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Abstract. The computation of the essential matrix using the five-point
algorithm is a staple task usually considered as being solved. However,
we show that the algorithm frequently selects erroneous solutions in the
presence of noise and outliers. These errors arise when the supporting
point correspondences supplied to the algorithm do not adequately cover
all essential planes in the scene, leading to ambiguous essential matrix
solutions. This is not merely a theoretical problem: such scene conditions
often occur in 3D reconstruction of real-world data when fronto-parallel
point correspondences, such as points on building facades, are captured
but correspondences on obliquely observed planes, such as the ground
plane, are missed. To solve this problem, we propose to leverage se-
mantic labelings of image features to guide hypothesis selection in the
five-point algorithm. More specifically, we propose a two-stage RANSAC
procedure in which, in the first step, only features classified as ground
points are processed. These inlier ground features are subsequently used
to score two-view geometry hypotheses generated by the five-point al-
gorithm using samples of non-ground points. Results for scenes with
prominent ground regions demonstrate the ability of our approach to
recover epipolar geometries that describe the entire scene, rather than
only well-sampled scene planes.

1 Introduction

Large-scale Structure from Motion (SfM) has tremendously progressed in the
last decade [24, 7, 1, 18, 13, 23]. The key approach in SfM-type methods, and es-
pecially in incremental SfM, involves building up scene geometry from initial
two-view relationships. To accomplish this, virtually all systems estimate epipo-
lar geometry to establish the overlap between image pairs. When Exchangeable
Image File Format (EXIF) information is available for the images, such geometry
is typically obtained via essential matrix estimation using the five-point algo-
rithm [21]; alternatively, the eight-point algorithm [11] can be used to estimate
a fundamental matrix for image pairs with unknown calibration. To provide
robustness against incorrect point correspondences, this estimation is usually
placed in a RANSAC framework, where a minimal number of correspondences
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are iteratively sampled to provide statistical guarantees on the computed trans-
formation. The estimated epipolar geometries are vital for recovering relative
pose between the two images, which enables the triangulation of scene geometry
and other subsequent steps in the SfM pipeline.

In this work, we address a key problem of RANSAC-based essential matrix
estimation that arises when the available point correspondences in two images
are heavily biased toward a single plane in the scene. We show that while the
existing methods work reliably for noise-free data, essential matrix estimation
often achieves only a local optimum on real-world data given noisy point detec-
tion and, importantly, an uneven 3D spatial distribution of the available point
correspondences. We find that such errors often manifest themselves in 3D urban
reconstructions, with computed essential matrices largely over-fitting to fronto-
parallel structures, such as building facades, and mis-characterizing undersam-
pled planes, in particular the ground. Indeed, for the vast majority of scenes, the
popular large-scale reconstruction systems (e.g., [28, 23]) almost always fail to
capture the ground structure, especially for reconstructions from uncontrolled
photo-collections. To account for this apparent limitation in essential matrix
estimation, we propose a new approach for scoring proposals for two-view ge-
ometries, taking into account semantic labeling of the detected image features.
Focusing on ground/non-ground labelings, we demonstrate that our method is
able to correctly characterize the epipolar geometry in a variety of image pairs
that were only partly correctly treated in a traditional RANSAC framework.

2 Background and Related Work

Solving for relative geometry from five point correspondences does not per se
provide a globally optimal solution [10]. In general, there exist ten discrete so-
lutions [5], which can be reduced only in special configurations by means of the
five-point algorithm [21] itself. Even though global optimally algorithms have
been presented [12] for solving for the essential matrix, they are unproven and
no practical evidence for an efficient implementation is given [25].

It has long been recognized [26, 21, 3] that the validity of estimated epipolar
geometry (calibrated or uncalibrated) is inherently tied to both the 3D spa-
tial distribution and 2D accuracy of the 2D correspondences shared between a
given image pair. As Nistér notes in his seminal five-point algorithm paper [21],
however, calibrated two-view geometry estimation (i.e., essential matrix esti-
mation) enjoys substantially less ambiguity than its uncalibrated counterpart.
Given perfect correspondences, the geometry provided by the five-point algo-
rithm is unique, except in the case of a planar point set, where possibly a single
ambiguity could arise. This is much more manageable than the case for funda-
mental matrix estimation, wherein a planar point set causes degeneracy [3, 31,
15]. Given its significant advantages and superiority in practice [22], calibrated
two-view geometry estimation has largely been thought to be a solved problem.

