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Abstract. Literally thousands of articles on optical flow algorithms
have been published in the past thirty years. Only a small subset of
the suggested algorithms have been analyzed with respect to their per-
formance. These evaluations were based on black-box tests, mainly yield-
ing information on the average accuracy on test-sequences with ground
truth. No theoretically sound justification exists on why this approach
meaningfully and/or exhaustively describes the properties of optical flow
algorithms. In practice, design choices are often made based on unmo-
tivated criteria or by trial and error. This article is a position paper
questioning current methods in performance analysis. Without empiri-
cal results, we discuss more rigorous and theoretically sound approaches
which could enable scientists and engineers alike to make sufficiently
motivated design choices for a given motion estimation task. 1
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1 Introduction

The aim of optical flow (OF) algorithms is to compute a motion vector field
based on an image sequence (the problem of defining OF properly is discussed
in Section 2). OF analysis in image processing and computer vision is a compara-
tively young field of research with an approximate birthday in the early 80ies [1,
2]. Nonetheless, for more than thirty years, many solutions for OF problems have
been proposed: a search on Google Scholar reveals that about every ten years
the number of existing publications with the term ”optical flow” appearing in
the title doubled, reaching around 3000 this year (cf. Figure 1)2. Among these

Fig. 1. Cumulative number of publications with optic or optical flow in title based
on scholar.google.com (no patents, articles only in the fields ”Engineering, Computer
Science, and Mathematics”, these fields are defined by Google).

articles, around 150 have been published in four major journals (IJCV, PAMI,
IP, CVIU) since 1980. Counting the number of publications in these journals
using the term ”optical flow” in the full text, the number for these journals goes
up to around 1600.

A lot of the investigations in these papers deal with the question whether a
problem for a specific application can be solved at all with image processing tech-
niques. Today, it seems likely that many interesting problems might be solved
using image processing. Although we focus on OF estimation methods, this dis-
cussion also relates to other image processing and computer vision methods such
as stereo estimation, medical registration, segmentation and denoising.

Yet, with the advent of commercial applications and a ripening field of re-
search, new challenges arise. In this position paper, we specifically discuss the
problem of performance analysis which is becoming more and more important in
applications such as those involving security risks (e.g. driver assistance systems).
We use the term performance analysis rather than benchmarking, evaluation or

2 Source: scholar.google.com, 26.07.2011
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ranking with the intent to draw attention to the fact that the performance of an
algorithm consists of a set of criteria (or requirements) that can vary with the
needs of different applications and types of data. As we will discuss, we want to
emphasize that performance characteristics of an algorithm cannot be described
by a single scalar value.

Starting out from a discussion of contemporary performance analysis ap-
proaches in OF problems, we will address each challenge in performance analysis
in a separate subsection of this text. Our aim is not to define a new paradigm
for performance analysis for OF problems. Neither do the authors offer exper-
imental results on or implementations of existing methods. Instead, the aim of
the paper is:

– to review related literature,

– to create awareness for new problems arising due to the increasing number
and complexity of existing OF algorithms,

– to show current trends of ongoing discussions among scientists as well as
practitioners,

– to propose various new ways to characterize computer vision algorithms,

– and thereby to suggest new fields of research addressing the problems iden-
tified in these discussions.

1.1 Related Work

Both experimental and theoretical performance analysis of algorithms have a
long-standing history in computer science and mathematics (e.g. rooted in com-
plexity theory), whereas system characterization and specification is a similar
strand of research in engineering (e.g. requirements analysis in software engi-
neering).

Although many OF algorithms have been suggested, only four publications
on their performance analysis exist. Chronologically, the first ones date back to
1994 [3, 4]. At this point around 500 papers with optical flow in their title had
been published. In 2001, McCane et al. [5] created a new benchmark, including
new synthetic scenes and a free software framework to generate new datasets.
The most influential paper was published in 2007 by Simon Baker et al. [6, 7]. The
authors not only created new datasets (with extraordinary efforts) and evaluated
a new set of algorithms; they also created a website known as Middlebury-
Database which has since been used by authors of new OF algorithms to compare
their results with others. Today, around forty algorithms have been added to this
database. However, compared to the very large corpus of existing work in this
field, the number of evaluations is still small and lacks a theoretically justified
framework.

The remainder of this section deals with papers on general theoretical ap-
proaches to performance analysis in computer vision. In later sections, we will
address related work on each of the more specific topics we believe to be relevant
for performance analysis of optical flow methods.
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In the late 90ies, a number of workshops have been held dealing with per-
formance analysis for computer vision in general [8–10], laying out a roadmap
on why and how this strand of research should and could be established in the
community. A general discussion of ten pros and cons for performance analysis in
image processing was listed by Förstner [11]. This paper very much reflects the
facts that on the one hand performance analysis can be very difficult, expensive
and cumbersome, but on the other hand, it is also very important and feasible
in terms of longterm research goals. In the same workshop, Maimone and Shafer
[12] state six steps necessary for performance analysis: mathematical analysis,
simulations without noise, simulations with noise, empirical testing with real
data with full control, empirical testing with real data with partial control and
empirical testing with uncontrolled data. A year later, these steps have been
cited in a workshop editorial by Christensen et al. [8]. In 1998, Matei [13] ad-
dressed the first step by suggesting a statistical framework he called ”resampling
paradigm”, whereas Klausmann et al. [14] concentrated on the practical question
on how to evaluate performance based on given applications. They were the first
to explicitly state that performance characterization and algorithm ranking are
two different tasks which should be addressed only if a clear definition of the
application of an algorithm is given. Therefore, they define a requirement profile
and an assessment function respectively. They argue that: ”The assessment of
computer vision algorithms is more than just a question of statistical analysis of
algorithm results. Rather, the algorithm field of application has to be taken into
account as well.”

In 2001, Courtney and Thacker [15] stated that current research focuses too
much on innovation and sophistication and that performance analysis is not
carried out in a well-motivated, rigorous manner. They explicitly mention that
showing results on a few test images is insufficient, because it does not allow a
statistical analysis. They further argue that computer vision should strictly be
regarded as a branch of applied statistics. To carry out performance analyses
their approach is to distinguish three evaluation types: Technology evaluation
(groups of generic algorithms for generic applications), scenario evaluations (spe-
cific algorithms for specific applications) and operational evaluations (analysis of
the full end user system). In a series of later papers the authors refine these ideas
and suggest more concrete methods on computer vision system design [16–18].

