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ABSTRACT

In this paper we propose a robust hierarchical approach for the estimation of the trifocal tensor. It makes use of pyramids, the sub-pixel
Förstner point operator, least squares matching, RANSAC, and the Carlsson-Weinshall duality. We also show how the trifocal tensor can be
utilized for an efficient view synthesis which we have optimized by parameterizing it according to the epipolar lines.

1 INTRODUCTION

In photogrammetry relative orientation and bundle block adjustment
employing the collinearity equation are standard procedures. The
reasons why additional orientation procedures based on projective
geometry nevertheless are a viable alternative and partly are even
necessary are:

• These orientation procedures make direct solutions available,
i.e., no approximate values and no iterations are needed. This
is often essential for automatic procedures in variable geometry
close range applications.

• With these orientation procedures linear relations between mea-
surements in the images arise without the need to reconstruct
three dimensional (3D) geometry explicitly. This is especially
important for applications such as video communication, where
the goal is to generate artificial views and not 3D geometry.
Representation and projection based on projective geometry are
standard in computer graphics.

Linear projective relations are known in photogrammetry for quite a
while theoretically, though they have seldom been used in practice.
An account of the history of linear methods in photogrammetry is,
e.g., given in (Brandstätter, 1996).

In this paper we concentrate on two things: The robust estimation
of the trifocal tensor from three images and its utilization for view
synthesis. Our major achievements are as follows:

• By means of a hierarchical approach based on image pyramids
we reduce the search space. Efficiency but also robustness are
improved considerably. Highly precise conjugate points are ob-
tained from a least-squares matching of points obtained from
the F̈orstner operator (F̈orstner and G̈ulch, 1987)

• We use the Carlsson-Weinshall duality to calculate a solution
for the trifocal tensor from a minimum of six point triplets. This
is the basis for a RANSAC (Fischler and Bolles, 1981) based
robust algorithm.

• We have optimized the view synthesis scheme proposed in
(Avidan and Shashua, 1998) by linearly projecting the points
as proposed in (Hartley and Zisserman, 2000) and, particularly,
by parameterizing the points according to the epipolar lines.

In Section 2 we introduce basic concepts and notations. They com-
prise the fundamental matrix as it is used as a basic building block of

our orientation procedure and the essential matrix as the view syn-
thesis relies on calibration. Section 3 describes the trifocal tensor
and in Section 4 the point transfer based on the trifocal tensor is de-
tailed. In Section 5 we show how the trifocal tensor can be estimated
from image data. Section 6 summarizes the algorithm we use to es-
timate depth, i.e., disparity, from two images. This is the basis for
view synthesis presented in Section 7. We end up with conclusions.

2 BASICS OF LINEAR ORIENTATION

2.1 Homogeneous Coordinates

Homogeneous coordinates are derived from Euclidean coordinates
by adding an additional coordinate and free scaling. Generally, for
two dimensional (2D) and 3D points holds (Hartley and Zisserman,
2000):

x = λ

(
x

1

)
, λ 6= 0 .

In our notation we distinguish homogeneous 2D and 3D vectorsx
andX, respectively, as well as matricesP, which represent the same
object also after a change of the scaling factorλ (bold), from Eu-
clidean vectorsx andX as well as matricesR (bold italics).

Straight linesl in 2D and planesP in 3D can also be described by pa-
rameters termed homogeneous coordinates. The incidence relation
ax+ by+ c = 0 of pointx and straight linel, i.e., the pointx lies on
the straight linel, reads with homogenous parameters for the straight
line l = (abc)T xTl = lTx = x · l = 0.

2.2 Perspective Transformation

In a local spatial coordinate system with origin in the camera (pro-
jection) centerO and with the image plane given by the equation
z = c, the 3D object pointP (X,Y, Z) is projected to the image
pointP ′(x′, y′) by x′ = cX/Z + x′h, y′ = cY/Z + y′h.

