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Abstract We present a scalable multi-view stereo method

able to reconstruct accurate 3D models from hundreds of

high-resolution input images. Local fusion of disparity maps

obtained with semi-global matching (SGM) enables the re-

construction of large scenes that do not fit into main memory.

Since disparity maps may vary widely in quality and resolu-

tion, careful modeling of the 3D errors is crucial. We derive

a sound stereo error model based on disparity uncertainty,

which can vary spatially from tenths to several pixels. We

introduce a feature based on Total Variation (TV) that al-

lows pixel-wise classification of disparities into different error

classes. For each class, we learn a disparity error distribu-

tion from ground-truth data using Expectation Maximiza-

tion (EM). We present a novel method for stochastic fusion

of data with varying quality by adapting a multi-resolution

volumetric fusion process that uses our error classes as a

prior and models surface probabilities via an octree of vox-

els. Conflicts during surface extraction are resolved using

visibility constraints and preference for voxels at higher res-

olutions. Experimental results on several challenging large-
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scale datasets demonstrate that our method yields improved

performance both qualitatively and quantitatively.

Keywords Multi-View Stereo · 3D Modeling · Scalable 3D
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1 Introduction

Constructing detailed geometric 3D models of the world is

still a challenging and open problem for many applications of

computer vision. Recent progress in structure from motion

(SfM) and multi-view stereo (MVS) already allows for a fast

reconstruction of surfaces from large image sets. Methods fo-

cusing on community photo collections of prominent tourist

sites filter important subsets from a large amount of input

images (Frahm et al., 2010).

Many existing algorithms can handle real-world datasets

with tens of input images with minor variability, e.g., the

datasets introduced by Strecha et al. (2008). Unfortunately,

there are very few methods that are scalable in a way that al-

lows reconstruction of full 3D models from hundreds or even

thousands of high-resolution images with tens of megapix-

els without significant loss in detail. Furthermore, almost

no existing methods can deal well with image configurations

with a wide range of object distances, which for instance oc-

cur when combining images from unmanned aerial vehicles

(UAVs) and from the ground.

3D modeling methods can be categorized into global and

local methods based on the underlying optimization method.
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Global methods tend to produce the best surface quality (Vu

et al., 2012; Mücke et al., 2011) concerning completeness and

accuracy as demonstrated for example on the Middlebury

multi-view benchmark (Seitz et al., 2006). Local methods,

on the other hand, yield better scalability (Fuhrmann and

Goesele, 2011) and runtime performance (Newcombe et al.,

2011; Steinbrücker et al., 2013). Even models of arbitrary

size can be reconstructed in parallel without complex fusion

(Kuhn et al., 2013).

In this paper we focus on local fusion of semi-globally

optimized disparity maps, because they present a very good

trade-off between runtime and the quality of the results. We

show that 3D reconstruction can be improved by modeling

the uncertainties of disparity maps. This paper describes

the scalable 3D reconstruction method (Kuhn et al., 2013)

with improvements by considering a variable disparity error

(Kuhn et al., 2014).

The paper is organized as follows: Section 2 gives an

overview of related work. Section 3 presents our reconstruc-

tion pipeline from registered image sets to 3D surface models.

The potential of parallel processing for scalable 3D surface

reconstruction is discussed in Section 4. Section 5 describes

the derivation of disparity classes from a Total Variation

(TV) based feature and its correlation with disparity un-

certainty (Kuhn et al., 2014). The improvement obtained

by using this TV prior for scalable volumetric MVS (Kuhn

et al., 2013) is shown in Section 6. Finally, Section 7 presents

experiments on a variety of popular and novel datasets and

a comparison to state-of-the-art methods, and Section 8 con-

cludes the paper.

2 Related Work

Surface reconstruction from depth maps has received con-

siderable interest in recent years. Though we focus on meth-

ods based on local optimization, some of the global ones

have to be mentioned as they give the best results. The idea

of using Total Variation (TV) was introduced for MVS by

Zach et al. (2007). They estimate the surface by minimizing

a global energy function containing a TV-L1 regularization

term for increased robustness to outliers, while still allowing

efficient convex minimization. The use of TV regularization

dates back to Rudin et al. (1992) for the reconstruction of

noisy 2D images. It was improved for MVS by further work

(Zach, 2008; Kolev et al., 2009; Schroers et al., 2012; Ochs

et al., 2013). TV is important for our method, although we

do not perform minimization via global convex optimization.

The drawback of global methods is that they are limited

in practical applications due to poor scalability and runtime

performance. Furthermore, many methods require an initial

solution near the global optimum. The most promising local

methods are volumetric and employ range image integra-

tion, as proposed in the seminal paper by Curless and Levoy

(1996), to stereo images (Goesele et al., 2006). The basic

idea is to extract an iso-surface from numerically occupied

voxels whose values are estimated by the fusion of signed

distance functions derived from the depth values. The re-

sulting volumetric zero crossing defines the surface. Sagawa

et al. (2005) adapt the approach by Curless and Levoy (Cur-

less and Levoy, 1996) to dynamic voxel sizes depending on a

consensus of multiple measurements (Wheeler et al., 1998).

Fuhrmann and Goesele (2011) extend (Goesele et al., 2006)

to varying surface qualities from MVS images.

We propose an alternative probabilistic distance function

for multi-resolution voxels, with an additional filtering step

that delivers good results in challenging configurations that

lead to noisy spatial data (Kuhn et al., 2013). The filtering is

based on free-space constraints, which was proposed by Mer-

rell et al. (2007) and improved by further work (Bailer et al.,

2012; Hu and Mordohai, 2012; Wei et al., 2014). In contrast

to image-based consistency filtering, we propose probabilistic

filtering in volumetric 3D space.

Probabilistic fusion on 3D volumes is also used by meth-

ods for occupancy grid propagation (Woodford and Vo-

giatzis, 2012; Pathak et al., 2007; Thrun, 2003). These meth-

ods propagate individual 3D points into single larger volumes

and are therefore not suitable for high-quality 3D reconstruc-

tion. Nonetheless, the probabilistic framework has also been

shown to be important for volumetric fusion (Hernández

et al., 2007; Furukawa et al., 2007).

