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Abstract. In this paper, we show how advanced methods of continuous optimization contribute to modeling, learning 
and problem solution in areas of environmental protection, medicine and development. We begin by describing gene-
environment networks under various kinds of uncertainty, the underlying Chebychev approximation to do the needed 
parameter estimation, and how semi-infinite optimization and conic programming come into play. We investigate the 
structure and stability of the topological landscape comprising these networks, present various regression models and 
future pathways on how computational statistics could become employed. This article widely employs systems of 
ordinary differential equations, but also turns to the use of stochastic differential equations which allow an elegant 
way to include various areas of the financial world. Our presentation analyzes important interactions between 
biology, health, educational and financial sectors, it introduces main results obtained by the knowledge-based 
technologies applied, it discusses structural frontiers, ways to overcome them, and it gives an outlook. 
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1. Introduction 
 

Real-world data from science, technology and finance and the models describing their 
dynamics and relations are often influenced by uncertainty. In recent years, more sophisticated 
models based on interval-arithmetics were developed in order to integrate uncertainty and noise 
prone data of microarray experiments into so-called “gene-environment networks”. In this article 
we address various models for gene-environment networks under uncertainty and we reveal their 
relation to advanced methods of continuous optimization. In addition, we indicate that this 
framework allows a generalization to modeling in life and financial sciences under uncertainty. 
 
2. Gene-Expression and Environmental Data, Modeling and Dynamics 

 
At preliminary stages of modeling, time-continuous models )(EFE =ɺ  tried to imply gene-

environment networks and their information. Here, ( )TdEEE ,,1…= is the vector-d of positive 

concentration levels of proteins (or mRNAs) and environmental factors, Eɺ  represents a continuous 

change in the gene-expression data, and : d
iF →R R  are nonlinear coordinate functions of F . We 

present a parameter estimation of unknowns implied into the definition of ,F  established on 

experimental data vectors E . Since these vectors ,E  obtained from microarray and environmental 
measurements, are merely approximating the actual states E  at the sample times, we have 

iii ErrEE ±= ),,1( di …= . Here, 0>iErr  is some maximal measurement error likely to be made at 

the experimental measurements of iE . This leads us to consider the state iE  just to be the interval 

[ ] [ ]iiiiii ErrEErrEBA +−= ,,  and, hence, ( )TdEEE ,,1…= to be in the d-dimensional parallelpipe 

[ ]∏ =
d
i ii BA

1
, . This approach recently introduced for gene-environment networks (Weber, 2007cd) 

allows us to approximately address the nature of biological, environmental and technical 
phenomena of measurement and modeling as well. It extends the one from (Gebert, 2006; Gebert, 

2007) to the continuous equation (CE) .)(,)( )0(
0 EtEEEME ==ɺ  Here, )(EM  is a 

( ) matrixd d× − whose entries are intervals defined by a family of functions which include unknown 
parameters. Now, intervals represent uncertainty with respect to the interactions between the genes, 
to the effects between the environment and the genes, or between environmental items. 
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3. Two Levels of the Parametric Task 
 

Referring to the parametrized entries, a bilevel problem of two different problem stages can be 
distinguished, namely, optimization and stability analysis: 

 
(I) The optimization (approximation) problem of squared errors bases on the form 

( )∑
−

= ∞
−

1

0

2)()()(min
l

yy EEEM
κ

κκκ ɺ , where the vector y  comprises a first subset of all the 

parameters. The vector )(κEɺ  consists of interval-valued difference quotients raised on the thκ  
experimental data )(κE  and on step lengths .1 κκκ tth −= +  Since we turned to an interval-

valued setting, we inserted the Chebychev norm 
∞

⋅ generating the topology of uniform 

convergence (cf. Section 4). Thus, we turned from discrete (Gaussian, least-squares) 
approximation and nonlinear optimization (Gebert, 2007) to uniform (Chebychev) 
approximation and semi-infinite optimization (Uğur, 2007; Weber, 2006cd). 