For the general case holds equation (1) given the point in object
spaceX. The exterior orientation is described by projection center
O(X0) and rotation matrixR. The interior orientation is modeled by
principal distancec, principal point(x′h, y

′
h), scale differencem of

the coordinate axes and skew of the axess.

The 5 parameters chosen for the interior orientation are collected
into the calibration matrix:
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With the projection matrix (K is the matrixK multiplied by an arbi-
trary scalar6= 0) we finally end up with

P = KR(I | − X0) and x′ = PX . (2)

With P image coordinates can be predicted linearly from object co-
ordinates. Due to its homogeneity (multiplication with an arbitrary
scalar6= 0 does not change the projection) the3 × 4 matrix P has
only 11 degrees of freedom (DOF).

2.3 Fundamental and Essential Matrix

The fundamental matrix describes the (projective) relative orienta-
tion of the image pair. We assume that we haven homologous points
x′i in the first image andx′′i in the second image. The projection ma-
trices areP1 = K′R ′(I |0) andP2 = K′′R ′′(I | − T).

AssumingR ′ = I , this corresponds to the method of relative ori-
entation of successive photographs To simplify the presentation, we
transform the observed image points in the system of an ideal camera
with projection matrix(I |0). We obtain the reduced image coordi-
nates marked with the superscript index ’k ’ kx′ = R ′−1K′−1x′ and
kx′′ = R ′′−1K′′−1x′′. The condition, that the rays should inter-
sect, implies the coplanarity ofx′, x′′, andT. Presented in the same
coordinate system we obtain

kx′ · (kT × kx′′) = kx′TST kx′′ = 0

with ST = S(T) =

 0 −T3 T2

T3 0 −T1

−T2 T1 0

 .

S(T) is a skew-symmetric matrix for the vectorT with rank 2, which
allows the vector productV = T×U to be written as a matrix vector
multiplication: V = STU = −SUT. Putting things together we end
up with

x′T(K′−1)TR ′ST R ′′−1K′′−1x′′ = 0 .

This relation is linear in the image coordinates of both images, i.e.,
bilinear. With the3×3 fundamental matrix the coplanarity equation
as condition for the homology of image points can be represented in
a simple and elegant way:

F = (K′−1)TR ′ST R ′′−1K′′−1 i.e., x′TFx′′ = 0 .

The latter equation has some important properties:

• Because it refers to the original measured data, there is no need
for a reduction of the image coordinates. The reduction is con-
tained in the fundamental matrix. The bilinear form is linear
in the coefficients of the fundamental matrix. This allows for a
direct determination from homologous points.

• For all pointsx′′ in the second image which lie on the straight
line

l′′ = FTx′ ,

holds l′′x′′ = 0 and, therefore, the coplanarity condition. I.e.,
l′′ is the epipolar line ofx′ in the second image. It can be used
to predict the geometrical location ofx′′ in the second image
in the form of a straight line. The computation can be based
solely onF. There is no need to know the parameters of the
orientation of the two cameras.

The3×3 fundamental matrix has9 elements. AsST is of rank2, the
fundamental matrix is singular with rank2. Because it is additionally
homogenous, it has only 7 DOF. The condition|F| = 0 has to be
enforced, which is cubic in the parameters ofF.

If calibration data is available, the fundamental matrix reduces to the
essential matrixE and its bilinear form

E = ST R−1 rx′TE rx′′ = 0 ,

with reduced image coordinatesrx′ = K′−1x′ andrx′′ = K′′−1x′′.
The essential matrix can be obtained from the fundamental matrix
from E = K′′TFK′.

3 TRIFOCAL TENSOR

The idea of the trifocal tensor and its linear computation was pre-
sented for the first time in (Hartley, 1994, Shashua, 1994). The com-
putation of a consistent tensor was described in (Torr and Zisserman,
1997). (Faugeras and Papadopoulo, 1997) deals with constraints on
the trifocal tensor. In photogrammetry (Förstner, 2000, Ressel, 2000,
Theiss et al., 2000) have described the trifocal tensor and reported
about experiments.