A great challenge for local methods is the use of a reg-

ularization term. Existing methods consider a varying error

in 3D (Fuhrmann and Goesele, 2011; Mücke et al., 2011;

Hu and Mordohai, 2012; Kuhn et al., 2013), but a constant

error for 2D disparity. However, disparity quality can vary

widely due to many reasons, including texture variability,

motion blur, defocus, low-quality cameras, bad lighting con-

ditions, compression artifacts, and priors employed by the

stereo matching method. Our method analyzes the quality

based solely on the disparity map, independent of camera

type and configuration. For integration in MVS, we adapt

the volumetric method (Curless and Levoy, 1996).

Since the above methods extract surfaces in 3D voxel

space at different resolutions, they result in an ill-defined 4D

regularization problem. To avoid this, we regularize accord-

ing to the 2.5D disparity map. Our regularization term is

derived from features describing the local oscillation of the

disparities which influences the quality of the 3D points and

hence the choice of the voxel size.

The correlation between this feature and the quality of

the surface is learned from ground-truth data, in particular

the 2014 Middlebury stereo datasets (Scharstein et al., 2014).

Learning priors for stereo and MVS is not new. Scharstein

and Pal (2007) learn a conditional random field model for

stereo from ground-truth disparities. Bao et al. (2013) learn

priors for semantic categories in the form of the object shape;

their method also utilizes information from the SfM process.

Häne et al. (2013) demonstrate how learning semantic priors
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Fig. 1: Processing chain of the 3D reconstruction method described in this paper: (0) Image registration, (1) Stereo Matching using
SGM, (2) Quality estimation for disparities, (3) Generation of a volumetric probabilistic space, (4) Point optimization considering the
probabilistic space, (5) Filtering of outliers in the point cloud, (6) Triangulation of the point cloud. Fast parallel and hence scalable 3D
modeling techniques in steps 2–5 are the main focus of this paper.

for classes such as buildings, ground, vegetation, and clutter

can improve the surface quality. Their method is based on

the global optimization approach of Zach (2008) and employs

joint segmentation, labeling, and classification. In contrast,

our new TV prior is only based on the input disparities with-

out a need for semantic modeling.

Next, we give an overview of our 3D reconstruction

pipeline followed by a detailed description of high quality

improvements for scalable MVS.

3 Reconstruction Pipeline

After all input images are registered, the pipeline of our

3D reconstruction algorithm consists of the following steps

(Fig. 1):

1. Estimation of disparity maps from stereo pairs by

Semi Global Matching (SGM) (Hirschmüller, 2008;

Hirschmüller and Scharstein, 2009).

2. Quality estimation for individual disparities.

3. Propagation of discrete 1D probability functions on the

lines of sight into 3D space.

4. Optimization of points on the surface based on the prob-

ability function.

5. Filtering by visibility checks considering probabilistic in-

formation.

6. Local triangulation of the optimized point cloud.

For the estimation of disparity maps we use SGM, as it

maintains small details due to pixelwise matching and has

a low processing time for large images. Estimating the dis-

parity quality in step 2 and expressing the disparity uncer-

tainties as probabilistic functions is discussed with our ge-

ometric error model in Section 5.2. The propagation of the

probability functions in step 3 as well as the optimization

and probabilistic filtering in steps 4 and 5 are complex and

described in detail in Sections 6.2 to 6.4. For step 6 we use a
local triangulation building the final triangle mesh incremen-

tally (Bodenmüller, 2009). Our pipeline allows fast parallel

processing; steps 2–5 are the main focus of this paper.

4 Scalability and Parallel Processing

For fast reconstruction of large 3D models from high-

resolution images, parallel computation is essential. To guar-

antee scalability for very large numbers of images it is even

not possible to process all data at once. Steps 1 and 2 (Fig. 1)

can be performed for all suitable image pairs separately.

Hence, parallel processing is straightforward. The paralleliza-

tion of the next steps is more challenging as the volumetric

space has to be divided and the results need to be merged at

the end. This allows processing on systems with limited main

memory and offers scalability for very large scenes. It also

makes the computation much faster if clusters with hundreds

of cores are available.
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Fig. 2: The left image shows a line of points representing a 3D
point cloud. Depending on the number of points, the reconstruction
space is divided incrementally into four subspaces (eight in 3D).
Neighboring subspaces are overlapping as shown in the center. The
right image illustrates that by setting an overlap, the border of
neighboring voxels consists of similar 3D information. The parts in
the shaded red and blue areas are discarded after meshing.

For space division, the algorithm runs in a preprocessing

step through all depth maps and divides the overall volume

into subvolumes whose sizes depend on model resolution,

memory size and number of cameras a point was captured

from. To handle point cloud areas with varying density which

usually appear in complex stereo image configurations, a sim-

ple incremental algorithm divides the specific volume in eight

subvolumes if the number is beyond a threshold (Fig. 2).

In divide-and-conquer strategies, especially the merging

can be highly complex. For merging the subvolumes, the

overlap of neighboring subvolumes has to be large enough

so that meshes are equivalent in the merged volumes. More

precisely, the overlap has to be at least twice the local neigh-

borhood used for meshing. This constraint allows for a very

easy fusion as the meshes are equivalent in the inner half

of the overlapping area. 3D points or respectively triangles

in the outer half are simply not considered (Fig. 2). For a

more detailed description of fast space division for scalable

3D reconstruction see Kuhn and Mayer (2015).

5 Disparity Quality Modeling

In this section we first review a popular stereo error model

for MVS, and then discuss how disparity quality classes can

be learned from ground-truth data. In general, the 3D er-

ror strongly depends on the disparity quality which is not

constant and varies spatially from tenths of pixels to several

pixels. To handle this variation, we discuss strong influences

on the quality of disparities, and propose novel TV-based

feature classes for disparities covering a wide range of these

influences. Additionally, we show how to learn the disparity

uncertainty from ground-truth disparity maps in comparison

with disparity maps generated by SGM for individual feature

classes using an Expectation Maximization (EM) approach.