 
(II)  Stability of the dynamics is investigated with respect to the remaining parameters. For this a 

combinatorial algorithm on polyhedra sequences observed is used to detect the regions of 
stability. Indeed, (CE) allows a time-discretization (DE) ( 1) ( ) ( ),k k kE M E+ =  where 

))(())((
2

)(
2

)()()()()()( k
k

kk
k

kkkkk EMhIEEMhEM
h

EM
h

IM ++++= , by Heun’s Method. 

Therefore, the thk  approximation )(ˆ kE  can be calculated by the matrix-multiplication 
( )ˆ kE = ( 1) ( 2) (1) (0) (0)( ( ( ))), IN.k kM M M M E k− − ∈…  Based on this recursion, a stability analysis 

of combinatorial and geometrical type with polytope series is permitted (Gebert, 2006). 
Furthermore, via (DE) we obtain our gene-environment networks by the time-discrete 
dynamics (while our investigation permits a time-continuous approach to the networks via 
(CE), too). Indeed, the genes and environmental items are represented by the nodes (vertices) 
of our network; the interactions between them turn to edges weighted with effects (in the 
time-continuous case: with functional values). Thus, at each discrete time step 1+kk֏  the 
expression level of gene i  becomes changed by the thj  gene (or thℓ  environmental item). 

 
4. Extracting and Optimizing Gene-Environment Networks in the Presence of Intervals 
 

In (Gebert, 2007), a hybrid approach has been presented which offers a complete dynamical 
description of the expression levels of n  genes. Then, the contributions (Uğur, 2007; Weber, 
2007bc) modified it by additionally matching the n  genes with m  special items and the cumulative 
item of the environment, and by turning to the interval-valued setting: 

 
)(tEɺ with,)()( )()()( tststs VtEWtEM ++=

⌣
 

))(( tEQ where))),((,)),(()),((( 21 tEQtEQtEQ d…=  

))(( tEQi
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(HE) 

 
In (HE), 

idiii ,2,1, θθθ <<< …  are thresholds of the expression levels where instantaneous changes 

of the parameter constellation can occur; ( )Tm tEtEtE )(,),()( 1

⌣
…

⌣⌣
=  is a specific vector-m  (of 

intervals) which comprises the levels of the m  environmental factors, )(tsM , )(tsW  are matrices of 
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the type nn×  and mn× , respectively, and )(tsV  is an vector-n  (all three ones over intervals). The 

function 0: INn nQ →R  implies the threshold constellation, and ))(( EQs  indicates where in the state 

space the system is placed at E , and which matrices and vectors VWM ,,  have to be chosen to 

specify the system such that the given data are approximated best. The function 0 0: IN INns →  must 

be injective, such that a different triplet ),,( VWM  is used whenever a threshold is traversed. This 
piecewise linear approach provides an approximation of the global nonlinearity of nature and the 
system (HE) can indeed be generalized such that the matrices and vectors depend on E , then, the 
involved parameters are affected, governed and instantaneously changed via )(ts . For the parameter 

estimation of (HE), we require (I) an estimation of the thresholds ji ,θ (e.g., by Akaike's Information 

Criterion (Gebert, 2007)) and (II) an calculation of the matrices and vectors )(tsM , )(tsW  and )(tsV , 

which are describing the system in between the thresholds. The gene-expression levels are compact 
intervals such that the vectors E  are parallelpipes, all of them lying in a sufficiently large 
parallelpipe P . Via canonical projections, the thresholds define a partition of P  into 

subparallelpipes (regimes) }),,2,1{(*,
ℓ…∈⊂ ρρ PP , where ∏ =

+= n

i id
1

)1(ℓ . For any given 

subparallelpipe ρ*,* PP =  we have to extract the parametric unknowns )(tsM , )(tsW  and )(tsV  from 

given data. In ,*P  the hybrid system (HE) reduces to a system of ordinary linear differential 
equations. Hence, we can find analytical solutions for the corresponding parts of the state space.  
 