Luxen [19] suggests to accumulate large amounts of data such as many views
of the same object to achieve low errors. The results can then be used as al-
most noise-free ground truth. He also suggests to carefully characterize input
and output data of computer vision algorithms in order to better understand
under which circumstances which output quality can be expected. Similar to
[15], Luxen distinguishes four levels of abstraction in computer vision systems
design: intentions (e.g. image matching), functions (e.g. least squares fitting),
algorithms (e.g. matrix inversion), implementations (concrete code realizing an
algorithm). He argues, that each performance characterization can be based on
one of these four fields. Hence, both empirical as well as theoretical studies were
needed to fully characterize a system. Finally, similar to [12] he distinguishes
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three types of reference data for real environments: the first type are human an-
notations (ground truth), the second type is defined by a pair of reference data
(without ground truth) as well as reference code and the third type is defined
by an arbitrary implementation of an algorithm, but predefined reference input.
We will discuss the generation of reference data in Section 3.4.

Further discussions on performance analysis in general can be found in [20]
and [21]. The authors of [20] argue that the whole system (including all algo-
rithms in a processing chain) need to be understood as one large optimization
problem which should be solved based on a very large reference database. In
[21] two important aspects are the notion that performance metrics are sub-
ject to change over time and that ground truth is very often easy to obtain in
case the problem to be solved is on such a high level that humans can simply
answer yes/no-questions to create ground truth. The authors also note the in-
teresting fact that currently document analysis [22], face recognition [23] and
tracking/surveillance [24] are predominant fields with many and very detailed
performance analyses being published.

Most recently, in a book draft [25], Burfoot picked up on the points of [11],
but in a much more explicit way. According to the author, ”The weakness of
evaluation in computer vision is strongly related to the fact that the field does
not conceive of itself as an empirical science. [...] Instead [...], vision researchers
see themselves as producing a suite of tools.” (p.103). Burfoot further states:
”A critical reader of the computer vision literature is often struck by the fact
that different authors formulate the same problem in very different ways.[...]
The cause of this ambiguity in problem definition is that computer vision has
no standard formulation or parsimonious justification. [...] Vision papers are
often justified by a large number of incompatible ideas. [...] They will also often
include completely orthogonal practical justifications, arguing that certain low-
level systems will be useful for later, high-level applications.” (p. 104).

He also sees similarities to historical problems in other fields of science such
as physics and chemistry: ”It is almost as if, by viewing birds, researchers of an
earlier age anticipated the arrival of artificial flight, and proposed to pave the
way to that application by developing artificial feathers.”(p. 106) ”The argument
of this book, then, is that the conceptual obstacle hindering progress in computer
vision is simply a reincarnation of one that so long delayed the development of
physics and chemistry.” (p. 108) ‘”The difference is that physicists can eventually
determine which explanation is the best. One crucial aspect of the success of the
field of physics is that physicists are able to build on top of their predecessors’
work.” (p. 105)

We would like to encourage a discussion on these hypotheses with respect
to optical flow estimation. In the remainder of this work we will first review
what is actually meant by the term ”optical flow” (Section 2). Then, we suggest
a number of approaches to consolidate optical flow estimation research in the
future.
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2 Defining Optical Flow

Before we can characterize the properties of an algorithm, we need to clearly
define what we mean by ”optical flow algorithm”. Using the notion of a function
signature in programming, we therefore ask for input and output datatypes. Sev-
eral definitions can be found in textbooks (e.g. [26–28]). According to Burton
and Radford [26], the term ”optical flow” is defined as: ”the pattern of apparent
motion of objects, surfaces, and edges in a visual scene caused by the relative
motion between an observer (an eye or a camera) and the scene.”. This defines
the output datatype to a certain degree. Remaining questions are for example
whether dense or sparse flow fields need to be found; in case the actual vision
system is interested in segmenting an image, the motion contours might be of
interest. For tracking applications, the 3D motion of a physical object computed
from the flow field could be the output whereas for motion detection, a thresh-
olded flow field might suffice.

The question for the input datatype is more difficult to answer due to several
reasons.

First, there often is no notion about the kind of images used as input. Some-
times images come from different spectra (e.g. infrared, x-ray, ...) or optical
systems (e.g. fisheye lenses, omnidirectional cameras) and sometimes not all
pixels in the image contain useful information (e.g. in the case of particle im-
age velocimetry as defined in [29]). Second, mostly two images are assumed as
input, therefore forbidding the use of more than two images in a sequence. Ad-
ditionally, depending on how strictly this definition is interpreted, it implicitly
assumes that there is a bijection, mapping pixel locations in the first image to
locations in the second image. Thus, on a discrete grid, occlusions, divergences
and convergences are assumed to be negligible, leaving only globally constant
translations and rotations as possible outcome of optical flow algorithms. These
limitations can be overcome by extending the orthodox notion of optical flow,
e.g. by acknowledging and making use of the finite exposure times of images [30].

Of course these definitions are refined or varied in each publication accord-
ingly to describe challenges given a specific application. Usually, all approaches
are subsumed under some general term such as optical flow, medical registration,
stereo estimation or particle image velocimetry. This is useful to group subsets
of OF algorithms with respect to their application domain and typical model as-
sumptions. However, this terminology comes with two disadvantages: first, it is
often unclear which application domains are associated with one of these groups.
For example, a temporally consistent, non-dense algorithm for pixel-accurate es-
timation for motion utilizing more than two image frames of a sequence at once
can be considered an optical flow algorithm. On the other hand, the algorithm
cannot easily be compared by means of the Middlebury database for optical
flow evaluation because the number of frames of the test sequences might be too
small to yield good results.