5.1 Stereo Error Model

Uncertainties of the disparities result in 3D reconstruction

errors. Here we employ the compact error model proposed

by Molton and Brady (2000). This ellipsoidal error model

propagates the disparity error ∆p in image space into the

error in three space dimensions ∆Px, ∆Py and ∆Pz (Fig. 3).

p
1

p
2 P

p

p

Δ

Δ

P
x

Δ

P
z

Δ

Fig. 3: A pair of parallel cameras. The disparity uncertainty ∆p in
the image leads to an ellipsoidal uncertainty ∆P of the 3D point.

The error in x and y direction of the camera coordinate

system rises linearly with Pz:

∆Px = ∆p
Pz
ft

√
(t− Px)2 + P 2

x , (1)

∆Py = ∆p
Pz
ft

√
2P 2

y +
t2

2
, (2)

while the error in z direction rises quadratically with Pz:

∆Pz = ∆p
P 2
z

ft

√
2 . (3)

Focal length f and baseline t are known for registered im-

age sets. Coordinates Px, Py, Pz follow from the estimated

disparities. Yet, the disparity error ∆p is not known and

not constant. It follows an unknown function ranging from

subpixel to several pixels. For local MVS, which cannot regu-

larize such uncertainties globally, it is important to consider

this uncertainty function.

5.2 Uncertainties in Stereo Matching

Learning quality for disparities is difficult since the qual-

ity of disparities is affected by many factors. It usually de-

pends strongly on influences such as texture strength and

surface slant (Fig. 4). Slanted surfaces are problematic be-

cause common priors employed by most stereo methods, in-

cluding SGM, favor constant disparities and thus introduce

a fronto-parallel bias. Both local and global stereo methods

tend to propagate disparities from textured into textureless

regions, which can lead to errors on slanted and curved sur-

faces. This needs to be considered during the fusion of depth

maps.

Efficient stereo methods generally obtain subpixel accu-

racy indirectly by interpolation of neighboring cost values.

For instance, SGM estimates subpixel disparities by fitting

a parabola through the three costs values centered at the
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Fig. 4: Varying disparity quality. Left: Zoomed region of an input
image of the Ettlingen30 sequence (Strecha et al., 2008). Right:
Surface orientation derived from the disparity map computed by
SGM visualized using a linear coding from 0◦(light) to 90◦(dark).
The surface orientation gives a good impression of the reconstruc-
tion quality. Accuracy is lower in slanted and untextured regions
(left and center red box), and higher in textured fronto-parallel
regions (right green box).

winning disparity. Depending on the geometry, this leads to

varying uncertainties in subpixel precision.

Unfortunately, there are several additional influences on

the accuracy. MVS is often used for complex scenes based

on registration information from SfM methods. Depending

on scene geometry and texture, the bundle adjustment error

can range from a fraction of a pixel to several pixels. Images

from mobile phones are increasingly used in computer vision

due to their widespread availability. It is well known that the

quality of images from small chips and lenses is limited. Even

high-quality cameras have a limited depth of field and are

subject to motion blur. It is, therefore, of prime importance

to consider different qualities also for disparities.

Naively learning all these influences would result in a

multivariate system where the learning space is defined by

features covering all uncertainties. Two of these features

would be texture strength and surface slant. The correspond-

ing multivariate uncertainty would have to be learned for all

camera types and perhaps even all types of scenes. As this

is not possible in a generic way, and it is very expensive to

generate ground truth, we focus on estimating the uncer-

tainty from the disparity map directly. For this, we propose

a feature covering important aspects of the uncertainty, par-

ticularly those caused by slant and texture, by analyzing the

local oscillation behavior of the disparity map.

5.3 Classification of Error Levels Based on TV Features

The key question is how disparity uncertainty can be classi-

fied. A particular problem is that our disparity maps show

oscillations with unknown frequency (Fig. 5). A window that

is too large could oversmooth them, but one could also obtain

wrong measurements by undersampling. In Fig. 4 it can be

seen that some normal vectors have large orientation errors

in weakly-textured or slanted regions. In addition, learning

the distribution of a 2D function is difficult since it can lead

to the estimation of wrong correlations.

To avoid these problems, we introduce feature classes

based on Total Variation (TV) for estimating the local oscil-

Fig. 5: Disparity oscillations. Left: Half-resolution Middlebury Pi-
ano image (Scharstein et al., 2014). Right: Signed disparity error of
SGM w.r.t. ground truth, coded from -1 (white) to 1 (black). Miss-
ing values are in blue. The error exhibits oscillations with varying
frequency and amplitude depending on the surface slant and the
amount of texture present, as can be observed particularly well on
the lamp shade in the top right.

lation behavior. These classes represent the disparity quality

in a stable way and can be learned from ground truth di-

rectly.

MVS methods typically use TV in combination with the

L1 norm for the estimation of a globally optimal surface from

point clouds with a limited influence of 3D outliers. In con-

trast, we use the L2 norm since we are interested in measur-

ing the quality of the disparities, which includes both noisy

measurements and outliers. We focus on local optimization

and employ TV on 2D disparity maps instead of spatial sur-

faces. We can thus use the original formulation for 2D signals

to express the TV of disparities d over a neighborhood Ny
for a pixel y:

TV (y) =
∑

i,j∈Ny

√
|di+1,j − di,j |2 + |di,j+1 − di,j |2 . (4)

TV (y) represents the degree of the local oscillation in a cer-

tain neighborhood of pixel y. Unfortunately, oscillations in

local neighborhoods have different frequencies. In particu-

lar, fronto-parallel planes cause low frequencies, while slop-

ing planes lead to high frequencies (Fig. 5). Hence, it is not

feasible to set a constant window for TV estimation.