5. Mixed-Integer Parameter Estimation 

 

Minimization of the quadratic error between the difference quotients )( ακEɺ  and the right-hand 
side of the differential equations evaluated at the finitely many measurement intervals 

( ) * *( 0, , 1)E P lακ α∈ = −…  turns to the generalized Chebychev approximation problem 
 

 .min
1

0

2)(*)(*)(*

)(),(),(

*

*** ∑
−

= ∞
−++

l

VWm
EVEWEM

iiij α

κκκ ααα ɺ⌣

ℓ

 (HLS) 

 
Since it can equivalently be written as a semi-infinite optimization problem (Weber, 2007bd), we 
get access to the applicable methodology of SIP. 

 
            Real-world gene-environment networks are huge, such that for practical reasons we have to 
rarefy them by diminishing the number of arcs (Uğur, 2007; Weber, 2007b). Therefore, upper 
bounds on the outdegrees of nodes are introduced. We define the Boolean matrices and vectors, 

,)( ,,1, njiijX
…== χ  

m

nii

,,1

,,1)(
…ℓ

…ℓ

=
==Ξ ξ  and ,)( ,,1 niiZ

…== ς  representing by the values 1 and 0 whether or 

not gene j  regulates gene i , environmental item ℓ  regulates gene i  and the environment 

cumulatively regulates gene i . Hence, the outdegrees ∑ =

n

i ij1
,χ  ∑ =

n

i i1 ℓ
ξ  and ∑ =

n

i i1
ζ  count the 

numbers of genes regulated by genej , by environmental item ℓ  or by the cumulative environment, 
respectively. Our network rarefaction by bounding the outdegrees obeys the principles of least-
squares. We also imply any helpful a priori knowledge into the problem (degradation rates, 
connectedness structure). Herewith, our parameter estimation task becomes a (generalized) mixed-
integer Chebychev approximation problem: 

 

 ∑
−

= ∞
−++

1

0

2)(*)(*)(*

)(),(),(),(),(),(

*

***
min

l

VWm
EVEWEM

iiijiiij α

κκκ

ζξχ
ααα ɺ⌣

ℓℓ

 (MICP) 

subject to       
1

,
n

ij ji
χ α

=
≤∑ 1

,
n

ii
ξ β

=
≤∑ ℓ ℓ

 γζ ≤∑ =

n

i i1
, min,

*
iiim δ≥    ).,,2,1,,,2,1,( mnji …ℓ… ==  
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6. Improved Modeling by GSIP Extension 
 

Prepared by (Weber, 2007bcd; Uğur, 2007), we use continuous optimization for a “softening” 
of (MICP) by replacing the binary variables ijχ , 

ℓiξ  and iζ  with real variables ijp , 
ℓiq , ]1,0[∈ir  

which linearly depend on the elements of ijm , 
ℓiw  and iv  (also interpretable as probabilities). For 

the latter ones we assume some reasonable box constraints. Herewith, the values ∑ =
n
j ijij mp1

* )( , 

∑ =
m
i ii wq1

* )( ℓℓ  and ∑ =
m
i ii vr1

* )(  have become interval-valued approximations of the numbers of genes 

regulated by gene j , environmental item ℓ  and cumulative environment. Having solved the 
continuous optimization problem, we could return the binary variables and, hence, network 
rarefaction, by staying below some small prescribed values ijε ,

ℓiε , )1,0[∈iε . The environment can 

affect the connectedness between the genes and an external stimulus may activate a higher 
regulation. Therefore, we implied all the possible convex combinations of the environmental effects 
into the inequalities about the bounded outdegrees. The set of combined environmental effects is 
defined as the convex hull of all the vectors 