The second disadvantage is that it creates the illusion in the mind of the
reader, that those algorithms are comparable in their general performance. For
example, an algorithm estimating motion in image sequences recorded from in-
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side a car in order to ultimately assist the driver in detecting potential obstacles
might be highly similar to an algorithm estimating the motion of a swarm of
bees in their nest in order to ultimately understand the communication encoded
in their dance. Yet, each algorithm can be based on completely different as-
sumptions such as there is a planar street on which the camera is moved or that
the bees move on a hexagonal grid. The algorithms might also address differ-
ent problems as for example the occlusion and translucency of cars or motion
blur of the bee’s shaking bodies. Furthermore, the outcome of the algorithm
might be subject to requirements such as sub-pixel accuracy for time-to-impact
computation versus good motion boundaries for bee-body segmentation.

Due to these disadvantages of adding all OF algorithms to a single group,
we believe that a very careful categorization based on the properties defined in
the following sections is crucial for further advancements in the field.

As correspondence problems are mostly ill-posed, prior knowledge about the
estimates to be computed is always needed. This knowledge should be well-
understood and described as well as possible and also be as accurate as needed
for the task. On the other hand, it should generalize well over many types of
input data. Therefore, as in machine learning, a trade off between generalization
and specialization for the model needs to be found. This condenses to the ques-
tion: which model is too general and which is too specific? In contrast, current
approaches to performance analysis try to categorize existing algorithms either
based on the employed optimization framework (e.g. local versus global and vari-
ational versus graphical models) or are based on a single scalar output criterion
such as the average endpoint error (defined as Eep(x) = ||u(x) − g(x)||2 with
x being a pixel location, u(x) = (ux(x), uy(x))T the computed flow and g(x)
the true flow, respectively). Yet, instead of being fixed to a single criterion such
a ranking needs to take into account all requirements of a given application.

Given a system that uses correspondences as input data (an application),
requirements analysis (cf. e.g. [31]) helps to understand how specific the model
can be without loss of generalization within the bounds of the application do-
main. But working with requirements implies knowledge about the application
domain. Hence, in order to clearly define OF algorithms we need to create a
categorization of applications, which will be discussed now.

2.1 Application Categorization/Systematization

In order analyze the appropriateness of a model for a given application, we need
to know the application. On the other hand, there might be an infinite number of
yet unknown applications for OF algorithms. It seems unlikely that we can first
enumerate all applications and then analyze the performance of each and every
algorithm for each and every application. System engineers (cf. e.g. [32]) found
a way around this problem by identifying a number of meaningful and intuitive
properties for each system component which are measured and then listed in
a specification sheet. These properties are selected by finding those which are,
ideally, important for as many relevant applications as possible. In order to select
the most indicative properties, all currently available applications are considered.
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Then, by experimentation, system properties are selected and tested for their
usefulness.

Currently, the two most important properties for OF algorithms seem to be
average endpoint error (disparity error in stereo) and (to some extent) algorithm
complexity (computation time, memory efficiency). By looking at some well-
known applications we will see that there is a variety of other properties that
are important and sometimes contradicting each other.

For photogrammetry and 3D reconstruction [33, 34] correspondences are the
basis for triangulations: if the 2D position of the same 3D point is known for two
or more views in a number of images, the 3D position can be reconstructed via
projective geometry. The accuracy of this reconstruction largely depends on the
accuracy of the correspondence (which, in turn, depends on system configuration
parameters such as camera baseline, etc.; cf. e.g. [35]). Such methods typically
require a large number of correspondences which are not spatially correlated by
regularization techniques. The correlation due to these (in general necessary)
techniques is a severe problem in statistical analysis as it is difficult to charac-
terize. If the regularization is data dependent or robust estimators are used, the
problem becomes even more theoretically involved.

As soon as very large scenes have to be reconstructed, speed and memory
efficiency become an issue as well [36]. Here, a tradeoff between speed and ac-
curacy has to be found. This leads to the notion of ”scalable algorithms” where
an optimum tradeoff can be found by adjusting system parameters.

In robotics and driver assistance systems, OF algorithms have different re-
quirements: in this scenario the task often is to merely detect objects such as
traffic signs, the ground plane or sources of danger. Here, speed, memory and
energy consumption play a crucial role. On the other hand, sparse flow fields
often are sufficient, e.g. for navigation and localization [37, 38].

Correspondences are also used to interpolate intermediate frames between
two consecutive time steps of an image sequence [7, 39]. A related case is stereo
baseline adjustment or, more general, view synthesis based on multiple images
[40]. Software companies involved in cinematic movie postproduction such as
The Foundry (Nuke) implement a number of (modified) methods known from
literature but are not always published [41, 42]. In these applications the corre-
spondences need not necessarily be physically correct; the most important prop-
erty often is is that they are temporally consistent and can be used to produce
results which are pleasing to the eye.

The opposite is the case in scientific measurements. Application scenarios
are for example the mensuration of water waves or plant growth in environ-
mental physics [43, 44], estimation of air streams around objects [45], weather-
forecasting [46] and the analysis of fluid motion in heart-assist devices [47]. In
all these cases, a small endpoint error of the flow vectors has the highest pri-
ority, whereas speed often plays a minor role. Furthermore, the confidence (cf.
Section 3.2) of each individual measurement needs to be estimated to allow
researchers to asses the outcome of each experiment. Interestingly, for these
applications, completely parallel fields of research with little overlap to image
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processing or computer vision have been established [29, 48], bringing up simi-
lar concepts of correspondence estimation, but focusing on different approaches
(e.g. block-matching for motion estimation [49]).

A number of other fields of research deal with optical flow, such as action
recognition [50], video surveillance [51], video compression [52], video annotation
[53], supervision of elderly people [54], swarm analysis of beehives [55] as well as
research in zebrafish embryo development [56].

The abundance of existing and possible applications indicates that a complete
overview of applications is difficult to define and maintain. On the other hand,
based on the requirements of a subset of these applications, a set of more abstract
algorithms properties could be found. Similar to specification sheets of electronic
system components, we believe that OF algorithms can be described by carefully
characterizing input and output data as well as system properties.

Once a definition (or a set of definitions) for algorithms has been found based
on applications and their requirements, we would like to understand how well a
given algorithm performs. To answer this question, several challenges have to be
solved. This will be discussed in the following section.

3 Challenges in Performance Analysis

We identified five points to be considered to thoroughly characterize the perfor-
mance of an algorithm:

– Input data characterization can help to organize typical image sequences
into categories with similar properties (Section 3.1).

