu/meme/meme-output-example.html
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7.2 Input and Output for the SVM

There are different ways to represent text based data when introducing the
data to a learning algorithm. In bioinformatics, these data can be amino acid
(a.a.) sequences, DNA sequences, etc.. The most popular method of encod-
ing amino acid sequences into numerical values is given by binary vectors [7].
However, this ignores the context information. There has been a lot of research
on encoding amino acids to give each individual amino acid a numerical value
regarding the biochemical and physiochemical properties [37]. One of the most
powerful substitution matrices is PAM250 matrix due to its property of pre-
serving mutations of the sequences. In this study, two types of encoding are
considered, namely, a binary encoding matrix and the PAM250 substitution
matrix. Please note that, encoding a.a. by substitution matrices is needed
for the input vectors for the SVM. Thus, the windows of a.a. sequences are
presented to the SVM with the numerical values corresponding to the input
vectors.

There are many similarity matrices developed according to different similar-
ity approaches and gap penalties given between two amino acids. Dayhoff et
al. [12] created a table where they aligned the proteins in several families
of proteins and constructed phylogenetic trees for each family [12]. The re-
sulting similarity table presents relative frequencies with which amino acids
replace each other in a short evolutionary period since each phylogenetic tree
is checked for the substitutions found on each branch. The traditional Dayhoff
PAM250 matrix assumes the occurrence of 250 point mutations per 100 amino
acids or 300 nucleotides in the gene [38].

PAM matrices are theoretically more advantageous than the others. They arise
from Dayhoff’s method [12] which is based on observed evolutionary muta-
tions. Hence, they preserve information given by the processes that generate
the mutations. Statistically, PAM matrices and other log-odds matrices are
the most accurate description of the changes in the amino acid composition
after a given number of mutations. Details about the formulation of log odds
matrices and PAM matrices can be found in [4,12].

Since there are 20 amino acids, there are entries in a 20x20 PAM250 matrix.
Each amino acid is represented by a 20 dimensional vector corresponding to
the entries in a column of the PAM250 matrix. If there is a sequence of n
amino acids, then we will have an n x 20 dimensional real-valued vector as
input.

In [42], sliding window approach is used while scanning input sequences. The

sliding window approach is a method to construct the training and test set
with a previously chosen window size. Training windows are chosen from the
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neighbourhood of the potential cleavage sites in such a way that the cleavage
sites are at the centre of the window. For example, if we have a window size of
11, then the considered cleavage site is between the 5th and the 6th position of
the window. In this way, each sequence contributes one positive window. For
the negative class, three windows are chosen from each sequence by selecting
positions which have residues K or R at their centre. Here, windows are chosen
as symmetric in all cases. A test sequence is constructed by sliding the window
through the whole sequence. In our case, all the sequences have at least one
K or R which are the motifs that we learned from ClustalW through multiple
sequence alignment. Sliding windows through the whole sequence generate
many test windows, i.e., test inputs. Furthermore, the cleavage window(s) in
the test sequence are going to be labeled as a positive class from the output
of SVM and the others as a negative class. It is clear that restricting the
windows by including to those windows that have K or R at their center will
decrease the number of test examples and, hence, makes it easier to select the
positive one(s) (cleavage window(s)) when compared to the high number of
windows for a particular test sequence. In other words, if we call the set of
all sliding windows S and choose a special subset A C S which depends on
motifs known in advance from a bioinformatics tool, then searching a cleavage
window(s) among A will be easier than searching from the bigger set S for a
particular test sequence. If the set A is empty, i.e., A = (), the set S which
contains all possible windows of the particular test sequence can be used as
test examples. In our special data set on fungal proteins, the subset A of S is
nonempty, i.e., A # (). Moreover, the cardinality of A is always greater than
3, ie., |A] > 4.

Our data set comprises 72 proteins and, hence, 72 amino acid sequences, each
giving rise to be one positive window and three negative windows. So, 72 se-
quences are used for both training and testing using the leave one out principle
that leaves each sequence in turn as testing while using the remaining 71 for
training. In this way, we have trained using 71 sequences and have tested 1
sequence 72 times. The accuracy is calculated as the precentage of the total
number of correct predictions over the 72 sequences.

The definition of the kernel and the SVM algorithm both involve an additional
parameter vector (Cy,C_, ), the parameters C'; and C_ for the SVM and the
kernel width o for the Gaussian kernels. The usual way to set these parameters
is using cross-validation [27]. This assesses the quality of different parameter
settings by dividing the training data into m groups. It then leaves out one
group in turn to train the classifier with a range of possible values for the
parameters and uses the group left out as a test set. The average accuracy
for each parameter setting over all m test groups is then used to select the
parameter settings. We employed this approach where we took m = 71, i.e.,
we performed a subround of “leave one out” error estimation on each training
set in order to select the parameters to use training for the set of 71 sequences
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before testing on 72nd left out sequence. Note that this is the only leave one
out at the level of sequences, since each sequence corresponds to 4 windows,
one of which is positive.