ℓℓ +− )1(
*

imi ew  and imni ev +
* : 
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where ηe  is the (( 1) )-m n+ dimensional unit vector. Formally, we can write ),( ** WVY  as a 

parallelpipe. Now, we get our (generalized) relaxed Chebychev approximation problem: 
 

 ( ) ( ) ( )∑
−

= ∞
−++

1

0

2***

)(),(),(

*

***
,min

ℓ
ɺ⌣

ℓ α

κκκ ααα EVEWEM
iiij VWm

 (RCP) 

 

subject to ),(),(1
* yymp j

n
i ijij α≤∑ = ),(),(1

* yywqm
i ii ℓℓℓ β≤∑ = )(),*(1 yyivir

m
i γ≤∑ =  )),,(( ** WVYy∈  

*
min, iii m≤δ , ***

ijijij mmm ≤≤ , ***
ℓℓℓ iii www ≤≤ , ***

iii vvv ≤≤       ( , 1, , ; 1, , ).i j n m= =… ℓ …  
 

            Firstly, we compare *iim  and min,iδ , then, take the largest of the two values as a single lower 

bound instead ( *
min, iii m<δ  provided). As given in the objective function by generalized Chebychev 

approximation, this uniform interpretation of the “≤ ” conditions amounts to the SIP character of 
(RCP). By the additional coupling of our inequality constraint set ),( ** WVY  with the states 

),( ** WV , (RCP) even becomes a GSIP problem. In the objective function, the terms with the κ th 
Chebychev norm are nonsmooth max-type functions, but also a smooth modeling is possible. 
 
7. On GSIP and Structural Stability for Gene-Environment Networks 
 

GSIP applied for our gene-environment problem (RCP), reveals the general program form 
 

 
{ }

minimize ( )on [ , ],where
( , , , , )

[ , ] | ( ) 0 ( ), ( , ) 0( ( ), )

GSI

GSI d j j
GSI i

f x M h g
P f h g u v

M h g x h x i I g x y y Y x j J

  
 = ∈ = ∈ ≥ ∈ ∈  R

 (A1) 

 

with finite ,I J  and finitely constrained (F) feasible sets )(xYY jj = . For each dx∈R , we have  
 

( ) [ ( , ), ( , )] { ( , ) 0 ( ), ( , ) 0 ( )}j j j q j j
F kY x M u x v x y u x y k K v x y L= ⋅ ⋅ = ∈ = ∈ ≥ ∈

ℓ
ℓR  (A2) 
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with finite sets jK and jL . The model )( 1A - )( 2A  allows equality constraints on both the upper 
( -x ) level and lower ( -y ) level representing, e.g., metabolic or financial restrictions, reactions or 

balance equations. The outdegree constraints in (RCP) may be assumed to be of class 2C , too. The 
bounds guarantee that the feasible set ],[ ghMGSI  is compact in the projective sense of the original 

)(2 2 nmnn ++ unknowns (with intervals encoded by tuples of endpoints), but not in the “height” 

dimensions of the new coordinates κτ  (this noncompactness can be overcome (Weber, 2003)). 

Here, the sets )(xY j  are compact and they fulfill the Linear Independence Constraint Qualification 
(LICQ), an appropriate choice of the overall box constraints provided. The works (Weber, 2003; 
Weber, 2007b; Uğur, 2007) provide more detailed discussions and generalizations of GSIP. 
 