3.1 Trifocal Geometry from the Image Pair

When extending the image pair by another image we basically as-
sume that all three projection centers are different. When they are
additionally not collinear, they form the trifocal plane. This plane
intersects the image planes in the three trifocal linest1, t2, andt3,
which comprise the epipolesei,j (cf. Figure 1). It is important to
note that the three fundamental matricesF12, F23, andF31 are not in-
dependent. They have to comply with the following three conditions
arising from the coplanarity of all projection centers and epipoles:

eT
2,3F12e1,3 = eT

3,1F23e2,1 = eT
1,2F31e3,2 = 0 .

To see why this is true, observe that, e.g., the epipolar line of the
epipolee1,3 in the second image is represented byF12e1,3. e1,3 is
the image point ofO′′′ in the first image just ase2,3 in the second
image. From the latter follows the first condition.

The orientation based on image triplets has some general advantages
over the orientation based on image pairs:
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Figure 1: The trifocal plane

• The orientation can be based upon homologous points in the
same way as on (infinitely long) homologous straight lines.

• Practical experience shows that the local geometry of an image
strip or an image sequence can be much more precisely and,
what is more important, also much more robustly determined
from image triplets and their conditions than from only weakly
overdetermined pairs. This is true for the trifocal tensor but also
for bundle triangulation. Opposed to the latter, the trifocal ten-
sor has like the fundamental matrix its strength in its linearity.
Linearity equals speed and this makes the determination of ap-
proximate solutions, e.g., based on RANSAC (cf. Section 5.2)
possible.

3.2 Derivation of the Trifocal Tensor

The trifocal tensor can be introduced intuitively based on homol-
ogous straight lines (Hartley and Zisserman, 2000). Given are a
straight linel′ in the first and a straight linel′′ in the second im-
age (cf. Figure 2). The planesπ′ = P′Tl′′ andπ′′ = P′′Tl′′ con-
structed from these lines intersect in the 3D straight line L, the image
of which in the third camera is in general the straight linel′′′.
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Figure 2: Trifocal tensor from three intersecting lines

For the fundamental matrix as well as for the trifocal tensor the
projection matrices can always be transformed in a way that the
projection matrix of the first image isP′ = [I|0]. The other
two projection matrices can then be written asP′′ = [A|a4] and
P′′′ = [B|b4]. Based on this the intersection of the three lines in 3D
space can be defined algebraically by requiring that the4 × 3 ma-
trix M = [π′,π′′,π′′′] has rank2. Points on the line of intersection
may be represented asX = αX1 + β X2 with X1 andX2 linearly
independent. These points are incident to all three planes and thus
π′TX = π′′TX = π′′′TX = 0. This impliesMTX = 0 and because
of MTX1 = 0 andMTX2 = 0 M has a 2D null-space.

Since the rank ofM is 2, there is a linear dependence among the
columns. If we denote

M = [m1,m2,m3] =

[
l′ ATl′′ BTl′′′

0 aT
4 l′′ bT

4 l′′′

]
,

the linear relation may be writtenm1 = αm2 + βm3. Because
the lower left element ofM is 0 it follows thatα = k(bT

4 l′′′) and
β = −k(aT

4 l′′) for some scalark. Applying this to the upper three
vectors we obtain up to a homogeneous scale factor

l = (bT
4 l′′′)ATl′′ − (aT

4 l′′)BTl′′′ = (l′′′Tb4)ATl′′ − (l′′Ta4)BTl′′′ .

Thei-th coordinate ofl′ can thus be written

l′i = l′′′T(b4aT
i )l′′− l′′T(a4bT

i )l′′′ = l′′T(aibT
4 )l′′′− l′′T(a4bT

i )l′′′ .