– Output data characterization should not only evaluate the accuracy of OF
methods. Instead, we suggest a list of six important properties of output
data (Section 3.2).

– System properties describe the technical aspects of speed and memory con-
sumption as well as modularity and engineerability (Section 3.3).

– The problem of ground truth generation is largely unsolved, but is one of
the most crucial as well as difficult aspects of performance analysis for OF
algorithms (Section 3.4).

– Finally, well-motivated performance metrics for the comparison of flow fields
have to be found (Section 3.5).

Each of these points is carefully motivated in the following subsections. Related
work will be discussed along with suggestions how each topic can contribute to
a more thorough and theoretically motivated approach to OF performance anal-
ysis. In Section 4, we will discuss hypotheses why so few performance analyses
for OF are currently available and why a detailed consideration of each of our
points could boost both quality and quantity of optical flow research.

3.1 Input Data Characterization

As discussed above, the type of data inserted into an OF algorithm is not always
sufficiently described as ”image pair”.
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Qualitative Characterization First steps in input characterization could be
to describe the image acquisition process and the content of the scenes for which
the algorithm should work. In many specialized publications as for example in
medical image registration the mode of data (x-ray, ultrasound, ...) is usually
defined clearly. To extend this description of input data it would be beneficial to
describe the full imaging setup including sensors, lenses, lens settings (numerical
aperture and focal length), light sources (incident angle, physical shape, spectra),
surface material properties (reflectance functions), etc. This is usually done in
particle image velocimetry were the setups vary largely [29]: in this special case
the input data is a 2D image generated laser sheet that visualizes particles. Here,
the motion is considered to be truly 2D-dimensional so that apparent flow and
physical motion coincide.

Describing and categorizing the acquisition process and the content of the
scenes creates awareness for the task the algorithm was made for, but it will often
be difficult to exhaustively explore the data when the algorithm is supposed to
work well and when not. Another way to solve this challenge might be the
analysis of large amounts of input data ideally fully describing inputs which are
suitable for the algorithm.

Quantitative Characterization Local feature vectors containing e.g. orien-
tation and scale information could be used to decide whether a given scene is
similar enough to yield acceptable results with the OF method at hand. It might
be useful if these features were directly related to known critical situations such
as occlusions, low amounts of texture, illumination changes or large motions.
Also global features describing the image or the scene as a whole and comparing
it to sequences with known outcome might characterize input data in a useful
way. However, it remains to be studied whether purely local or purely global fea-
tures can express the full complexity of data sufficiently for a given application.

There are several possibilities to characterize the specific set of image se-
quences which are addressed by an OF algorithm. First of all, much research
has been dedicated to scene descriptors (e.g. GIST is popular approach [57]).
Another possibility is to characterize the structure of the (single) images by
more or less standard techniques, such as describing the spatial autocovariance
function; this can be done compactly by setting up parameterized models, such
as separable exponential decay functions. This description should be completed
by at least a rough description of the noise variance. A more careful and de-
tailed characterization would include a parameterized description of the optical
point spread function as well as the spatial sensor element dimensions (fill fac-
tor, or more detailed). The overall characterization of the discrete inter-pixel
autocovariance results then from convolving the optical and sensor characteri-
zation, and the intrinsic autocovariance function of the image, as it would be if
the former two influences were neglectable. This intrinsic image autocovariance
function corresponds to what is often discussed as the ’natural’ and ubiquitous
power spectrum of images per se, often modeled as an 1/f power spectrum.
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The temporal characterization should consider the exposure time(which can
range between a small fraction of the temporal distance of frames, and the full
inter-frame period). More importantly, the temporal characterization should de-
scribe the distribution of apparent 2D velocities (or displacements). In the case
of certain applications, in particular for driver assistance, this distribution can
be significantly different across the image area, and it can also be dependent on
some (measurable) external parameters such as camera motion w.r.t. the fixed
world coordinate frame. These characterizations do of course not capture the full
characteristics of an ’interesting’ image sequence, which is structured into differ-
ently moving objects, has occlusions, etc., but it is already a very solid basis for
optimally designing the derivative operators needed for all differential methods
[58] for designing averaging operators (instead of resorting to ’Gaussians’) [59],
and furthermore to provide useful priors for the entities which are sought.

In an ideal scenario a set of generative input data models (acquired e.g. by
machine learning) could be found which can reliably be used to describe the input
data the algorithm was made for. As will be discussed in Section 3.2, another
intriguing aspect of input data characterization is to identify local regions in a
scene were the model cannot be applied to because it is either too specific or
unspecific.

3.2 Output Data Characterization

As the results of OF methods are used for many different applications, the qual-
ity with respect to a given application can be defined with various optimization
goals. Hence, next to characterizing input data the same should be done for the
resulting flow fields. We will now describe several approaches starting out from
very basic characterization techniques such as using example outputs and qual-
itative evaluations. Then, we will shortly discuss two seldom addressed output
data properties, namely robustness with respect to model violations as well as
temporal consistency of flow fields. Finally, we will review research on the heavily
studied question for accuracy and a currently evolving approach to confidence
estimation.

Example Output The most basic and also a very general way to characterize
output data is to provide example outputs of the algorithm. This can for example
help programmers to check the correctness of a reimplementation of the method
at hand. If large amounts of results are available on various kinds of data it can
also facilitate the choice of algorithm for a specific application.

Qualitative Evaluations Another basic approach are qualitative evaluations.
In creative image processing, aspects such as visualization, rendering and post-
processing of videos, the mere beauty of the results can be of major importance.
Typical cases are frame interpolation as well as view synthesis. In such cases it
might also be possible to ”cheat” on the viewer by creating false results which
have no noticeable effect on the outcome of the application. These scenarios also
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allow for psychological tests analyzing whether the viewer is able to find the
errors in, or is otherwise affected by the algorithm outcome [60].

Robustness With Respect to Model Violations In safety-relevant appli-
cations such as driver assistance and medical systems, the robustness of model
and optimization strategy with respect to data violating the model is of great
interest. As there is an infinite number of possible model violations it is diffi-
cult to devise general tests. One way to describe output data with respect to
model violations is to collect large amounts of data containing common model
violations, such as motion blur, lens flares, etc. Another closely related question
is how fast the results deteriorate if the model is violated. In case the quality
degrades gracefully, the algorithm might be better suited for those applications
dealing with safety issues.