8. Stability Theory 
 

Perturbations )~,~,~,
~

,
~

(),,,,( vughfvughf ֏  of our gene-environment networks are caused, 
e.g., as follows (Weber, 2007c): (I) Outliers of parallelpipes: We can face them by multiplying 
some dampening factor on the corresponding squared error. (II) The data of a measurement gives 
rise to one optimization problem and network so that the data of a subsequent measurement can be 
viewed as a “perturbed” problem and network. Finally, our entire interval-valued modeling has 
been representing perturbations of (III) errors, imprecision and uncertainty. The strong Whitney 
topology 2

SC  serves as a “measure” of perturbations so that asymptotic aspects are taken into 

account. The “genetic (and environmental) fingerprint” of (RCP) is given by all the lower level sets 
of its objective function. If the perturbed and the arbitrarily slightly unperturbed lower level sets are 
homeomorphic to each other, under some correspondence between the levels, we call (RCP) 
structurally stable (Weber, 2003). Our main theorem states that structural stability can just be 
characterized by two well-known regularity conditions and a more technical one (Weber, 2007cd): 

 
Characterization Theorem on Structural Stability for Gene-Environment Networks:  
The optimization problem ),,,,( vughfPGSI  on gene-environment networks is structurally stable, if 

and only if the following triplet of conditions 3,2,1C  is satisfied: 

1C  EMFCQ holds for ],[ ghM GSI . 

2C  All the G-O Kuhn-Tucker points x of ),,,,( vughfPGSI  are (G-O)-strongly stable. 

3C  For each two different G-O Kuhn-Tucker points 21 xx ≠  of ),,,,( vughfPGSI  the 

corresponding critical values are different (separate), too: )()( 21 xfxf ≠ . 
 

            This theorem helps for an understanding of the “landscape” of gene-environment networks, 
for their perturbational behaviour and for the development of numerical procedures. We can 
consider “mountain paths” (saddles) between any two candidate networks being given by local 
minimizers of (RCP). All the points around candidate solutions can be regarded as potential 
networks which may be obtained after perturbations (Weber, 2003). They may be outcomes of 
underlying constellations in the experimental design which may have to be reconstructed, which is 
an inverse problem. In terms of testing the goodness of data fitting, the lower level sets can be 
interpreted as confidence regions around the parameters estimated. The size of these regions is 
governed by the steepness of the function around the solution. If a local or global minimizer is very 
steep, we can associate this with stability, whereas flatness is related with instability (Weber, 
2007d). For a better analytical understanding of (RCP), we identify possible pathologies in terms of 
one or more of the conditions 3,2,1C  violated. We point out a relation to conic programming (CP), 

however, in a GSIP sense. If in (RCP) all the functions defining the constraints are linear and the 
squares on the Chebychev norms deleted, then we obtain a CP problem. If we square both the linear 
constraint functions and the bounds, we arrive at the special case of CP called conic quadratic 
programming (CQP). In CP problems, interior point methods can be introduced and efficiently 
applied. 
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9. Applications in Finance and Technology 
 
         The models presented in the previous sections have been successfully applied to various 
problems from finance and technology. As example, we mention the Technology-Emissions-model 
(TEM-Model) of S.W. Pickl for the simulation of a complex cooperative economic behaviour of 
countries/enterprises in order to reduce CO2-emissions and to alleviate the effects of global 
warming as mentioned in the Kyoto Protocol (Pickl, 1998). In (Weber, 2007a), an interval-valued 
model reformulation of the TEM-model in the framework of our gene-environment networks was 
presented, incorporating data from finance, technology and emissions under uncertainty. Besides 
the models presented in the previous sections, additive models based on spline regression were 
considered. This approach even allows an approximation by stochastic differential equations 

tttt dWtXbdttXadX ),(),( += , with regard to the Wiener process tW , drift term a  and diffusion b , 

being a platform of continuous and future improvements of our model and results (Taylan, 2007). 
 
10. Conclusions 
 

In this paper, we surveyed the work done by us with our colleagues in modeling, 
optimization, and dynamical representation of the patterns of genetic, environmental and also 
financial information. We presented several models of gene-environment networks under 
uncertainty and pointed out their relation to various kinds of optimization. For a deep understanding 
of the topological landscape of gene-environment networks determined by that optimization, we 
stated a characterization result on structural stability, and we related to conic quadratic 
programming. We also indicated the relations of our methodology to applications in finance and 
technology. 
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