In addition, we need to discretize the TV term so that we

can learn the disparity variance from ground truth for each

level. A reasonable way to limit the discretization levels is to

compute the TV over square windows with increasing radius

m while requiring the TV to stay below a threshold τ . This

can be written as:

arg max
n

(

n∑
m=1

1

8m
TVi,j∈xm

< τ) , (5)

where xm describes a series of concentric square “ring-

shaped” neighborhoods with radius m and |xm| = 8m. That

is, in the first step the TV term is calculated for the eight

neighboring pixels. If the value exceeds the threshold, the

discretized value n = 1 defines the TV class. If it does not

exceed the threshold, TV is calculated considering the next

16 (8m,m = 2) pixels, until a maximum of n = 20. This

can be done in linear time. For pixels with missing dispari-

ties, a value of ∞ is used. The number of pixels considered
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Fig. 6: Visualization of computed TV classes for each pixel. Top:
Input images. Middle: Disparity surface orientation (as in Fig. 4)
providing an impression of the local reconstruction quality. Bottom:
TV classes measuring disparity smoothness, ranging from 1 (blue)
to 20 (red). Fronto-parallel textured surfaces lead to higher class
numbers.

for level m rises with 8m. Hence, the sum of TV increases

with the size of the level. This can be accounted for by a

division of the sum by 8m. In our experiments this regular-

ization leads to better results. We use a threshold of τ = 1

for all experiments. This limits the average oscillation of the

pixels in the neighborhood of pixels considered in step m to

a maximum of one disparity. Fig. 6 shows examples of the

computed feature classes.

5.4 Learning Error Distributions

For the learning we relate the estimation of the uncertainty

of the disparity to the TV classes n = [1, 20] introduced in

the previous section.

We assume that the error for each class follows a combina-

tion of a Gaussian Nn(µn, σn) with parameters θn = µn, σn
modeling the disparities, and a uniform distribution U repre-

senting outliers. In the stereo case this mixture is considered

a good approximation for the error distribution (Vogiatzis

and Hernández, 2011).

We learn our priors using the 2014 Middlebury stereo

datasets with accurate ground truth (Scharstein et al., 2014).

We employ half-resolution versions of the seven images used

in Sinha et al. (2014) for which public floating-point ground-

truth disparities are available.

After generating the disparity maps, we calculate the

TV class for all pixels of the SGM result with a valid

disparity. The Gaussian is estimated for all classes 0 <

n ≤ 20 by an Expectation Maximization (EM) method

arg maxθn p(θn|Dn). The data Dn describes the set of mea-

sured differences between the ground truth and the value

based on the SGM results, assigned to class n.

We use EM instead of Maximum Likelihood (ML) estima-

tion, because we consider mixture functions. It is well known

that for EM learning a good initial estimation is required.

We found that by a ML estimation suitable initial functions

can be obtained. Expected value and variance are obtained

by ML as:

µ =
1

n

n∑
i=1

(di − gi) , σ2 =
1

n

n∑
i=1

(di − gi − µ)2 , (6)

with disparity d and ground truth g for n measurements.

These functions are used as initial state for the EM. For

the estimation of the outlier probability we count measure-

ments that lie outside the area of five σ. The ratio of the

number of outliers and the number of measurements defines

the outlier probability and is used for the uniform function

of the mixture. In the E step the measurements are assigned

to the Gaussian or the uniform function depending on their

probability. In the M step ML estimation is used again for

estimation of the Gaussian parameters, e.g., for µ:

µEM =
1

||N ||
∑
k∈N

(dk − gk) , N = {k|N (dk) > U(dk)} . (7)

Afterwards the outlier probability can be obtained as de-

scribed above. We found that a single EM step yields good

results while multiple EM steps lead to an unreasonable

shrinking of the variance. This lack of convergence is caused
by the fact that disparity noise and error cannot be clearly

separated as multiple disparities are implicitly derived by

interpolation.

The resulting expected values and standard deviations

for the 20 classes are given in Table 1. As expected, the

standard deviations for the low-numbered classes (which rep-

resent large oscillations) are high, but decrease quickly for

the higher classes. Interestingly, it appears that there is also

a positive disparity offset of up to one pixel in the low-

numbered classes. The likely reason are foreshortening ef-

fects, since the TV also measures surface slant. For an anal-

ysis of systematic errors in stereo estimation, which is be-

yond the scope of this paper, we refer to Xiong and Matthies

(1997).

6 Volumetric Modeling

As described in Sec. 5 we represent depth as a random vari-

able following a set of Gaussians. In this section we describe
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TV class 1 2 3 4 5 6 7

µEM 0.98 0.48 0.11 0.04 0.03 0.03 0
σEM 4.44 3.11 1.65 1.07 0.67 0.50 0.40

TV class 8 9 10 11 12 13 14

µEM -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02
σEM 0.33 0.34 0.34 0.30 0.28 0.26 0.24

TV class 15 16 17 18 19 20

µEM -0.02 -0.01 0 0.01 0.01 -0.01
σEM 0.22 0.22 0.21 0.20 0.19 0.18

Table 1: Learned expected
value and standard devia-
tions in pixels for the 20
TV classes.

how this can be used for volumetric MVS. The set of uni-

form functions is disregarded at the volumetric fusion step,

because we want to perform fusion of noisy measurements.

The filtering of outliers will be considered afterwards. Be-

cause it comprises the most important part, at the moment

we only consider the error in the direction of the line of

sight. To this end, we use the dominant error in z-direction

from the error model derived via error propagation, which

depends on four geometric parameters (Eq. (3))

While focal length f , baseline t and distance Pz are

constant for registered images with corresponding disparity

maps, the error ∆p follows a Gaussian derived in Sec. 5.4.

Hence, we consider a Gaussian N (µ, σ) with expected value

µ = di + µEM , where di is the depth at coordinate i derived

by SGM and µEM the offset from Table 1, and standard de-

viation σ = ∆Pz = ∆p
P 2

z

ft

√
2 with ∆p = σEM from Table

1.

In summary, the function for the expected noise of a

depth value can be expressed by

p(dxi ) = N (Pz, (σEM
P 2
z

ft

√
2)2) , (8)

with Pz = ft/(di + µEM ).

We extend multi-scale volumetric fusion based on oc-

tree data structures, as formerly proposed by Sagawa et al.