Temporal Consistency For video processing, the temporal consistency of the
algorithm results are often more important than other properties. A test for
this consistency could be carried out by systematically varying original data to
see how the outcome changes. This is similar to sensitivity analysis in linear
models [61] and machine learning approaches. Two recent articles enforcing this
property and showing very promising results are [62, 63].

Accuracy Limits There are several ways to test and compare accuracies of OF
algorithms. A major problem is how to measure the error because there is an
infinite number of options to define an order (or ranking) between two vectors.
Hence, each pair of vectors (i.e. ground truth and measured flow vector) first
has to be transformed into scalar values in order to be comparable. Next to the
regularly used endpoint error [7] various choices exist. One way is to compute
the magnitude of both vectors. This is problematic when ground truth vector
and measured flow vector are on the one hand equally long but on the other
hand point into opposite directions. The magnitude error would still be zero.
Another way would be to compute the angle between two vectors which raises
the analog problem: The vectors can be of different magnitude. Another problem
here is the singularity for vectors of very small magnitude. To weight these two
components of magnitude and angle the so-called angular error defined by [64]
has been suggested. This error weights both parts of the errors in a nonlinear and
unintuitive manner which was not motivated in the original paper (as discussed
in [65]). Depending on the application one error measure or another might be
favorable, a fact that should be taken into account when stating the accuracy
limits of the algorithm.

Once an error measure has been defined, the error distribution needs to
be sufficiently motivated. The problem here is, that this distribution actually
depends on image data, ground truth and measured flow. For example, testing
of the accuracy with a highly textured region that moves at a constant velocity
everywhere yields very low errors with most algorithms. If the images were of
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constant color (one homogeneous region) the results could be completely wrong.
The ground truth could also be arbitrary. Hence, testing on a sequence like
Yosemite [66] (or any other small set of sequences) does not adequately represent
the quality of the algorithm. It just gives a hint that for this type of scene
(e.g. highly textured, smooth and mostly small motion in case of the Yosemite
sequence) the algorithm might actually work well. Thus, in some cases algorithms
work very well for extremely small motions, sometimes for very large motions.
These limits should be well understood and clearly stated.

Furthermore, representing the error distribution only by its mean and vari-
ance for a full image is not sufficient, because only the Gaussian distribution
can be fully described by these first two moments. As motion estimation errors
are far from being Gaussian distributed it might be more helpful to actually
visualize the whole distribution (or parts of it) which in turn raises the problem
of density estimation. Another option could be to show per-pixel error measures
as is done on the Middlebury website.

Finally, it would be helpful if it was known under which circumstances the
most accurate results can be achieved by an algorithm. At first this sounds easy
to answer: Constant motion through time and much texture certainly is a simple
case. Yet, an image of a Gaussian intensity distribution in a 32 bit quantized
image might even yield very accurate results for non-constant motions such as
a rotation. Furthermore, it is interesting to which degree the results deteriorate
with respect to more challenging image data. To the best of our knowledge,
this aspect has never been studied thoroughly although it is very important for
scientific applications where sub pixel accuracy is critical and where it is safe to
make more specific assumptions about the model.

Estimatibility, Confidence and Alternative Solutions Usually, OF algo-
rithms are analyzed by comparing ground truth with actual algorithm results.
This type of performance analysis is carried out by humans prior to the actual
usage of the algorithm in a full computer vision system. Therefore, we call this
technique supervised performance analysis. An alternative approach is to allow
for self-diagnosis of the computer vision system while it is running in its real
environment. We call this approach unsupervised performance analysis which
will be described now.

To motivate three aspects of unsupervised performance analysis consider the
following extreme example of OF input data: A typical image sequence for par-
ticle velocimetry consists of a mainly black background and some hundred (or
thousand) bright moving spots which are physical tracer particles in a fluid. In
the black (homogeneous) regions of the background no motion can be estimated:
a black spot at any location can be matched to almost any other location in the
next frame. We do not care about these occlusions and ambiguities in the back-
ground and simply assume that there is no motion at all. Hence, an algorithm
working on this data should be able to decide where motion can (or should) be
estimated at all. Furthermore, particle velocimetry is often used in environmen-
tal sciences to measure fluid motion, so each and every measurement must come
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with (at least) an error bar, showing the precision of each flow vector. Finally,
occlusion occurs whenever two particles are crossing due to the projective nature
of the image acquisition. Sometimes, it is impossible to decide which particle is
which after they crossed in the image plane. Therefore, our algorithm needs to
be aware of alternative solutions.

More generally, we ask how much information we need to obtain from the
given data and how much we can obtain depending on the intended later use of
the resulting motion:

– Dealing with occlusions and ambiguities can be understood as dealing with
estimatibility: Instead of assuming that at each pixel of an image sequence
a full flow can be estimated, we pose the question whether motion can be
estimated at all and, if so, how many parameters of it [67, 68]. This should
be easier to decide than to actually carry out the estimation.

– To answer the question how accurate the results are we use confidence mea-
sures. This should still be easier than computing an actual flow field.

– Finally, the most algorithmically complex and related task would be to not
only find one motion estimate but to also inform the user about alternative
solutions.

These notions of estimatibility, confidence and alternative solutions also relax the
problem of motion estimation: we do no longer need to estimate flows at each
and every pixel. This reduces both computational cost and potentially harmful
results in safety-relevant applications such as driver assistance systems.

While little literature focuses on estimatibility and alternative solutions for
optical flow, confidence measures have already been studied by Barron et al. [3].
A first paper specifically dedicated to the comparison of confidence estimation
approaches has been published by Bainbridge and Lane in 1996 [69].

Two approaches are regularly being studied: confidence based on input data
(images) and confidence based on output data (flows). As the first does not take
the results into account, they can also be interpreted as estimatibility measures.
A central theme recurring in all image-based confidence methods is the notion
of the local shape of the energy to be minimized. The intuition is that sharp
peaks in the energy indicate high confidence whereas low curvatures allow for
many equally likely flows resulting in a low confidence.