Our second method of model selection is a novel approach for problems in
which each test involves multiple inputs, but with the additional information
that only one is positive: in our case, there are many windows, but only one is
a cleavage site. Rather than to pre-select the parameters, we train the SVM
on all the training data (other than the single test sequence) with all the
parameter settings. For each SVM we compute the real-valued outputs, for
all the windows arising from the sequence. We define the confidence of the
classifier as the difference between the maximal output and the second largest.
Now, we select the parameter settings for which the confidence is largest and
identify the window with maximal output as the cleavage site. It should be
stated that not every test sequence has to have a cleavage site. It corresponds
to having all test window outputs being negative. In such cases, our algorithm
outputs that these sequences have not cleavage site. Similar analysis can be
easily done for DNA sequence data and gene networks to recognize particular
pattern by windows as in [42]. We refer [42] for numercial experiments and
results.

7.8 SVM Model Selection Based on Observed Margin

Support vector machines (SVMs) carry out binary classification by maximiz-
ing the margin of a hyperplane between the two classes of examples and then
classifying test points according to the half-spaces in which they reside (irre-
spective of the distances that may exist between the test examples and the
hyperplanes). In cross validation, the principle idea is to find the one SVM
model and its optimal parameters that help to achieve the smallest training
error amongst all of the models that can be constructed. In contrast, in [43] all
of the models found in the model selection phase are collected and predictions
are obtained for test points by finding the SVM models whose hyperplanes
achieve the maximum distance from the test points. In this setting, the com-
plex and time consuming paradigm of model selection via cross validation
are avoided. Experimental results demonstrate the plausibility of the method
proposed and show a significant decrease in computational time as well as a
competitive generalization error.

For all kinds of data mining tools, parameter selection is one of the critical
questions; it determines the right model for data analysis and prediction. In
this chapter, we mainly develop a fast algorithm for model selection which uses
the benefit of all hypothesis space by means of functions or models [43]. The
new model selection approach in [43] called mazimum margin to the binary
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classification problems by using support vector machines (SVMs) which, as
we recall, is one of the most efficient methods in machine learning.

7.8.1 Methods

In this section, three different norms will be discussed for model selection
at the testing phase. Given a set of functions in the variable x, fi, fo,... f¢
being the outputs by the SVM, with ¢ = |C| - |o| = ¢; - {5, then being the
number of models that can be constructed from the set of parameter values
Ce{C),Cy,...,Cp}and o € {01,09,...,04}, where C is the error constant
and o is the Gaussian kernel width. We can use some or a combination of
models derived by these parameters in order to make predictions. The first
approach which we propose uses the L.,-norm for choosing which function to
use. This is equivalent to evaluating the distance of a test point according to
the function that achieves the largest (functional) margin.

We assume here, without loss of generality, that the functions f computes the
functional margins and not the geometrical margins (hence, the reason that
the example values we have presented are not bounded by 1 and -1). Finally,
we would predict the class of x° by looking for the maximal (positive) and the
minimal (negative) value of all functions. The L., prediction function F,(x)
evaluated at our given example x° can be defined in the following way:

Fo(w) := sgn (max{ fi(@)}_; +min{fi(2)},) .
where sgn denotes the sign function, i.e., positivity or negativity of a function

The second approach which we introduce is for the L;-norm where the decision
depends on the sign of the Riemann sum of all outputs evaluated for a test
point [43]. This results in the following L;-norm prediction function Fj given
a test example x, e.g., x°:

Fi(x) = sen (z ).

The final approach [43] corresponds to the Lo-norm and is similar to the one
with the Li-norm discussed above, but with a down-weighting if the absolute
values are less than 1 and an up-weighting if they are above 1. This means that
we are giving a greater confidence to functions that predict functional values
greater than 1 or less than -1 but less confidence to those that are closer to
the threshold of 0. Another way of thinking about this approach is that it is
equivalent to a weighted combination of functional margins with the absolute
values of themselves.
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Therefore, given a test example x, e.g., x°, we have the following Ly-norm
prediction function Fy(x) defined by

Fyfx) = sen (ﬁ FOAG0)

i=1

We refer to [43] for experimental setup and results. In this section, we propose
different model selection techniques for binary classification problems which
can be directly applicable to real world situations such as detection of diseased
cells, cancerous cells, or finding important patterns in experimental data in
biology or medicine.

8 Conclusion

In this review, we surveyed recent approaches in mathematical modeling, opti-
mization and dynamical representation of gene-expression patterns and envi-
ronmental information. Gene-environment networks provide a general frame-
work for the analysis of complex systems in computational biology. In partic-
ular, various kinds of data uncertainties in DNA microarray experiments and
environmental observations can be included. We arrived at approximation
problems of a generalized Chebychevian kind and investigated them by gener-
alized semi-infinite optimization. For a deep understanding of the topological
landscape of gene-environment networks determined by that optimization, we
could state a characterization result on structural stability. Complementary
to our optimization theory, we gave a stability theory on dynamical systems
which support, e.g., the prediction of genetic and environmental levels and
the testing of the goodness of data fitting. With all these explanations we
demonstrated the importance of optimization and dynamics in a modern in-
terdisciplinary approach which has discrete, continuous and hybrid features as
well. In our analysis we saw how GSIP can help realize the close interaction
between genetic and environmental information.

Machine learning methods can complement the dynamic approach by a clas-
sification of microarray data. Model selection and kernel learning methods for
binary classification can be used to classify microarray data, e.g., for cancer
genes or for discrimination of other kind of diseases.

The authors tried to give a more theoretical but helpful contribution to a

better understanding of nature and for improvements in health care, medicine
and living conditions.
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