(2005); Fuhrmann and Goesele (2011). To this end, in ad-

dition to the choice of the voxel size (Sec. 6.1), we show

below how to directly propagate probability functions into

volumetric space (Sec. 6.2), and how the probabilities can

be used for optimization and filtering in 3D space (Secs. 6.3

and 6.4).

6.1 Choice of Voxel Size

An important step to efficiently handle disparity maps of

varying density is the choice of the voxel size vs in the oc-

tree. In our case the octree cubes correspond to the voxels.

Because the fusion is only reasonable for related data, the

algorithm chooses the voxel size for all disparities individu-

ally. The idea is that data are fused (Section 6.2) with others

having at minimum half and at maximum double the quality.

This accounts for the fact that the voxel size in an octree

increases by a factor of 2. Hence, the voxel size vs is chosen

such that σ < avs < 2σ, where a is a smoothness term.

For practical applications we found a ∈ [4, 8] to be suit-

able to maintain the details, but to avoid “pitted” surfaces.

In our experiments we use a = 8 in order to maintain the

smallest details, while a = 4 would speed up the processing

by about a factor of four.

6.2 Propagation into Probabilistic Space

After choosing an octree depth, data fusion can be regarded

as volumetric fusion on a regular grid as proposed by Cur-

less and Levoy (1996). In their formulation a linear signed

distance function assigns negative values to voxels in front

of the estimated depth, and positive values to those behind

(Fig. 7a). The voxels to be assigned a surface value are cho-

sen by intersection of the octree with a part of the line of

sight. Instead of using a linear signed distance function, we
directly propagate a Gaussian cumulative distribution func-

tion (CDF) (Fig. 7b), which directly transforms the values

from Equation (8) into logarithmic ratio space as explained

below. Additionally, a second function defines the weight w

of this value (Fig. 7).

z

−1

−0.5

0

0.5

1

z

0

0.5

1

a) b)

Fig. 7: Two alternative cumulative distance functions for an esti-
mated depth z. (a) Linear signed distance function d (red) with a
weighting function w (blue) penalizing values behind the estimated
surface (Curless and Levoy, 1996; Fuhrmann and Goesele, 2011).
(b) Gaussian CDF (red) with indicator function (blue) bounding
the area of influence (Kuhn et al., 2013).
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The volumetric update process for voxels on the line of

sight accumulates the contributions from individual pixels

from individual disparity maps. For the linear function it

follows the two equations (Curless and Levoy, 1996):

Wi+1(v) = Wi(v) + wi+1(v) , (9)

Di+1(v) =
Wi(v)Di(v) + wi+1(v)di+1(v)

Wi+1(v)
, (10)

where di(v) is the discretized value of the cumulative signed

distance function and Di(v) characterizes the current dis-

crete representation of voxel v at iteration i. This value has

a range of [−1, 1] and is propagated using Equations (9)

and (10). The individual discretized weight functions wi(v)

are accumulated in Wi(v). The weight function reduces the

weight of depth values behind the measured distance. This

is reasonable because the voting is only meaningful on the

line of sight in front of the point.

Curless and Levoy (1996) empirically adapt the linear

weighting function depending on the angle between line of

sight and the normal vector (i.e., slant) of the surface, as

well as on the distance to the next missing measurements.

We instead use the novel TV-based probabilistic function

that implicitly handles slant and missing measurements and

is determined statistically from ground-truth data.

Instead of a linear signed distance function, we use the

probabilistic functions (8). It has been shown that the orig-

inal linear formulation optimizes measurements with Gaus-

sian noise in a least-squares sense. We argue that a least-

squares optimization is sensitive to outliers. We, therefore,

propose the direct propagation of probability function which

can be used for probabilistic filtering. A detailed derivation

of the functions is given in Kuhn (2014).

Furthermore, instead of the weighting function w from

the linear case, we use in the probabilistic formulation a

“boxcar” indicator function with a width of ±2σ (Fig. 7b).

This limits the influence of voxels to a narrow region around

each estimated depth, and therefore generally yields better

results due to an increased robustness to outliers. Addition-

ally, it significantly decreases the number of voxels to pro-

cess which allows for limited memory resources. On the other

hand, it can lead to multiple estimated surfaces for one real

surface, and thus requires post-processing in the form of fil-

tering. However, multiple surfaces are possible even without

bounding the influence with an indicator function, as dispar-

ity maps are generally incomplete.

When estimating the probability that voxel vi lies behind

the detected surface along the line of sight (Fig. 8), we use

p(v0i ) and p(v1i ) for the probability that a voxel lies in front

or behind the surface, respectively.

As the probability p(v1i ) is the integral of the Gaussian

from −∞ to the distance ai of the camera center to the

intercept point of the line of sight and the voxel vi, one can

take the Gaussian CDF instead of the Probability Density

Function (PDF) to estimate it immediately:

x

surface

da

i

σ
id

x

i

d
x

i

i

Fig. 8: Discrete probability of a surface – Point with pixel coordi-
nate xi and expected distance dxi

i . σdxi
i

is the standard deviation

of the 3D point position along the line of sight. The colored voxels
represent the probability that a voxel lies behind the surface from
blue (low) to red (high).

p(v1i ) =

∫ ai

−∞
Npdf (x)dx = Ncdf (ai) (11)

The Gaussian CDF is numerically estimated with the Gauss

error function, available for instance in the C++ standard

library.

Probabilities on different rays from the same image that

fall in the same voxel are averaged. Similar to other oc-

cupancy grid approaches, we employ a Bayesian statistical

framework for the fusion of data from different images.

Since the probabilistic state of the surface is binary, i.e., a

voxel is either occupied or not, we use the Binary Bayes Filter

for probabilistic fusion. In addition to MVS reconstruction

(Kuhn et al., 2013), fusion of sensor data via Binary Bayes

Theory has also been applied for occupancy grid propagation

(Woodford and Vogiatzis, 2012; Pathak et al., 2007; Thrun,

2003).