More formally, two highly related theoretical frameworks can be used to de-
scribe this approach: intrinsic dimensions and Fisher information (both defined
e.g. in [70]). Both definitions are based on the local covariance matrix of the en-
ergy of an OF model. Intrinsic dimensions can for example be used to determine
the number of parameters which can be estimated [67]. They have firstly been
applied in computer vision in 1990 [71] and later been adopted e.g. in [27] and
[72, 73]. Fisher information is used to describe the Cramér-Rao Lower Bound
which states that the variance of any unbiased estimator is at least as high as
the inverse of the Fisher information. Therefore, this bound is an indicator of
how accurate the best possible outcome of the motion estimate can be. Another
option is to use the Chi-Square-Test which can be used to verify the appropri-
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ateness of a model in case the errors are normally distributed, unbiased and have
a given assumed covariance matrix.

A different way to estimate confidences is to solely rely on prior knowledge
on flow field statistics. This has been studied for example in [74, 75], where the
spatio-temporal statistics of typical flow fields are learned in terms of a linear
model which is then used to employ hypothesis testing on OF algorithm results.
Similar approaches on learning the statistics of flow fields have previously been
applied to OF estimation (e.g. in [76–78]).

Two recent publications [79, 80] use learning based on multiple clues derived
from both image and flow data for confidence estimation.

Finally, scene-inherent redundancy could be another aspect for confidence
estimation: in case one has three or more images, the results should be consistent
with respect to to the geometry of the scene, e.g. rays to the same scene points
should intersect. This goes beyond the Fisher information, as additional flow
fields of other pairs of images of a static scene can be used to define a local flow
vector quality criterion.

3.3 System Properties

Until now we have focused on the algorithm definition as well as the input and
output data characteristics. All these properties focus on the data an algorithm
receives and computes. Another important point is to understand all relevant
technical details of concrete implementations. Hence, a set of system properties
needs to be found so that engineers can deal with a system to compute flow fields
as black box. We identified three major groups of such properties: the ease of
maintenance and implementation, the possibility of white-box testing and speed
as well as memory usage.

Engineerability and Number of Parameters We understand engineerabil-
ity as the ease of implementation, the possibility to actually implement the algo-
rithm in a commercial application and the possibilities of adapting the method
to the specific needs of engineers. Especially the number of parameters influenc-
ing the output of the algorithm should be small in their number, intuitive to
understand and insensitive with respect to input data. In case the number of
parameters cannot easily be reduced, a set of default values should be known
which can be used to create results of reasonable quality on most images. Com-
mercial aspects such as whether the algorithm is patented or not might also play
a role. This system property can be tested easily by explaining and motivating
the parameters thoroughly and estimating the amount of time a programmer
new to the field might need to implement the method.

Modularity and White Box Testing A common practice in the publica-
tion of OF algorithms is to describe the whole algorithm and to test its output
against test sequences. Regularly, a few crucial parts of the algorithm are either
left out or parameterized differently in order to estimate its effect on the overall
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results. For example, many OF algorithms are built up from many algorithmic
elements, such as multiple similarity measures, image derivative kernels, interpo-
lation techniques, pyramid computation schemes, regularization terms and so on.
Each of these elements has parameters and can even be replaced by completely
different methods. For example, sub pixel image intensities can be interpolated
by a number of interpolation schemes; an image pyramid can be computed by
scaling the original image down by a factor of two or smaller or it can even scale
the image up to some degree [81]; the derivative of an image can be computed
by many kernels or even other filtering techniques ranging from simple central
differences to sophisticated filters specially designed to estimate motion with a
specific similarity measure [82]. Any subtle change in these settings can influence
the overall accuracy of the results and is therefore worth further investigation.

At the core of this problem lies the fact that any OF algorithm is actually
plugged together from a large set of modules available. Some of these modules
as for example image derivative computation are fields of research on their own.
It would be helpful if there were a set of known slots (constituting the elements
of the most general motion estimation algorithm and clearly defining input and
output data) and a variety of possible modules that could be plugged into each
appropriate slot. Then, each slot or module could be scientifically investigated
separately and also in its combination with other modules (white box testing). A
software framework for this approach including a number of example optical flow
algorithms has recently been made publicly available3. The software is based on
a modularization strategy specifically designed for OF algorithms as suggested
in [83]. These modules of an optical flow method are another interesting set of
algorithm properties.

Execution Speed and Memory Usage The time and memory an algorithm
needs to actually estimate the motion of an image sequence usually is a ma-
jor issue in industrial applications. Several aspects range from practical over
completely theoretical to technically highly intricate considerations; to each of
these a complete field of research is dedicated. Therefore, it is very difficult to
judge the execution speed of an algorithm even though it is one if its important
properties.

– Data Reduction: Sometimes, it suffices to only compute motion at a few
locations. Hence, computation time can be saved by finding algorithms that
reduce the number of locations. This is a typical approach in tracking [84]
where usually only very few pixels of an image sequence are investigated.

– Mathematics: For example in global motion estimation techniques (often
including systems of partial differential equations), large linear systems of
equations are generated from the image sequence. Their solution can be
carried out by many methods, ranging from Gaussian Elimination Schemes
over Krylov Subspace Methods to Algebraic Multigrid Schemes. Exploiting
mathematical properties can dramatically reduce computation times. This
was for example shown by [85, 86].

3 http://charon-suite.sourceforge.net
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– Parallelization: With the dawn of multicore desktop computers and general
purpose GPUs, parallelization has become a major topic. Especially in image
processing, parallelization is surprisingly easy to implement (consider e.g. the
convolution of an image with a mask). But also solving large linear systems
of equations can be done in parallel (cf. e.g. [87].

– Code Optimization: It might sound trivial but with a diversity of large im-
age processing libraries for major programming languages (as e.g. C++ and
Matlab) code optimization is far from simple. Nonetheless, this part can also
affect theoretical considerations: if it were for example easier to optimize code
for matrices than for other data structures such as graphs, the choice of the
optimization method would interfere with the actual code design. Today, a
programmer needs to have a deeper understanding on how image processing
libraries implement their functionality in order to optimally exploit its in-
ternal structures. Another problem is that the ways compilers optimize code
is rather unintuitive: one cannot implement all functions in the same way
to yield the same automatic code optimizations. A typical approach is trial
and error, but each compiler optimizes its code differently so that the same
code can be much faster when compiled with a different compiler.