The specific issue we aim to address is the case where essential matrix estima-
tion in a RANSAC framework fails to find a correct solution due to a sub-optimal
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3D spatial sampling of feature points in the image, which in the limiting case
lie on a single scene plane. In our experience, noise and outliers in the sampled
point sets can drive RANSAC to select geometry that overfits to the dominant
scene plane(s) if not enough points on less-sampled planes, namely the ground,
are available. We briefly explain our observations in the following, before intro-
ducing our proposed method.

3 Error Behavior for Oversampled Planes in the
RANSAC-based Five-Point Algorithm

In this section, we provide a high-level overview of the error behavior associated
with epipolar geometry estimation in a RANSAC framework for image pairs
having planar-biased point sets. Our goal is to emphasize the importance of
taking into account all essential scene planes when choosing the best solution
from the hypotheses generated by this algorithm.

3.1 The Five-point Algorithm

Consider a pair of calibrated cameras observing a scene, and let K and K̄ rep-
resent their intrinsic matrices. The essential matrix E describes the epipolar
geometry of the cameras: p̄T K̄−TEK−1p = 0, where p and p̄ are correspond-
ing 2D points in each image, respectively. Geometrically speaking, K̄−TEK−1p
maps point p in the first image into an epipolar line in the second image, and the
equality to zero constrains p̄ to lie along this line. Relative camera pose (3-DOF
rotation and 2-DOF translation) can be recovered, in part, by decomposing the
essential matrix, which makes its estimation vital to tasks such as SfM [9].

Using Nistér’s five-point algorithm [21], we can solve for E using just five
point correspondences. The algorithm is formed from ten cubic constraints that
are well-known properties of the essential matrix [9]:

det(E) = 0, 2EETE − tr(EET )E = 0 . (1)

When the constraints in Eq. (1) are used in conjunction with five point corre-
spondences, the problem of solving for E can be reduced to finding the roots of
a tenth-degree polynomial [21, 16]. This results in up to 10 possible essential ma-
trices, all of which constitute a valid epipolar geometry for the original five cor-
respondences. To select the correct solution for E, traditional methods leverage
additional point correspondences and choose the solution with the largest sup-
port. Accordingly, the selection of the prevailing hypothesis from the up-to-ten
possible essential matrices hinges on the remaining available correspondences.

3.2 Error Behavior in Epipolar Geometry Estimation

In real-world applications, image correspondences are typically obtained using
feature matching, which often results in a large number of putative correspon-
dences that are affected by noise and outliers. To robustly recover relative camera
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Fig. 1. Left three images: 100 sampled 2D points (white dots) drawn from different
combinations of scene planes. Right three images: Associated epipolar error for the left
images given corresponding points in a second (not shown) view. Here, epipolar error is
calculated using the pair-wise geometry obtained via five-point RANSAC. Blue pixels
indicate no epipolar error for the point in the image, while red pixels indicate a distance
from the estimated epipolar line of 10 or more pixels. Even though the general camera
pose is incorrect for the two- and one-plane examples, epipolar error is low within the
sampled planes. However, large error (> 10 pixels) exists on the unsampled planes,
especially in the single-plane case.

pose from such data in a calibrated setting, the five-point algorithm is usually
embedded in a RANSAC [6] framework [21]. Here, a minimal number of random
correspondences are sampled from the set of potential matches, the geometry
estimation algorithm is run, and some subset of the complete set of correspon-
dences is used to select the best of the ten resulting hypotheses. This sampling
is repeated for a sufficient number of RANSAC iterations, and the solution with
the strongest support, determined by the number of correspondences or a robust
metric such as MSAC [27], is chosen as the optimal epipolar geometry.

