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Abstract. In this paper we present a probabilistic algorithm for multi-
view reconstruction from calibrated images. The algorithm is based on
multi-resolution volumetric range image integration and is highly sepa-
rable as it only employs local optimization. Dense depth maps are trans-
formed in an octree data structure with variable voxel sizes. This allows
for an efficient modeling of point clouds with very variable density. A
probability function constructed in discrete space is built locally with
a Bayesian approach. Compared to other algorithms we can deal with
extremely big scenes and complex camera configurations in a limited
amount of time, as the solution can be split in arbitrarily many parts
and computed in parallel. The algorithm has been applied to lab and out-
door benchmark data as well as to large image sets of urban regions taken
by cameras on Unmanned Aerial Vehicles (UAVs) and from the ground,
demonstrating high surface quality and good runtime performance.

1 Introduction

In spite of all impressive progress, 3D reconstruction from sets of calibrated real
world images is still a challenging problem. This was recently demonstrated once
again by Vu et al. [21]. While modeling of landscapes is often done in 2.5D, there
is a need for detailed 3D modeling particularly for urban regions. Unfortunately,
algorithms for 2.5D reconstruction cannot be extended easily. 3D reconstruction
algorithms using n-Layer heightmaps expand 2.5D reconstruction algorithms and
achieve impressive results for urban regions [7] with one dominant direction.

Recently, multi-view-stereo (MVS) algorithms for 3D modeling made con-
siderable progress concerning accuracy and runtime performance. They yield
surfaces of impressive quality, e.g., for the Middlebury multi-view benchmark
[16]. Nevertheless, only few of the algorithms can deal with real world data sets
such as introduced by Strecha et al. [18]. Too the best of our knowledge there
are very few methods which are scalable in a way that they can process hun-
dreds or even thousands of high-resolution images, i.e., with tens of Megapixels.
Especially, there are almost no methods which can deal well with image config-
urations with very different distances to the surfaces, which occur, e.g., when
combining images from UAVs and from the ground. Thus, this paper focuses on
the fusion of an arbitrary number of 2.5D models, which are in our case range
images, into one large model including all 3D details.
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2 Previous Work

Algorithms for 3D surface reconstruction are often posed as variational prob-
lems minimizing an error function. Among them are algorithms based on global
optimization that either do not scale well concerning computational and mem-
ory requirements, or have a need for additional information such as the visual
hull of the object. The visual hull is often impossible to estimate robustly for
cluttered scenes. In particular, global volumetric algorithms based on a regular
decomposition of the reconstructed volume, i.e., voxels, can become unfeasibly
complex if they are using graph cuts [2, 15] or total variation [23, 24].

There are only a few algorithms which were designed for cluttered outdoor
scenes. A current detailed overview is given by Vu et al. [21]. Furukawa et al.
[5] presented one of the first algorithm with the potential to handle large scenes
without constraints, such as dominant directions [6]. It generates a semi-dense
set of patches, which is filtered and optimized based on photometric consistency.
Unfortunately, the transformation of the filtered point cloud into triangle meshes
does not scale well for big scenes. Arguably the best results for the full 3D recon-
struction of large outdoor scenes are obtained at the moment by Vu et al. [21].
Their algorithm starts from semi dense point clouds and derives sets of tetrahe-
dra for visibility checks. After a transformation into triangle meshes these are
optimized using graph cuts and variational refinement, restricting the scalability
with respect to the runtime efficiency. A scalable algorithm was proposed by
Jancosek et al [13]. Filtering on a limited number of images at a time makes
their algorithm suitable for large scenes in spite of using global optimization.

Nevertheless, volumetric algorithms using local optimization like level-set
methods [8] motivated by Curless and Levoy [3], or EM-based approaches [17]
have potential. However, they need several improvements to be scalable for large
datasets with challenging geometric configurations.

Local probabilistic optimization is commonly used by algorithms for online
processing. To avoid filtering outliers as postprocessing step, these algorithms
consider the outlier probability in modelling mixture functions, like the sum of
Gaussian and uniform functions [20], or graph-based mixture functions [22, 9].
Those algorithms do not reach the quality of offline-processing. Additionally,
they do not take varying distances from the camera into account either.