– Choice of Hardware: For some methods, specifically designed hardware rang-
ing from image acquisition device to integrated circuits for numerical opti-
mization can influence the execution speed. For example, modern driver as-
sistance systems contain integrated modules for stereo estimation which de-
liver highly accurate depth maps in real time with very low power consump-
tion. Another example are highly optimized detectors in the large hadron
collider which can detect and transfer collisions in the gigabyte-range per
second. Finally, the famous Microsoft Kinect creates depth maps in real
time with a customized hardware setup for structured light. This shows that
a focus on regular personal computers is not necessarily the best way to
decide whether an algorithm can be fast or whether some specific problem
can be considered as solved.

Hence, investigations into the various complexities of optical flow algorithms are
an important property to be specified.

3.4 Ground Truth Generation

The typical approach to evaluate the quality of output data is to design ground
truth image sequences where the motion is known. Two approaches can be cho-
sen:

1. Synthetic image sequences are generated. Due to the underlying and known
3D models, the true motion field is generated easily from animation data.
The problem with this approach is that rendered images can be unrealistic.
In fact, it is unknown whether renderings are realistic enough to fake real-
world scenes.

2. Real images are recorded. The motion is measured by some technique which
is more accurate than optical flow methods. The problem with this approach
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is that the measurement motion can be inaccurate and that very few accurate
motion estimation techniques are known. This leads to scenes with limited
content such as scenes with rigid body transformations, small sets of a col-
lection of rather artificial items and the like.

The dilemma in ground truth generation therefore is that either the ground truth
flow fields are too inaccurate or the recorded image sequences are too artificial.
The most famous examples for synthetic scenes are the Yosemite sequence [66],
the street and office sequences [5] and the diverging tree sequence [3]. Of course,
they do not cover all types of applications and can therefore only be used as a
hint on how the algorithm might perform on other sequences. One problem with
such sequences is that it is largely unknown whether they represent important or
typical cases of motion together with the rendered images. Furthermore, there are
sequences which are acquired with a real camera. The first well-known example
is the marbled block sequence [4] which contains a few block-shaped, textured
objects standing on a textured underground. Recently, a number of new synthetic
and real sequences have been generated by [7]. Furthermore, the authors of
[7] encourage the publication of results based on a website were everyone can
submit new motion fields. For automotive scenarios three large datasets have
been published [88–90]. They both contain very large amounts of representative
data, but for [89], no ground truth is available whereas [88, 90] partly have been
augmented with ground truth.

Furthermore, the generation of ground truth data is a challenging optical
measurement task itself. Its accuracy should ideally be magnitudes above the
accuracy that can be achieved by motion estimation algorithms. The typical
problem of real sequences is the estimation of this accuracy. In the publications
mentioned above the information supplied from an optical measurement per-
spective seems to be insufficient to clearly state accuracy limits. Hence, even
though in real sequences all physical imaging effects from lens distortion and
noise to light reflections and refractions are modeled properly, it remains un-
clear whether their ground truth is good enough. In such circumstances, when
ground truth of real world data is either difficult or impossible to obtain, one
can either use human-assisted motion annotations [91, 92] and carefully evaluate
the accuracy of the resulting flow fields or one can try to synthetically create
image sequences with known ground truth. One tool to achieve the latter has
recently been suggested by [79].

Then, an open question is whether rendered scenes are sufficient to simulate
the real world with respect to OF methods. Inspired by a first analysis of real
versus synthetic data [88], in [93, 94] the goal was to create the same scene
both in the computer and in reality and to compare the outcome of a given OF
algorithm. In case the two results do not differ significantly, we can conclude that
computer graphics can be used to simulate at least a part of reality. How large
this part is would then be subject of further investigations. Yet, along with [11],
we would like to stress the point that simulated data are absolutely necessary
to prove the correctness and potential accuracy of algorithms.
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Finally, the selection of the (ideally) best datasets is a big and completely
unsolved problem. In practical applications, we are required to evaluate OF
without ground truth. Therefore, we need to believe that the results computed
by algorithms which derive acceptable performance for reference data are also
acceptable for other sequences. However, to accept this meta-criterion, we are
required to accept the pre-assumption that mathematical, geometrical, and phys-
ical properties of the test data are at least comparable to the previously used
reference datasets. Therefore, we need to evaluate the quality of our datasets:
which scenes do represent real data best for a given application?

In current real datasets, the camera often does not move. In synthetic datasets
the camera is often flying smoothly through the scene. Both types of camera
motion seem unlikely in real-world situations such as robotics or driver assistance
systems. On the other hand, in surveillance applications a static camera can very
often be assumed, whereas in airborne settings, a smoothly flying camera might
be a good assumption. Next to the camera motion, the content of the scene and
the motions present in the scene have to be decided on some well-motivated
thoughts. For example, most probably nobody wants to estimate the motion of
fireworks exploding in a breaking ocean wave during a blizzard with big snow
flakes and lightning bolts. On the other hand, difficult sequences such as the
motion analysis of a soccer game during rain with hundreds of strobe lights
triggered by reporters can be highly valuable.

Another problem for the best selection of sequences with realistic camera
and object motions is the length of the sequence: In case motion is temporally
coherent in our reference datasets, we can use the computed results of the pre-
vious frame as a guide to evaluate the results in the present frame. Yet, this
property implies that to evaluate algorithms which will be applied to long image
sequences, we are required to prepare reference image sequences which satisfy
the same temporal motion coherence along the time axis.

Little related work on this topic exists; a first step towards the question of
good datasets was proposed in [95]. Outside the field of OF, Shotton et al. showed
that for human pose estimation it is feasible to build a challenging synthetic test
(and training) dataset [96]. Kaneva et al. used this idea for feature estimation
[97].

Even if ground truth data could be easily generated in large amounts, it
would still be unclear whether a generalization of the image data created across
all fields or even inside each field of applications can be found. Thus, the quality
assessment of something like a general-purpose optical flow algorithm might still
be impossible: We would have to test it with all types of test sequences we can
imagine. Therefore, even if a general-purpose algorithm were found, we would
possibly never be able to identify it. We argue that to alleviate this problem
many more sequences need to be created. If a generative model for input char-
acterization methods (as discussed in Section 3.1) would be found, one way to
use it would be to generate such large amounts of ground truth. As optical flow
scientists usually have a specific type of images in mind, another way to alleviate
this problem is to supply the source code of the algorithms in order to enable
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other scientists to carry out tests with their own data. This method may seem
obvious but is, unfortunately, not always put into practice.