In RANSAC, the distribution of valid point correspondences plays a strong
role in determining the finally estimated two-view transformation. Take, for ex-
ample, Fig. 1, which shows epipolar error maps for three different correspondence
set scenarios. Here, we have added a small amount of noise and outliers to the
point correspondence sets and have limited the available points to lie on five,
two, and one scene plane. We run five-point RANSAC on these point sets to
obtain a best-fitting epipolar geometry based on the criterion of maximal inlier
support. It is clear that when all planes in the scene are equally sampled, the
epipolar error is low throughout the image. When only one or two scene planes
are available, however, the estimated pair-wise geometries have good support
on the sampled scene planes, but they completely fail to accurately characterize
unsampled scene planes – and the underlying relative pose is necessarily wrong.
This short experiment serves to demonstrate that, even if the inlier support
for an estimated calibrated two-view geometry “looks” correct in highly sam-
pled regions, the underlying transformation that is estimated may actually very
poorly fit unsampled scene planes. The motivation for our approach is to lever-
age point correspondences on other scene planes, when at least a small number
are available, to solve this problem.

Fig. 2 demonstrates the plane-sampling problem for a real-world image pair.
Especially for community photo-collections, it is common that points on build-
ings (which have more favorable views) are extremely well-matched using com-
mon feature descriptors like SIFT. Point correspondences on the ground, how-
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Fig. 2. Epipolar geometry estimated using a state-of-the-art SfM pipeline [23] for an
example image pair. The upper left image illustrates a point on the ground area (red
circle) and two non-ground points (green circles). On the lower left, the three cor-
responding epipolar lines (red and green) are illustrated on the second image. The
zoomed images for the three points (right three columns) show that the epipolar line
has low error for the two green points. The epipolar line for the point on the ground
plane (right column), however, is inaccurate by more than 30 pixels (blue line).

ever, are often embarrassingly underrepresented. Accordingly, RANSAC very
often fails to correctly find inlier point pairs on the ground surface, and the
estimated epipolar geometry is globally inaccurate. For the interested reader,
we provide in the supplementary material a systematic evaluation of the error
behavior of the five-point algorithm in a RANSAC framework.

4 Proposed Method

Given our analysis, it is clear that the preservation of ground points during fea-
ture verification is a necessary prerequisite for an accurate estimation of the cam-
era geometry from image pairs. In principle, a verification within the RANSAC
procedure is possible without initial correspondence determination. To do so,
for all solutions the complete image could be used for verification, e.g., by dense
matching or extended correspondence search for multiple pixels. Unfortunately,
in a RANSAC procedure this would tremendously increase the runtime.

To efficiently obtain correct solutions for the two-view geometry, we propose
to employ two distinct matching pipelines, one for the stably detected features
of an image and one for features on the non-dominant planes, chiefly the ground
plane. The second pipeline gives us a way to maintain efficiency in the estimation.
We propose to perform the verification embedded in a RANSAC framework two
times: Once for the separated ground areas and a second time for the complete
images. This results in a sufficient number of matched ground points, which is
essential for achieving accurate SfM including ground scene parts.
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We start with a calibrated pair of images and detect SIFT features for
both images. Matching is performed using standard SIFT matching with nearest
neighbor search under the L2 norm and a final ratio-based filtering [17]. Success-
fully matched points are then verified by means of the five-point algorithm within
a RANSAC framework. This can lead to missing ground points and, hence, to
an inaccurate registration of ground areas. Fig. 3 shows an example image pair
with verified feature points.

Fig. 3. Left two images: Example image pair marked with feature points. Right two
images: semantic labels, including ground (purple) and building (grey). The purple
points on the image pairs represent the feature points verified by the five-point algo-
rithm in a standard RANSAC framework. On the ground plane, no (correct) verified
point correspondences were found. The green and red points are the inliers from the
first stage of our pipeline, which employs a homography for ground points. Turquoise
and green points are the final features verified by the second RANSAC procedure.

To avoid behavior where the verification optimizes only specific areas, we
propose to match the features for separate classes. To this end, one needs to
identify specific semantic regions, such as the ground, in an image. Fortunately,
the availability of plenty of labeled data for urban scenes [4] and the recent
progress in classification by trained deep CNNs allows for a stable classification
of multiple classes including building and ground [30]. We use the latter method
to initially label our input images semantically (Fig. 3).