Each occupied voxel has a probability p(v1) of lying

completely behind the surface, and conversely a probabil-

ity p(v0) = 1 − p(v1) of lying at least partially in front of

the surface. These probabilities in the range [0, 1] are trans-

formed into logarithmic ratio space, with values in the range

[−∞,∞], and fused via summation (Kuhn et al., 2013):

li = log
p(v1i )

p(v0i )
= log

p(v1i )

1− p(v1i )
=

∑
j

log
p(v1ij)

1− p(v1ij)
. (12)

Like the linear formulation (10), this function can be refor-

mulated as an incremental update process:

li+1 = li + log
p(v1i+1)

1− p(v1i+1)
, l0 = 0, (13)

which allows for sequential processing of the images. Hence,

at no point in the processing more than one disparity map

has to be held in memory. The initial probability l0 derives

from the assumption that the prior probability of a voxel to

be occupied is 0.5.
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6.3 Optimization of Point Positions on the Surface

The surface is characterized by neighboring voxels for which

the probability that one is in front of the surface and the

other is behind the surface is maximum. To achieve a better

accuracy than the estimated distances dix, we make use of

the probabilistic voxel grid described above.

In the original formulation from Curless and Levoy (1996)

surfaces are directly derived from volumetric space using the

marching cubes (MC) algorithm. While standard MC is only

applicable for regular grids (Fuhrmann and Goesele, 2011),

there are extensions for a generation of watertight surfaces

for irregular grids (Kazhdan et al., 2007). To this end, the

probabilistic space has to be transformed into a volumetric

point cloud space (Fuhrmann and Goesele, 2011). Unfortu-

nately, the watertight constraint does not comply with the

space division approach presented in Sec. 4. Furthermore,

watertight surfaces are not guaranteed to represent the real

world reconstructed from a limited number of camera po-

sitions. We therefore transform the probabilistic voxel grid

into a 3D point cloud and use an incremental local meshing

method (Bodenmüller, 2009) whose processing area depends

on the voxel size. In our case the points are connected with

other points in an area which is five times the voxel size.

Initially we define a search interval by shifting the es-

timated point along the line of sight by twice the standard

deviation in both directions. This is advantageous since mul-

tiple surfaces may exist in this interval and the use of the

viewing direction allows an extraction with subvoxel accu-

racy. We consider all voxels I in the interval and take the

adjacent pair of voxels maximizing the probability that one

is in front and the other is behind the surface:

i∗ = arg max
i∈I

(p(v0i )p(v1i+1)) . (14)

To obtain the position d∗ with subvoxel accuracy, we fit a

Gaussian to the neighboring voxels of vi∗ and vi∗+1. For this

we use a probabilistic weighting of the distances:

d∗ =
1

4

i∗+2∑
j=i∗−1

dj |0.5− pj | , pj =
elj

1 + elj
. (15)

The Gaussian CDF at µ is 0.5, which is not its maximum

value. Hence, we weigh each term by the absolute difference

|0.5 − p|. A regression of the Gaussian CDF would also be

possible by solving a system of equations of the linear parts.

We found that the results differ only marginally and the

computation by Equation (15) is faster.

6.4 Filtering Voxels using Visibility Checks

Octrees allow for efficient local consistency checking based

on ray tracing. Even though ray tracing is a (semi-)global

method, we use it locally because outliers have a detrimental

Fig. 9: Geometric consistency checks that consider surface proba-
bilities. Left: The second point from the left is cast to the upper
camera, resulting in a conflict with the leftmost point. It is not
obvious which point has to be filtered. Right: After considering
multiple points with surface probabilities, which are all in conflict,
only the point with the highest surface probability is maintained.

influence on the surface quality particularly if they occur

nearby. We do not deal with solitary outliers, because they

are ignored in the later step of mesh generation.

For filtering, we cast a ray along the line of sight for

ten times the voxel size. Local ray tracing filters conflicting

points having a relatively lower quality occluding others with

a better quality (Fig. 9). In our case the quality is described

by the maximum probability p(v0i )p(v1i+1) of the voxel sur-

face estimated by Equation (14). In case of a conflict, only

the point with the higher surface probability is maintained.

For all voxels v classified as occupied above, consistency

is checked. Rays are cast to those cameras the voxel has been

seen from. We found that even one camera consistency check

is usually enough. If there is another occupied voxel on the

ray, a conflict is detected. For all voxels the maximum quality

of conflicting voxels i on all rays is saved. Those voxels are

filtered whose qualities are worse than the maximum quality

for all conflicting voxels.

If a conflict occurs for voxels on different octree levels,

the voxels on the lower resolutions are filtered out imme-

diately. This allows the processing of configurations with a

wide range of distances. The substitution of lower-resolution

voxels by higher-resolution voxels is reasonable in our pro-

cessing pipeline because our TV prior leads to more stable

points at higher resolution levels. Hence, the proposed TV

prior acts as a regularization term.

Of course it is not always necessarily true that a lower-

resolution point has lower surface probability than a higher-

resolution point. This results in an ill-defined 4D regular-

ization problem. Fuhrmann and Goesele (2011) proposed

heuristic averaging on neighboring levels. In our case this

did not lead to an improvement, and the implicit regulariza-

tion via our TV prior allows a good estimate of the chosen

octree level.

7 Experiments and Evaluation

In this section we show qualitative and quantitative results

on established test data as well as novel real-world datasets.

In addition to demonstrating scalability we also evaluate sur-

face quality, with particular focus on the improvement due

to the TV prior.
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Fig. 10: Left: four sample images of a registered image set of 822 high-resolution images. Right: The complete textured reconstructed
model, as well as zoomed views rendered without texture to visualize the preservation of small details. Despite the space division strategy,
the 3D model has seamless and consistent surfaces.

We first demonstrate the potential for reconstructing 3D

surfaces from large sets of high-resolution images as this

is one important benefit of our method. The space divi-

sion strategy described in Sec. 4 allows for fast parallel re-

construction of potentially arbitrarily large scenes. This is

demonstrated in Fig. 10 with a large dataset consisting of

822 images of an entire village captured both from a UAV

and from the ground. Because of this complex configuration

of viewpoints, the distances, and thus also the quality of the

reconstructed surface parts, varies greatly. This is handled by

means of the octree representation. The division of 3D space

allows for parallel processing of thousands of subspaces in

a couple of hours on a cluster system. The local processing

constraint leads to consistent surfaces without requiring a

complex fusion strategy.