By denotingTi = aibT
4 −a4bT

i the incidence relation can finally be
written as

l′i = l′′TTil′′′ . (3)

T is a bilinear transformation and defines the trifocal tensor which is
usually written asT jki . It is a3×3×3 cube made up of27 elements.

• T jki has 18 DOF at maximum. I.e., not all cubes are trifocal
tensors. The number 18 is obtained by subtracting from the
33 parameters of the three projection matrices the 15 parame-
ters for a projective transformation (homogenous4× 4 matrix)
of space. For the solution either the conditions have to be en-
forced or the trifocal tensor has to be minimally parameterized.
Both lead to non-linear equations. Practical investigations have
shown, that it is important to use the conditions, because the
solution is not stable otherwise.

• There are direct relations among the coefficients of the trifocal
tensor, the fundamental matrices of the three image pairs, and
the three projection matrices. They can be employed to deter-
mine from the trifocal tensor the fundamental matrices and after
the choice of a coordinate system also the projection matrices.

4 POINT TRANSFER WITH THE TRIFOCAL TENSOR

Based on the trifocal tensor a prediction of points and straight lines
in the third image is feasible without determining the point or the
straight line in space. I.e., the trifocal tensor describes relations be-
tween measurements in the imageswithout the need to reconstruct
3D geometry explicitly. In principle this corresponds to the epipolar
line for the image pair, but opposed to it the result is unique.

For the general case the prediction for points could be done by in-
tersecting the epipolar lines in the third image corresponding to the
homologous points in the first and the second image, respectively.
This is true only if the epipolar lines are not parallel, which is the
case if a point lies on the trifocal plane, or if the projection centers
are collinear. The latter is often valid or at least nearly valid, e.g., for
aerial images from one flight strip.



The restriction of the preceding paragraph does not hold if we em-
ploy the trifocal tensor: Given two homologous pointsx′ and x′′

in the first and the second image one chooses a linel′′ throughx′′.
Then, the pointx′′′ can be computed by transferringx′ from the
first to the third view via the homography defined byl′′j T jki , i.e.,
x′′′k = x′il′′j T jki .

This transfer via the homography implies the intersection of the
plane defined by the projection center of the second cameraO′′ and
the line l′′ with the ray defined by the projection center of the first
cameraO′ andx′ (cf. Fig. 3). This intersection is not defined ifl′′

is taken to be the epipolar line corresponding tox′. The plane de-
fined by the epipolar line andO′′ comprises the pointX which is
projected tox′, x′′, andx′′′ as well as the projection centerO′ of the
first camera. In this plane lies also the ray defined byO′ andx′.

x’
x’’’

L

O’

l’’

O’’’

O’’

X

Figure 3: Transfer of a pointx′ in the first image via a plane defined
by the linel′′ in the second image and the projection center of the
second cameraO′′.

On the other hand, if one takes the line perpendicular to the epipolar
line throughx′′, also the projection plane becomes in one direction
perpendicular to the ray defined byx′ andO′ and thus the intersec-
tion geometry becomes optimal. In (Hartley and Zisserman, 2000)
it is recommended to use optimal triangulation to compute a pairx′

andx′′ which satisfiesx′′TF12x′ = 0. We do not do this because
we are focusing on speed rather than on optimum quality. Putting
everything together, our basic algorithm looks as follows:

• Computel′′ which goes throughx′′ and is perpendicular tol′′e =

F21x′. Fromx′′ = (x′′1 , x
′′
2 , 1)T andl′′e = (l′′1 , l

′′
2 , l
′′
3 )T follows

l′′ = (l′′2 ,−l′′1 ,−x′′1 l′′2 + x′′2 l
′′
1 )T

• The transfered point isx′′′k = x′il′′j T jki .

A closer look at this reveals that if one restricts oneself to points on
the epipolar line, then onlyl′′3 = −x′′1 l′′2 + x′′2 l

′′
1 varies. Therefore,

x′′il′′1T 1k
i andx′′il′′2T 2k

i are constant and have to be computed only
once per epipolar line.