In our matching pipeline, we separate features from the image pairs into two
classes: (1) road and sidewalk, and (2) building and wall [4, 30]. For our experi-
ments, we ignore other labels, and we ignore correspondences if their classes do
not agree. Our first matching and verification stage only makes use of the feature
points assigned to the ground. Unfortunately, the matching of ground features
usually leads to a high outlier rate. In typical image sets from, e.g., community
photo collections, the ground is only captured at an oblique angle. This is typical
when using images acquired with a hand-held camera. In addition to perspective
deformations, the ground is challenging to match because of many repetitions
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Fig. 4. Top row: Three example points from the image pair shown in Fig. 3. Bottom
row: corresponding epipolar lines. The red line represents the epipolar line from stan-
dard five-point verification of SIFT feature matching by means of RANSAC, and the
green line the epipolar line from our method. While both methods are highly accurate
on the building (left column), only our method produces accurate epipolar geometry
for the ground. The epipolar error for the standard verification is up to 100 pixels.

and a lack of unique structures. Thus, to increase the inlier ratio of ground point
correspondences, we process the ground separately first by a ground-to-ground
homography assuming a mostly planar ground.

To detect and match features on obliquely viewed surfaces, methods exist
based on post-processing of descriptors [14] or a preceding affine transformation
of the areas. For the reconstruction of highly slanted areas, complex pipelines
allow for the generation of a small number of highly stable matches [19, 20].
Unfortunately, the methods from [19, 20] are not runtime-efficient. On the other
hand, the matching has to be performed on a fraction of the complete image.
We empirically found that also using standard SIFT allows ground matching for
image pairs with small baselines. If the configuration needs complex matching
methods, we use the implementation of [20]. Fig. 3 shows the resulting SIFT
features after homography-based verification (green and red points).

For a joint representation of the point sets for road and sidewalk as well as
building and wall, we use a second verification procedure. The input is the two
sets of feature points: (1) The set of unverified SIFT features labeled as building
or wall, and (2) the verified ground matches from the first procedure. For every
RANSAC iteration, five points are randomly chosen from the first set. The up-
to-ten solutions for the essential matrices are evaluated against all other points
from this set. In our pipeline, the solution is additionally evaluated against the
second set containing the stable ground points. Hence, we have two sets of inliers:
ground inliers #Ig and building inliers #Ib. To estimate the optimal solution
from the set of hypotheses, we compare them against the current best solu-

tion with inlier sets {I∗g , I∗b } by defining the quality as: qi =
#Ii

g

#I∗
g

#Ii
b

#I∗
b

. Hence, the

relative ratio of verified ground and building points has to be maximal. The max-
imum quality over all hypotheses i is chosen for the optimal essential matrix. In
Fig. 3, the finally verified points from the second procedure are presented in the
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form of green ground points and turquoise building points. Fig. 4 demonstrates
the improvement achieved with our method. It is immediately apparent that for
the ground area, the epipolar lines for the first verification have an error of tens
of pixels, while our complete method achieves a high accuracy. Moreover, on the
building, our method yields a similar quality as the essential matrix derived by
the first verification.

5 Experiments

We have evaluated our method on challenging real-world image pairs from com-
munity photo-collections to demonstrate the improvement for the accurate esti-
mation of the relative geometry. For the calibration (camera intrinsics), we make
use of the EXIF information in the images.

First, the choice of feature detection can be crucial. We use SIFT features
for the initial estimation of the matching points for ground and building, but
as previously mentioned, these features sometimes have poor performance when
matching ground points from wide-baseline pairs. Using SIFT, ground points are
typically well-matched for similar small-baseline images (see Fig. 5). However,
when even mild changes in appearance or perspective occur, or if the ground
is weakly textured, the ground can prove challenging to match. In such cases,
we use MODS [19, 20] for ground-point matching (Fig. 6). While other feature
detection methods have been published recently [8, 29], we empirically found
that none of them surpasses SIFT in producing reliable matches on obliquely
viewed surfaces on our test images.