Like most volumetric approaches, our algorithm is based on range image in-
tegration, as proposed by Curless and Levoy [3]. In their algorithm an iso-surface
is extracted. A high surface quality is obtained because the algorithm is opti-
mal in the least squares sense. A combination of cumulative weighted signed
distance functions is the basis for the extraction of the surface minimizing the
least squares distance to all depth maps. A simple, but robust algorithm for
multi-view reconstruction based on this algorithm was presented by Goessele et
al. [8]. Unfortunately, the least-squares minimization is not suitable for vary-
ing surface-qualities. It is essential to consider the quality of the surfaces when
dealing with surfaces imaged from strongly differing distances.

We extend these algorithms in three aspects: Firstly, using multi-resolution
voxels with dynamic sizes. Like introduced by Fuhrmann et al. [4], our algo-
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rithm can model surfaces acquired in configurations with variable distances.
Secondly, by using the Gaussian Cumulative Distribution Function (CDF), we
also a employ a cumulative weighted distance function, even with a sound sta-
tistical background. Thirdly, by adding an additional postprocessing step that
filters conflicting outliers, we achieve an improved completeness rates. The out-
lier detection is visibility-based, like presented by Merell et al. [14].

3 Reconstruction Pipeline

The reconstruction pipeline of our algorithm consists of the following steps:

1. Estimation of disparity maps by Semi-Global-Matching (SGM) [11, 12].
2. Propagation of discrete 1D probability functions on the lines-of-sight.
3. Optimization of points on the surface based on the probability function.
4. Filtering by visibility checks.
5. Triangulation of the resulting point cloud.

For the estimation of disparity maps we use SGM, as it maintains small
details due to pixelwise matching and has low processing time and memory re-
quirements for large images. Expressing the disparities as probabilistic functions
needs further discussion of the geometric error model, as described in Section 4.

Step 1 can be performed for all suitable image pairs separately. To allow for
parallelization of the next steps, the volumetric space is divided and merged
at the end. This allows processing on systems with limited main memory and
offers scalability for very large scenes. Furthermore, it makes computing faster,
for example on clusters with hundreds or thousands of cores. For dividing space,
the algorithm runs in a preprocessing step through all depth maps and divides
the total volume in subvolumes with the size depending on model resolution,
memory size and number of cameras in a subarea. For merging the subvolumes
the overlap of neighboring subvolumes has to be big enough so that meshes are
equivalent in the merged volumes. More precisely, the overlap has to be at least
twice of the local neighborhood used for meshing. This allows for a very easy
fusion process as the meshes are equivalent in the inner half of the overlapping
area. Triangles in the outer half are simply not considered. Steps 2 to 4 are
complex and thus described in Sections 4.2 to 4.4. For step 5 we use a local
triangulation for building the final triangle mesh incrementally [1].

4 Volumetric Modelling

We represent depth as a random variable. Because it comprises the most im-
portant part, at the moment we only consider the error in the direction of the
line-of-sight. This error depends on four geometric parameters [10]:

∆Pz = ∆p
P 2
z

ft

√
2 , (1)
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with the length of the baseline t, the focal length of the camera f , the depth Pz

and the expected error of the disparity ∆p. Besides the last, all other parameters
are known for a calibrated image set.

Basically, there is no information about the error of the disparity. Setting it
to a constant of half a pixel was empirically found to be a good approximation.
We consider a Gaussian N (µ, σ) with expected value µ = dxi , where dxi is the
depth derived by SGM, and standard deviation σ = ∆Pz with ∆p = 0.5.

In summary, the function for the expected noise of a depth value can be
expressed by

p(dxi ) = N (dxi , 0.5
(dxi )2

ft

√
2), (2)

4.1 Choice of Voxel Size

An important step to efficiently handle disparity maps of varying density is the
choice of the voxel size vs in the octree. In our case the octree cubes correspond
to the voxels. Because the fusion of data is only reasonable for related data,
the algorithm chooses the voxelsize for all disparities individually. The idea is
that data are fused (cf. Section 4.2) with others having at minimum half and at
maximum double the quality. This is due to the fact, that the voxelsize in an
octree is rising by a factor of 2. Hence, the voxel is chosen, which has a sidelength
of σ < avs < 2σ, where a is a smoothness term. For practical applications
a ∈ [2, 3] was found to be suitable to maintain the details, but to avoid pitted
surfaces. Our algorithm estimates a depending on the number of cameras in the
neighborhood. The range is from a = 2 for a small number of cameras, like the
TempleSparseRing from the Middlebury multi-view benchmark [16], to a = 3 for
the complete Temple sequence. To avoid quantization artifacts, the probabilistic
function is established also in a second, neighboring voxelsize.