3.5 Performance Metrics

New motion estimation algorithms are usually tested with a number of ground
truth sequences. Until the Middlebury Database was established in 2007, they
where often solely tested against the Yosemite sequence [66]. As an error mea-
sure usually the so called average angular error (defined by [64] and used by [3]
and most successive papers) and its standard deviation over a single frame of
this sequence is reported. Not only is this error measure unmotivated, it also is
inappropriate for the comparison of some typical problems of motion estimation
as is e.g. laid out in [27]. To address these problems, an additional set of perfor-
mance measures was introduced by [7]. But it is not obvious which measure can
best be used to compare the estimated results to the ground truth.

To put it in a nutshell, currently used performance measures are of question-
able use in real-world application scenarios. A lot of future research could be
carried out in this field.

4 Conclusion and Future Research

In this paper we have discussed the importance of performance analysis for op-
tical flow algorithms. A number of algorithm characteristics have been proposed
to help scientists as well as engineers to design improved algorithms or choose
between several options for a given application.

How can we facilitate systematic performance analyses of existing OF algo-
rithms?

In the past much attention was paid to innovation of new methods rather
than consolidation of existing methods. This resulted in an abundance of pub-
lications. To better understand these findings in OF research, we suggest the
following first steps to consolidate existing work.

4.1 Creation of Reference Implementations.

Creating a new implementation of existing methods is a time-consuming task due
to the increasing complexity in current modeling and optimization techniques.
Often, much theory knowledge and programming expertise are needed. Yet, it
would help to have multiple independent implementations of each OF method
for performance analysis.

Implementing an existing method could be rewarded by scientific reputation:
the online journal Image Processing On Line is dedicated to certifying algo-
rithm implementations4, so that peer-reviewed implementations of OF methods
become part of a scientific result. This approach has many advantages:

4 www.ipol.im
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– Peer-reviewed reference implementations would be generally accepted by the
community.

– Comparisons to baseline methods became possible without ambiguity due to
implementation details.

– The workload of reimplementing existing methods is distributed over the
community.

– Performance analyses of new methods become easier.

For future research, we encourage students and scientists to publish peer-reviewed
reference implementations to create a basis for consolidation in OF research.

4.2 Creation of a System Characterization Standard

We have suggested a number of ways to characterize OF algorithms. We showed
that, next to accuracy, speed and innovations in modeling, there are many in-
teresting properties. Characterizing them could lead to new approaches with
very good tradeoffs for the specialization-generalization-dilemma stated above.
This article is a step towards more awareness for system characterization in OF.
Further position papers, workshops or even dedicated journals or conferences
could help to create a system characterization standard which is supported by
a majority of researchers.

4.3 Specialization of Publications on Subtopics in OF

Historically, publishing a new paper in OF is done by reviewing the related
work and describing a model as well as optimization technique. Experiments
are shown indicating that the proposed method works well under reasonable
assumptions. In the nineties, the number of publications was already so large
that it became difficult to exhaustively describe the related work. The first review
papers emerged and authors of new methods concentrated on the closest related
work in order to be able to keep the page limit.

Today, models and optimization techniques become more and more sophis-
ticated and the number of OF publications has grown out of the bounds of an
exhaustive review paper. Additionally, performance analysis has become more
important as engineers need to choose from among thousands of publications
”the correct” method for their specific application. As a result, it became diffi-
cult to give all answers about a new approach within a single publication.

Breaking down the OF problem into parts which can be handled conve-
niently and in great detail within a single article could therefore be beneficial.
One approach could be to only propose a new model in a baseline optimiza-
tion framework and show that the results make sense (but without performance
analysis) and the idea is innovative. Other researchers could create and/or use a
reference implementation to study its properties as proposed in this article. Yet
another group could compare the results with those of other methods. Finally, a
paper about many comparisons could come to a conclusion about the question
which method is most appropriate for which task.

Thus, innovation and consolidation and could be significantly facilitated.
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4.4 Usage of White-Box-Testing for Performance Analysis

Black-box-testing analyzes the properties of an OF algorithm solely based on
its output [98]. The advantages of this approach are that no knowledge about
the internals is necessary and users will experience the same behavior. A dis-
advantage is that it remains unclear which component of the method caused a
change of the system properties: for example, exchanging a scheme for pyramid
or derivative computation can have a large impact on the output.

Whenever multiple modules are modified at the same time, black-box-testing
is no longer suitable to interpret the results: it might be possible that two of three
modified modules degrade the outcome whereas the third modules yields a very
significant improvement. If several results from more than one publication are
to be compared, we simply cannot change one module at a time.

These are reasons to use so-called white-box-testing, meaning that the effect
of each module of an algorithm on the system properties should be analyzed
separately. One approach is to segment OF algorithms into independent modules
and create reference implementations for each module separately. Algorithms
sharing several modules such as pyramid or derivative computation can then
be easily compared. This approach has been described in [83] and resulted in a
freely available, modular software suite called Charon 5.

4.5 Development of a Simple Ground Truth Generation Technique

Categorizing OF applications and finding a way to characterize input and output
data as prerequisites for thorough performance analyses is a difficult task in its
own right. Until a standard approach has been found it would still be useful
to evaluate OF algorithms with respect to specific applications. Creating many
ground truth sequences is a good way to achieve this, but as the number of
applications is very large it is difficult to create so many sequences. Ideally,
everybody should be able to easily create new ground truth satisfying some
well-defined quality constraints. Possible candidates for such an approach would
be synthetic image sequences or 3D scanning. Both ideas need a sound scientific
validation before they can be employed as a black box.

4.6 Summary

We have suggested five directions for future research: reference implementations,
system characterization standards, subtopics for publications, white-box-testing
and simple ground truth generation. A better balance between consolidation
and innovation could be found by these approaches. With this article we hope
to inspire scientists to have a closer look at what has already been achieved in
our field of research.

5 charon-suite.sourceforge.net
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