To demonstrate the improvement due to our novel TV

prior, we compare surfaces reconstructed using constant

standard deviations σ ∈ {0.5, 1, 2, 4} and surfaces recon-

structed using our variable TV-based standard deviation

σ = σEM (Eq. (8)). Fig. 11 shows the results on the Et-

tlingen30 dataset (Strecha et al., 2008), which is a good test

case since the images have varying perspectives and varying

amounts of texture. There are two types of difficulties af-

fecting the disparity quality: Lack of texture because of the

white walls, and slanted surfaces, which produce uncertain-

ties because of SGM’s fronto-parallel bias.

In all cases the TV prior yields results that match or

exceed the best results obtainable with constant σ in terms of

accuracy and completeness. In general, the surfaces produced

with σ= 4 tend to be best in terms of completeness (fewest

holes) but are overly smooth, while the surfaces for σ= 0.5

appear best in terms of accuracy (most detail captured), but

have many holes. Using a variable TV-based prior (σ=TV )

combines the best of both worlds.

For an objective assessment of an approach, a numer-

ical evaluation on established datasets is highly important.

Strecha et al. (2008) provided a numerical evaluation on real-

world datasets, which unfortunately is no longer available.

Fortunately, for two datasets the ground truth is publicly

available. However, for the special configurations of these

datasets with mostly fronto-parallel surfaces and highly tex-

tured areas only a small increase in quality can be expected.

Fig. 12 shows the 3D surface models derived from SGM

disparity maps by the method of Fuhrmann and Goesele

(2011) and by our TV-based method. Our method does par-

ticularly well in recovering slanted surfaces. Fuhrmann and

Goesele use optimized disparity maps from a community

photo collection approach (Goesele et al., 2007). For the com-

parison we employed their fusion method on SGM disparity

maps.

For the numerical evaluation we used the technique pro-

posed by Strecha et al. (2008). In the original evaluation the

errors are compared against the ground-truth uncertainty.

As this information is not available, we employed the abso-

lute error (Fig. 13).

For the Herzjesu8 dataset the TV-based surface model

is best in terms of accuracy and completeness. In compari-

son with the method by Fuhrmann and Goesele (2011) the

evaluation of the TV-based model presents a significant im-

provement. For the EttlingenFountain dataset the TV based

surface is slightly less accurate than the surface based on a

constant uncertainty. However, it is expected that the eval-

uation results would differ in the high-resolution regions if

the ground-truth uncertainty could have been considered.

We also compared our TV-based method with constant-σ

versions using the Middlebury multi-view benchmark (Seitz

et al., 2006). The datasets are not suitable to demonstrate

the strength of our method, as the objects do not have vari-

able texture and difficult perspectives. Still, the numerical

results (Table 2) confirm the qualitative impression from the

previous experiments that the TV results are best concern-

ing accuracy and are mostly best concerning completeness.

In comparison with σ ∈ {0.5,1,2,4}, the TV results are al-

ways close to the best individual accuracy and completeness
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  σ=0.5   σ=1

  σ=2   σ=4

  σ=TV

  σ=0.5   σ=1

  σ=2   σ=4

  σ=TV

Fig. 11: Constant vs. TV-based priors. Each group of six pictures
shows models reconstructed from the Ettlingen30 dataset, compar-
ing reconstructions with constant σ, our new TV-based prior, and
the textured TV model. The TV-based reconstruction yields the
highest completeness and accuracy.

scores. Thus, the model with TV prior combines the finest

details with the highest completeness.

To demonstrate the adaptability of the method, we

present results for additional real-world datasets calibrated

using a highly precise SfM method (Mayer et al., 2011).

The first dataset consists of 31 images with a resolution of

8 megapixels (MP), and depicts a painted junk car (Fig. 14).

The dataset is challenging since the ground is only captured

slanted and the object is weakly textured.

The second dataset, “Haus51,” consists of 112 10MP im-

ages of a standalone building captured from a UAV and from

the ground. Fig. 15 shows example images and a compari-

son of surfaces from different views and at varying level of

Fig. 12: 3D surface models by Fuhrmann and Goesele (2011) (left)
and our method (right) on EttlingenFountain (top) and Herz-
jesu8 (bottom). Our method yields particularly an improvement
for slanted surfaces (red boxes).
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Fig. 13: Unsigned cumulative distance functions of the absolute
error from Herzjesu8 (top) and EttlingenFountain (bottom).

Temple Dino

Acc. 0.48/0.45/0.49/0.80/0.43 0.50/0.44/0.46/0.79/0.39
Compl. 59.5/92.8/97.7/95.1/96.9 71.8/97.1/98.3/95.4/96.3

TempleRing DinoRing

Acc. 0.47/0.49/0.59/1.09/0.48 0.49/0.47/0.50/1.12/0.43
Compl. 77.9/88.3/95.0/91.7/95.7 81.2/94.1/96.7/89.7/95.3

TempleSparseRing DinoSparseRing

Acc. 0.44/0.46/0.52/0.71/0.48 0.71/0.49/0.51/1.05/0.49
Compl. 60.0/77.0/81.8/83.9/84.9 72.1/87.0/92.4/88.3/89.6

Table 2: Evaluation of Dino and Temple (Seitz et al., 2006) with
σ = 0.5/1/2/4/TV concerning accuracy and completeness. Best
results are marked bold.
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  σ = TV

  σ = 1

FG-SGM

FG '14

PMVS2

Fig. 14: Junk car dataset with 31 8MP images. The top row shows sample images and zoomed views illustrating the main challenges: the
slanted ground plane, and weakly textured surfaces on the car. The remaining five rows show the results by our method, with constant σ,
and by three competing methods, FG-SGM (Fuhrmann and Goesele, 2011), FG ’14 (Fuhrmann and Goesele, 2014), and PMVS2 (Furukawa
and Ponce, 2010) (see text for detail). Our method can compensate for uncertainties by means of the TV prior, recovering small details
while minimizing outliers.

detail. The camera configuration is characterized by varying

perspectives and degree of texturedness of the building. Fur-

thermore, the building contains challenging 3D structures

such as the balconies.