4.2 Propagation into Probabilistic Space

We allocate a probability to those voxels in discrete space, which lie on the line-
of-sight of our depth value in an area da around the estimated depth, whose size
corresponds to a couple of voxels. This area can be seen as an L∞ norm, which
reduces the influence of outliers on the surface quality. For our results, da was
set to a size of eight voxels.

Along the line-of-sight we estimate the probability, that the voxel vi lies
behind the detected surface (Fig. 1). We use p(v0i ) and p(v1i ) for the probability
that a voxel lies in front or behind the surface, respectively.

As the probability p(v1i ) is the integral of the Gaussian from −∞ to the
distance ai of the camera center to the intercept point of the line-of-sight and
the voxel vi, one can take the Gaussian CDF instead of the Probability Density
Function (PDF) to estimate it immediately:

p(v1i ) =

∫ ai

0

Npdf (x)dx = Ncdf (ai) (3)
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Fig. 1. Discrete probability of surface – Point with pixel coordinate xi and expected
distance dxi

i . σd
xi
i

is the standard deviation of the 3D point position along the line-of-

sight. The colored voxels represent the probability that a voxel lies behind the surface.

The Gaussian CDF is numerically estimated with the Gauss error function.
Probabilities on different rays from the same image that fall in the same

voxel are averaged. Because for several occupancy grid approaches Bayes theorem
proved to be appropriate, we employ a statistical framework for fusion of data
from different images. We write the Bayesian theorem assuming independent
measurements as:

p(v1i |D = d) ∝ p(v1i )
∏

j∈1,...,n
p(Dj = dj |v1i ). (4)

Since the probabilistic state of the surface is binary, i.e., a voxel is either
occupied or not, we use the Binary Bayes Filter for probabilistic fusion [19].

li = log
p(v1i )

p(v0i )
= log

p(v1i )

1− p(v1i )
=

∑
j

log
p(v1ij)

1− p(v1ij)
(5)

4.3 Optimization of Point Positions on the Surface

The surface is characterized by neighboring voxels for which the probability that
one is in front of the surface and the other is behind the surface is maximum.
To achieve a better accuracy than the estimated distances dix, we make use of
the probabilistic voxel grid described in the last Section. We shift the estimated
point along the line-of-sight for twice the standard deviation in both directions.
We then consider all voxels I in the area and take the neighboring two, for which
the product of probabilities that one is in front of and the other is behind the
surface is maximum:

arg max
i∈I

(p(v0i )p(v1i+1)) . (6)

To obtain the position with subvoxel accuracy, we fit a Gaussian to the neigh-
boring voxels of vi and vi+1. For this we use Maximum Likelihood estimation:

dn =
1

4

i+2∑
j=i−1

dj
elj

1 + elj
(7)
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4.4 Filtering of Point Space by Visibility Checks

Octrees allow for efficient local consistency-checking based on raytracing. Even
though raytracing is a global method, we use it locally because outliers have a
detrimental influence on the surface quality particularly if they appear nearby.
Solitary outliers are ignored in the later step of mesh generation. The idea of
local raytracing is to filter conflicting points having relative lower quality as they
occlude others with a better quality. In our case the quality is described by the
maximum probability of the voxel surface estimated by function (6).

For all voxels v, which have been classified as occupied above, consistency is
checked. Rays are cast to those cameras the voxel has been seen from. If there
is another occupied voxel on the ray, a conflict is detected. For all voxels the
maximum quality of conflicting voxels i on all rays is saved. Those voxels are
filtered, whose qualities are worse than the highest quality for all conflicting
voxels. If a conflict occurs for voxels on different octree levels, the voxels on the
lower resolutions are filtered immediately.

5 Results

We present results for different data sets ranging from laboratory data to large
area outdoor models. The given runtimes relate to parallel processing on a cluster
with hundreds of CPU cores. A 32 bit architecture is used, so no more than 4 GB
of RAM is used per core. All data sets are processed with the same parameter
settings. The multi-resolution capability is demonstrated by Figs. 2 and 4.

Fig. 2. Textured and shaded multi-resolution 3D model from 54 images (left column).
The size of the largest voxels is about 200 times larger than the size of the smallest.

5.1 Compact Objects

Our algorithm is designed for big cluttered data sets of outdoor scenes. When
evaluating it on the Middlebury data sets [16], the untextured laboratory back-
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Fig. 3. Evaluation for the EttlingenFountain and Herzjesu8 sequences [18]. In the left
and centre images the absolute error ranges from 0.002m (white) to 0.06m (black).
The right figure shows the cumulated error function of the absolute error in meters.

ground causes spurious responses around the silhouettes. As this does not occur
in cluttered scenes, we filter all disparities of the dark background to obtain
results which can be compared to other algorithms. With this constraint we get
state-of-the art results for all data sets from sparse to full sequences.