5 ESTIMATION OF THE TRIFOCAL TENSOR

5.1 Carlsson-Weinshall Duality

We employ the Carlsson-Weinshall duality to calculate a solution for
the trifocal tensor from a minimum of six point triplets (Carlsson,
1995, Weinshall et al., 1995). To utilize an algorithm which gives a
solution for a minimum number of points is important in two ways:
First, for robust estimation based, e.g., on RANSAC (cf. Section
5.2), this considerably reduces the search space. Second, by taking
the minimum number of points we implicitly take the constraints for
a tensor to be a trifocal tensor into account.

The basic idea of the duality is to interchange the roles of points
being viewed by several cameras and the projection centers. Specifi-
cally, if one has an algorithm forn views andm+4 points, then there
is an algorithm for doing projective reconstruction fromm views of
n+ 4 points. By taking into account|F| = 0 (cf. Section 2.3), an al-
gorithm can be constructed for the reconstruction of the fundamental
matrix from two images for which seven homologous points suffice.
From the above follows thatm = 3 andn = 2. I.e., if we utilize the
dualism we get an algorithm solving for three images and six points.

To determine the fundamental matrix from seven points, we start
with the basic solution forn ≥ 8 homologous points. For it
the homogenous linear equation system readsx′Ti Fx′′i = 0 , i.e.,
Aiu = 0 ∀i = 1, . . . , n . With the 9-vectoru representing the
elements ofF this can be written in the formAu = 0 with A = (Ai).
The best estimation foru is the unit singular vector corresponding
to the smallest singular value of then × 9-matrix A, determined by
singular value decomposition (SVD). The solution is unique up to
an unknown factor, as the system is homogenous. For seven points
the 7 × 9-matrix A has rank7. The solution forAu = 0 is a 2D
space with the formαF1 + (1 − α)F2. Using the fact thatF is of
rank2 leads to|αF1 + (1 − α)F2)| = 0. This results into a cubic
polynomial for which either one or three real solutions exist.

The dual algorithm is described in detail in (Hartley and Zisserman,
2000). Here we only sketch it. The triplets of points of the origi-
nal problem are arranged in a table and the table is transformed so
that the last four points are mapped to the 2D projective basis, i.e.,
(1, 0, 0)T, (0, 1, 0)T, etc. Then, the last four points are dropped, the
table is transposed and extended by points of the 2D projective basis.
The solution for the dual problem is obtained by the algorithm for
the fundamental matrix. The obtained reconstruction is transformed
in a way that the last four points correspond to the 3D projective
basis. By dualization the problem is mapped back into the original
domain. Finally, the effects of the initial transformation are undone
by a reverse transformation.

5.2 Dealing with Mismatches by RANSAC

Even though there are generic means to reduce mismatches (cf. Sec-
tion 5.3), there are usually far too many for an efficient least squares
solution, if the knowledge about the calibration and the orientation
of the cameras is weak. As our problem is of the type that we only
have relatively few parameters and a high redundancy, the RANSAC
(random sample consensus) approach (Fischler and Bolles, 1981) is
a good choice. RANSAC is based on the idea to select more or less
randomly minimum sets of observations. The correctness of a set is
evaluated by the number of other observations which confirm it.

The minimum number of point correspondences necessary to deter-
mine the trifocal tensor with RANSAC is seven for the fundamen-
tal matrix and six for the trifocal tensor (cf. Section 5.1). At first
sight the number for the trifocal tensor looks better than that for the
fundamental matrix. Yet, one has to consider, that there exist63

combinations for six triplets, which is considerably more than the72

for seven pairs. This suggests, that we first calculate the correspon-
dences based on the fundamental matrices of the images one and two
as well as one and three and only then match the triplets.