We use our proposed two-stage RANSAC procedure to solve for the epipolar
geometry of the image pairs. More precisely, we use the extension LO-RANSAC
[2], as our experience shows it generates better results for both the original veri-

Fig. 5. Results of our method on an image pair using SIFT features. Left: Images with
original inlier points shown in purple. The green and red points are the inliers from
the first stage of our pipeline. Turquoise and green points are the final features verified
by the second RANSAC procedure. Right: The zoomed images show a ground and a
non-ground match. While the non-ground matches are correct for both methods, the
ground points were only aligned correctly with our method (green epipolar line). The
red epipolar line, representing the five-point essential matrix, shows an error of tens of
pixels for the ground.
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Fig. 6. Four examples for optimized essential matrices from image pairs. Because of
challenging texture, perspective, resolution and lighting conditions in these examples
MODS is used for ground-point matching. Verified features are color-coded as in Fig. 5.
The zoomed images show examples for ground and non-ground matches. While the
non-ground matches are correct for both methods, the ground points were only related
correctly with our method (green epipolar line). The red epipolar line, representing the
five-point essential matrix, shows an error of tens of pixels for ground images.

fication and our method. RANSAC is parameterized as follows: (1) a maximum
error of 2 pixels, (2) a confidence value of 99.99%, and (3) a minimum inlier ra-
tion of 20%. Because the matching of the ground produces a higher outlier ratio,
in the homography-based procedure a maximum error of 4 pixels is used. The
higher maximum error takes into account that, often, the ground cannot be ex-
actly described by a plane. Also, in the second procedure, the ground points are
verified with double the pixel accuracy threshold of the building points; this ac-
counts for the fact that the perspective transformation of ground points usually
results in lower-quality feature localization and description.
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Figs. 5 and 6 show several results for our method in comparison to the
standard five-point-based estimation employing the complete set of SIFT fea-
tures. Furthermore, in the supplementary material more results are provided.
Our method allows the matching of ground points and the derivation of a highly
accurate essential matrix. In situations where the traditional method only pro-
duces a sufficient accuracy for areas representing nearly fronto-parallel surface
planes, our method produces an accuracy within a few pixels for the entire im-
age. We assume a view without excessive perspective deformation of the building,
which is given for typical images showing building and ground in similar propor-
tion as in this case the building is generally captured from a larger distance or
with a camera facing the facade in a fronto parallel manner. Because the camera
calibration is not optimal, for some examples our verified correspondences do
not cover the complete scene. The upper row in Fig. 6 gives two examples with
several missing correspondences. Nonetheless, it is apparent that the distance to
the epipolar line is within a couple of pixels, whereas insufficient consideration
of ground features can lead to pixel errors of up to 100 pixels (Fig. 6). The
latter would lead to a completely false estimation of the relative camera pose,
prohibiting the image pair from contributing to an accurate 3D reconstruction
(see Fig. 2).

6 Conclusion

In this paper, we revisited the five-point algorithm and provided evidence of its
potential shortcomings for scene configurations frequently arising in image-based
3D reconstruction. In these configurations, point correspondences on obliquely
viewed surfaces — particularly the ground — are largely missed, and even though
the resulting essential matrices describe parts of the image well, the representa-
tion of the entire scene is strongly distorted in regions with low support. In a
RANSAC framework, the five-point algorithm offers a multitude of hypotheses
that are verified using the available correspondences. Correspondences situated
only on a single fronto-parallel plane, in particular, lead to a poorly estimated
essential matrix; this is common in 3D urban modeling, where correspondences
are mostly captured on facades, but missing on the ground plane.

Our solution allows the preservation of ground correspondences in addition
to those on buildings in urban scenes. To this end, we leverage an existing clas-
sification method to semantically segment source images into ground and non-
ground regions. Our semantic-based hypothesis scoring approach makes use of
these labelings to ensure that the undersampled ground correspondences are still
accurately captured during RANSAC-based two-view geometry estimation. Re-
sults on a large variety of scenes demonstrate the ability of our approach to suc-
cessfully maintain dominant-plane correspondences while additionally recovering
ground correspondences. In the future, we look to expand the use of semantic
labels to other aspects of two-view geometry estimation, including fundamental
matrix estimation and related robust statistical measures.
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