The third dataset, “Unikirche,” combines 10MP images

of a building captured from the ground and from a UAV with

36MP images of the building door (Fig. 16). This dataset is

very challenging since in addition to multiple resolutions,

it also contains varying perspectives, distances, degrees of

texturedness, motion blur, and radiometric differences.

For an extensive qualitative comparison with state-of-

the-art MVS methods, we compare five algorithms on these

three datasets. We compare our method with and without

TV prior (σ = TV and σ = 1) against three popular publicly

available SfM and MVS methods, which we denote PMVS2,

FG-SGM, and FG ’14.
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  σ = TV

  σ = 1

FG-SGM

FG '14

PMVS2

Fig. 15: Haus51 dataset with 112 10MP input images captured from a UAV and from the ground. The top row shows sample images and
zoomed views. The varying perspectives, degree of texturedness, and changing lighting conditions are particularly challenging for MVS.
The remaining rows show comparative results. Generally our TV prior yields best results combining smoothness and completeness while
preserving small details and minimizing outliers.
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  σ = TV

  σ = 1

FG-SGM

FG '14

PMVS2

Fig. 16: Unikirche dataset, consisting of 234 input images with mixed 10MP and 36MP resolution, captured from a UAV and from the
ground. Challenges include poor lighting, motion blur, weakly textured areas, and large differences in resolution, which result in noisy
depth maps, outliers, and incomplete surfaces. Again, our method produces the best results combining smoothness and completeness with
high accuracy and minimal outliers.
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PMVS2 is the popular reconstruction pipeline consisting

of VisualSfM (Wu et al., 2011; Wu, 2013) for SfM, PMVS2

(Furukawa and Ponce, 2010) for MVS, and Poisson recon-

struction (Kazhdan et al., 2006) for surface generation.

FG-SGM is the disparity map fusion method by

Fuhrmann and Goesele (2011) for SGM disparities, with

which we already compared earlier.

Finally, FG ’14 represents Fuhrmann and Goesele (2014),

who present an improvement of volumetric fusion using 3D

basis and weighting functions. As a comparison of the com-

plete pipeline is interesting, we consider their method in their

original pipeline using VisualSFM, region-growing-derived

disparity maps (Goesele et al., 2007) and mesh cleaning.

For all dense approaches, the results are generated from

disparity maps at half resolution as this has been empiri-

cally found to give the best trade-off between accuracy and

completeness.

As demonstrated in Figs. 14–16, our reconstruction

pipeline with TV prior performs best overall, combining

smoothness and completeness with high accuracy.

Examining Fig. 14, it is obvious that filtering without

the TV prior (row 3) generates incomplete surfaces. The 3

competing methods, which do not perform probabilistic fil-

tering, all yield multiple “ghost” surfaces (right column in

rows 4–6). Only our probabilistic fusion with TV prior (row

2) is able to reconstruct complete and detailed surfaces with

minimal outliers.

In Fig. 15, our method (row 2) is able to reconstruct fine

detail such as the window hinges (see zoomed region on the

right), unlike PMVS2 (Furukawa and Ponce, 2010) and FG

’14 (Fuhrmann and Goesele, 2014) (rows 5–6). Without the

TV prior, closed surfaces have holes in the 3D model (row

3). Holes and ghost surfaces also appear in the competing

methods in rows 5–6. The FG-SGM method (Fuhrmann and

Goesele, 2011) based on dense SGM disparity maps (row 4)

has fewer holes but many more outliers, e.g., at the border

of the building roof in the right column.

Similar observations can be made in Fig. 16, which

demonstrates that our method (row 2) is able to recover

significantly more detail than the competing methods such

as PMVS2 (Furukawa and Ponce, 2010) (row 6), for in-

stance the door handle shown in the zoomed region in the

middle column. Our results are again more complete than

FG ’14 (Fuhrmann and Goesele, 2014) (row 5). In gen-

eral, when non-dense depth maps are used for 3D surface

reconstruction, FG ’14 tends to yield incomplete surfaces

with many holes (row 5), while PMVS2 often results in in-

terpolated ghost surfaces (row 6). The door shown in the

middle column, which was imaged from very different dis-

tances and with varying resolutions, demonstrates the power

of our multi-resolution approach. The FG-SGM method

(Fuhrmann and Goesele, 2011) (row 4) generates complete

surfaces, but has a much higher outlier rate around complex

3D structures imaged at multiple resolutions. Our method

successfully filters such outliers via ray tracing (Sec. 6.4)

while taking into account probability information (Sec. 6.3).

Finally, comparing the zoomed views in rows 2 and 3, one

can observe clear improvements due to our TV prior in terms

of smoothness and completeness.

8 Conclusion

In this paper, we have proposed a Total Variation (TV) based

regularization term for Multi-View Stereo (MVS). This reg-

ularization term is derived from disparity quality classes

correlated with the disparity uncertainty. The uncertainty

is learned from the difference between generated dispar-

ity maps and ground-truth disparities with an Expectation

Maximization (EM) method, considering noise and outliers.

The knowledge about the quality classes is employed for lo-

cal volumetric surface reconstruction, which allows for par-

allel processing of very large models. The uncertainties of

the classes are considered when fusing disparity maps into

a multi-scale octree structure. To this end, we extended the

well-known volumetric fusion of signed distance functions to

probabilistic fusion with filtering considering surface quality.

Quantitative evaluation, but particularly visual assessment

on several datasets indicate a considerable improvement by

the proposed means of regularization.

We believe that considering variable disparity quality of-

fers great potential to improve the accuracy and complete-

ness of local volumetric reconstruction, because the fusion

area has to be known: Small uncertainties do not tend to in-

terfere, but larger uncertainties often lead to an oversmooth

solution. In future work we plan to utilize additional uncer-

tainty information, in particular the registration uncertainty.
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