5.3 Reduction of the Search Space and Results

By means of a hierarchical approach based on image pyramids with
a reduction by a factor2 for each level, we significantly reduce the
search space. Thereby not only the efficiency but also the robustness
is improved considerably.



Highly precise conjugate points are obtained from a least-squares
matching of points obtained from the sub-pixel Förstner operator
(Förstner and G̈ulch, 1987). On the highest level of the pyramids
which usually consist of about100 × 100 pixels, no reduction of
the search space, e.g., by means of epipolar lines, is yet available.
To reduce the complexity of the matching, several measures are
taken. First, before the actual least-square matching we sort out
many points and calculate a first approximation by thresholding and
maximizing, respectively, the correlation score among image win-
dows. What is more, we restrict ourselves in the first image to only
a few hundred of the globally strongest points and some more points
which are strongest regionally on a even-spaced grid.

Section 4 made clear that the trifocal tensor is superior for point
transfer compared to the intersection of epipolar lines. Yet, before
one has an approximation of the trifocal tensor it is a good idea
to compute fundamental matrices to narrow down the search space
(cf. Section 5.2). We do this in two ways: On the highest pyramid
level we compute the fundamental matrices and from them the epipo-
lar lines from the first to the second and to the third image before we
actually search for image triplets. After we have obtained an approx-
imation of the trifocal tensor, we compute from it the fundamental
matrix from the first to the second image on the lower levels. For the
points found by matching on the epipolar line in the second image
we predict their position in the third image. Figure 4 shows the first
image with an extracted point on the left side. On the epipolar line
in the second image two points were found. Those two lead in turn
to the prediction of the two points in the third image for which one
is obviously wrong and would not be matched.

a b c

Figure 4: Prediction: From the point in a) the epipolar line in b)
arises from the fundamental matrix. The two points found in b)
uniquely determine the two points in c) via the trifocal tensor.

The linear solution for the trifocal tensor is based on RANSAC
(cf. Section 5.2). To improve the results, the parameters of the
second and third cameras are finally optimized by the non-linear
Levenberg-Marquardt algorithm (Hartley and Zisserman, 2000).
The approach was implemented in C++ making use of the public do-
main linear algebra package LAPACK interfaced by the template nu-
merical toolkit (TNT; math.nist.gov/tnt). Results are shown in Fig-
ures 5 and 6. Please note that we use by default a quadratic search
space which covered in the case of both Figures 50% of the image
area.

6 DEPTH ESTIMATION

Our depth estimation, which can deal with strong occlusions and
large disparity ranges also for details, i.e., very tiny structures in the
image, is built upon the approach proposed in (Zitnick and Kanade,
2000). It employs epipolar resampled imagery. The basic idea is to
calculate matching scores for a disparity range and store this infor-
mation in a 3D array made up of image width and height as well as
disparity range. This array is then filtered with a 3D box-filter to
obtain the local support for a match from all close-by matches. On

the other hand, it is assumed that on one ray of view only one point
is visible. This implies an inhibition which is realized by weight-
ing down all scores besides the strongest. Support and inhibition
are iterated. Thereby, the information is propagated more globally.
To avoid hallucination, the original matching scores are considered
after each iteration. Finally, occlusion regions are marked by thresh-
olding the matching scores. We have extended this approach with
the following features:

• Additionally to normalized cross-correlation we employ abso-
lute differences as proposed by (Scharstein and Szeliski, 2002)
for the matching scores.

• We automatically estimate the disparity range from a number of
sample lines. This works relatively robustly and considerably
reduces the search space and therefore the computation time.

• By separating the 3D box-filter into 2D planes and 1D sticks
we have sped up the computation for this part by a factor of 5.

• We determine the convergence of the algorithm automatically
by calculating a difference image and setting a threshold on its
mean and variance.

• The smoothness of the output is improved by a sub-pixel dis-
parity estimation in the original matching scores.