Because our algorithm assumes very accurate calibration of the image sets
and does not consider texture in the optimization step, our results do not keep up
with the best global methods. However, for the full sequences, where the redun-
dancy of the images compensates for the calibration inaccuracy, the probabilistic
optimization leads to results comparable to the best in the Dino sequence which
is very sparsely textured. Particularly on those data sets with a lack of texture,
algorithms using global optimization tend to overfit. In the Middlebury ranking
[16] we obtain on average only a place in the middle of all algorithms, but we
are able to handle all datasets, from sparse to dense sequences. However, by op-
timizing locally we are able to process the full sequences in parallel in a couple
of minutes, setting our algorithm apart from others. In comparison with Goes-
sele et al. [8] we achieve on average a similar surface quality (0.58mm [8] versus
0.615mm), but much better completeness rates (67% [8] versus 90%). This is a
considerable improvement, even considering different densities of the underlying
stereo techniques. It should also be noted that in contrast to [8] we do not use
additional information like the slant to the surface.

5.2 Large Buildings

A benchmark test set was provided by Strecha et al. [18]. Unfortunately, the
evaluation is not provided any more. LIDAR data but without accuracy infor-
mation is available as ground truth for the EttlingenFountain and the Herzjesu8
sequences. Thus, we could conduct only an evaluation measuring the absolute
instead of the relative error (Fig. 3) and, therefore, a numerical comparison to
other algorithms is not possible. Visually, our results almost reach the quality
of the algorithms using global optimization like Furukawa et al. [5]. Particu-
larly, scalable algorithms like Jancosek et al. [13] achieve a much lower quality.
Additionally, we obtained results that contain even tiny details of the scene as
shown in Fig. 4. Our algorithm is one of the first working on dense depth maps
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Fig. 4. Result for Strecha’s data sets. The upper image shows a combination of the
Ettlingen10, Ettlingen30 and the EttlingenFountain images in one model. The region
to the right of the fountain shows shows a transition between very different resolutions
(cf. also in detail in the right – top: low versus bottom: high). The lower image shows
Herzjesu25 with small details as the metal bar (top) and the stair railings.

and reaching state of the art quality. I.e., it has no tendency to generate ghost
surfaces in empty areas like algorithms working on sparse point clouds.

We measured the runtime for the largest sequence of Ettlingen30. 3D space
was divided in 100 subvolumes which were processed in parallel. The total run-
time amounts to one hour, mainly split in depth estimation (≈ 20 min), modeling
(≈ 30 min) and meshing (≈ 10 min). The runtime could be further reduced by
using more cores and more subvolumes.

5.3 Large Area Models

Our method makes it possible to process a nearly arbitrary number of calibrated
high-resolution images. For demonstration we processed a data set acquired with
ten Megapixel cameras on different UAVs. It shows a village with a large number
of buildings in more then 600 images.

The model, for which one view with details is shown in Fig. 5 was computed,
based on over thousand submodels with a total runtime of about five hours.
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Fig. 5. 3D model of a village from 603 images made with UAVs showing small details.

6 Conclusions and Outlook

A flexible multi-resolution approach for multi-view stereo reconstruction has
been presented. Because it uses local optimization, it allows for the 3D recon-
struction of scenes of nearly unlimited size with complex imaging configurations.
Furthermore, the images are processed in parallel at any time. In spite of this,
we obtain a quality that is state of the art for ambitious image sequences.

We made three main contributions. First, a local multi-resolution approach
for optimization of range images suitable for images taken from very different
distances and thus varying detail. Second, a probabilistic function of a 3D point
using the Gaussian CDF providing a better statistical background for fusion of
different qualities. Third, a postprocessing step for filtering occlusions having a
lower quality in terms of the probabilistic function.

Concerning future work, several issues regarding error modeling of points
need to be analyzed in more detail. Currently, points are represented as random
variables with a Gaussian probability function of the disparity error that is
assumed to be constant. Furthermore, also other attributes such as the strength
of the texture and the angle with the normal vector of the surface, e.g., derived
from nearest neighbors, probably have an influence on the disparity error. At
the moment no 3D regularization is considered. There is a potential to get a
better completeness using a local regularization term. Finally, the probabilistic
representation allows us to take additional information like the covariance of the
projection matrices from calibration into account.
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