7 VIEW SYNTHESIS WITH THE TRIFOCAL TENSOR

We use the view synthesis scheme proposed in (Avidan and Shashua,
1998). The basic idea is to use calibrated imagery together with a
depth map. With the latter, points homologous to points in the first
image are obtained for the second image.

At least a weak calibration is necessary to make a navigation through
the image meaningful for the user as only then rotation matrices and
translation vectors are defined in a Euclidean sense. If calibration
information is available, we computeE from it. It can be separated
into a rotation matrixR and a translation vectort via SVD. Together
they make up the projection matrixP′′ = [R|t] if we assumeP′ =

[I|0]. To improve the results, the three parameters of the rotation
matrix and the two parameters of the translation vector are optimized
by Levenberg-Marquardt. If no calibration information is available,
we assume that both images are taken with the same camera without
modifications. We further assume that the principal point equals the
image center, that there is no sheer, i.e.,s = 0, that the focal length
is one and that the pixels are square. We provisionally calibrate the
fundamental matrix with these assumptions and when optimizing by
Levenberg-Marquardt we vary two additional parameters describing
c as well as the relation of the width and the height of a pixel.

The trifocal tensor is initially instantiated from the fundamental ma-
trix

T jki = εljkFli ,

whereεljk is the cross-product tensor andFli is F in tensor notation.
Then, the view synthesis is accomplished by modifying the trifocal
tensor by rotation matricesR (Rji in tensor notation) and translation
vectorst given by the user. The modified tensor is

Gjki = Rkl T jli + tkaji ,



a b c

Figure 5: Result I: Image triplet with points and epipolar lines. a) Epipolar lines for b) and c) b) and c) Epipolar lines for a) only

a b c

Figure 6: Result II: Image triplet with points and epipolar lines. a) Epipolar lines for b) and c) b) and c) Epipolar lines for a) only

whereaji is the first partA of the calibrated projection matrix of the
second camera.

The actual projection is done based on the optimized scheme pro-
posed in Section 4. The synthesized image is produced indirectly by
mapping the pixels via affine transformation obtained by the known
coordinates of triangle meshes in the given and the synthesized im-
age. Results are shown in Figures 7, 8, and 9. In all cases only the
translation vectors have been modified. The synthesized views give
an impression of the depth in the image. Compared to approaches
for view interpolation also the quality for viewing directions which
are not in the direction of the base vectorT is reasonable (cf., e.g.,
Figure 9 for which the epipolar lines are nearly vertical). On the
other hand, one can see the problems arising from the height data.
Besides the fact that parts had too bad texture to be matched (black
holes in the depth map), also the boundary of structures with large
disparities such as the chair in Figure 8 are not well delineated.

8 CONCLUSIONS

In this paper we have presented means for the estimation of the trifo-
cal tensor as well as its use for view synthesis. All results presented
have been obtained totally automatically, without any user interac-
tion. The same parameters have been used for all examples. While
the estimation of the trifocal tensor based on pyramids, least squares
matching, and RANSAC works reliable for a wide range of imagery,
the end-to-end automation of view synthesis still is an intricate prob-
lem. There are two things we still have to cope with in-depth: Cam-
era calibration and depth estimation.

For camera calibration we have begun to implement the approach
presented in (Pollefeys and Van Gool, 1999, Hartley and Zisserman,
2000). The more complicated problem is depth estimation. Op-
posed to the determination of the orientation which is defined by
very few parameters and is therefore a highly redundant problem,
depth estimation aims at determining many parameters. Although

the approach we are using is relatively sophisticated, the results are
in many instances unstable and not really good. One way for im-
provement would be to use more images. This makes it computa-
tionally much more expensive as the simple epipolar geometry can-
not be used any more. Other ways for improvement were recently
shown in (Scharstein and Szeliski, 2002). As the most important
problem is the determination of approximate values, a combination
with direct sensors with possibly a lower resolution such as cheap
laser-scanners planned, e.g., for airbag inflation control, might be
considered for the application domain of video communication.
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