ISPRS Journal of Photogrammetry and Remote Sensing 79 (2013) 29-43

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

. isprs

PHOTOGRAMMETRY
AND REMOTE SENSING

Contents lists available at SciVerse ScienceDirect

A generative statistical approach to automatic 3D building roof reconstruction

from laser scanning data

Hai Huang *, Claus Brenner, Monika Sester

Institute of Cartography and Geoinformatics, Leibniz University Hannover, Appelstr. 9A, D-30167 Hannover, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 3 May 2012

Received in revised form 1 February 2013
Accepted 5 February 2013

Available online 8 March 2013

Keywords:

Building

LIDAR

Point cloud

Urban

Extraction
Reconstruction
Three-dimensional

This paper presents a generative statistical approach to automatic 3D building roof reconstruction from
airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane
detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflec-
tion from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a
number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to
ensure plausible results. In this work we propose an automatic process with emphasis on top-down
approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number
of buildings to reduce the computational complexity for large urban scenes. For the building extraction
and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-
up efforts or additional data like building footprints are no more required. Based on a predefined prim-
itive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are
assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are
allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters,
is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experi-
ments are performed on data-sets of different building types (from simple houses, high-rise buildings
to combined building groups) and resolutions. The results show robustness despite the data artefacts
mentioned above and plausibility in reconstruction.

© 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Many approaches for the reconstruction of 3D city models from
measurement data have been reported in the past decades. The
introduction of laser scanning makes the acquisition of 3D data
easier and more accurate. Overviews are given by Brenner
(2005), Schnabel et al. (2008) and Vosselman (2009).

Current bottom-up approaches include (Rottensteiner et al.,
2008), in which a roof plane delineation from LIDAR data is pre-
sented. Statistical tests and robust estimation are employed for
stable edge detection against the clutter. Using manually gener-
ated geometric constraints, topological correction is ensured with-
out additional 2D data. Sampath and Shan (2010) segment and
reconstruct more complicated buildings from airborne LIDAR point
clouds based on polyhedral models. First, non-planar points are de-
tected by means of the eigenanalysis making the roof planar seg-
mentation more robust. The latter is implemented through an
extended fuzzy k-means clustering. An adjacency matrix is derived
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after the segmentation. For reconstruction, the roof vertices, ridges,
and edges are determined by intersecting the corresponding
planes, which include roof segments and possibly vertical walls
or roof boundaries as the imposed constraints. Also starting from
planar roof segments, Zhou and Neumann (2012) try to organize
them and roof boundary segments with “global regularities” con-
sidering orientation and placement constraints. Matei et al.
(2008) and Poullis and You (2009) present the fast processes to
generate simplified building models of large-scale urban areas, in
which the input LIDAR data is segmented presenting regularized
buildings or building parts and simple polygon models are used
for an efficient reconstruction. Meng et al. (2009) introduce a
method to identify individual buildings from airborne laser data
based on the morphology processing. Algorithms are developed
to separate ground points and then filter out the other non-build-
ing parts (mostly the vegetation).

Approaches that employ top-down methods have been increas-
ingly reported in the last several years. In Verma et al. (2006), the
parametric modeling is employed for detection and reconstruction
of 3D building models from airborne laser data. Relatively complex
buildings can be represented by combining simple parametric roof
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shapes. Lafarge et al. (2010a) present building reconstruction from
a Digital Surface Model (DSM) combining generic and parametric
methods. Buildings are considered as an assemblage of 3D para-
metric blocks. 2D-supports (approximate building footprints) are
firstly extracted manually or automatically (Ortner et al., 2007).
3D blocks are then assembled based on 2D-support and optimized
within a Bayesian framework. Dealing with more sophisticated
buildings, basic geometric primitives, e.g., planes, cylinders and
cones are extracted and combined with mesh-patches to present
irregular roof forms (Lafarge and Mallet, 2012). The approach is ex-
tended to model urban environment including buildings, trees and
ground surface with a semantic scene description. A method for
the quality assessment of 3D building models extracted and recon-
structed from point clouds is presented by Oude Elberink and Voss-
elman (2011).

As summarized in (Oude Elberink and Vosselman, 2011), air-
borne laser scanning data of urban areas often has the following
quality issues: (1) systematic and stochastic errors in the measure-
ment, (2) variable and relatively low point cloud densities, and (3)
data gaps/flaws due to the occlusion by neighboring objects (e.g.,
clutter of trees), the absorption of the laser pulse by water features
and the reflection from windows on the roof. The segmentation of
relatively small roof structures and an accurate determination of
roof edges are always hard. Results of the bottom-up reconstruc-
tion may thus be limited to a number of incomplete and irregular
roof facets or building parts. A regularization with given con-
straints is always needed during the extraction or afterwards. In
many cases it is not easy to be conducted even manually. For a reg-
ularized plane detection a probability-driven edge sweeping meth-
od is proposed by Huang and Brenner (2011). Although it works
robustly in spite of clutter and data flaws, it encounters difficulties
by processing complex roofs.

This paper extends the work described by Huang and Sester
(2011) and Huang et al. (2011). We present a generative statistical
reconstruction of building roofs with emphasis on top-down pro-
cesses. A library of roof primitives is predefined and a building roof
is considered as a variant of one primitive or a combination of a set
of primitives. In comparison with the approaches that share the
“LEGO” scheme (Kada and McKinley, 2009; Lafarge et al., 2010a),
i.e., the building is first cut down into building parts and primitives
are found to fit the parts, we design new combination rules and
merging process to allow primitive overlaps. A more plausible as
well as stable result is thereby gained because all the primitives
can maintain complete during the combination and deviations
caused by random sampling can be compensated (cf. Section 3).
A variant Markov Chain Monte Carlo (MCMC) sampler with speci-
fied jump mechanism is employed for the sampling of the model
parameters because of its adaptation to the change of types and
numbers of building parts during the search process. Unlike most
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of the related researches, the bottom-up effort, e.g., points cluster-
ing, plane detection (Sampath and Shan, 2010), or 2D building foot-
print data (Kada and McKinley, 2009; Lafarge et al., 2010a), are not
required in the proposed work. To compensate the absence of the
initial information (which is normally provided by the bottom-up
analysis) we conduct explicit model selection methods in (1) the
estimation of the 2D building (footprint) size (cf. Section 4.3) and
(2) the change of the number and type of building parts (“jump”
mechanism, cf. Section 5.1) to perceptively guide the
reconstruction.

The paper is organized as follows. In Section 2 a pre-segmenta-
tion is proposed for large urban scenes to identify potential build-
ings and thus limit the search space. Section 3 introduces the
definition of roof primitives and the combination rules. The overall
scheme of the stochastic modeling of roofs is given in Section 4.
Section 5 describes the jump mechanism between different types
and numbers of primitives in the search. The optimal reconstruc-
tion is achieved by Maximum A Posteriori (MAP) estimation. In
Section 6 we show the reconstruction results of varied building
types and data resolutions. Section 7 shows an extension of our ap-
proach for building model generalization. The paper ends up with
conclusions.

2. Pre-segmentation

In (Huang et al., 2011) we explored and demonstrated the po-
tential of a pure top-down approach. It shows that in a relatively
simple scene (32,000 m?, nine buildings) the proposed pure top-
down algorithm can find the target buildings with only generic
prior information. Note, however, that in practical applications a
complete replacement of the bottom-up process is hard. For large
scenes, e.g., a whole city district, the complexity of the parameter
distributions as well as the number of disturbances is so high that
the search cannot guarantee appropriate results. The practical way
is to balance the bottom-up and top-down partitions to achieve
robustness as well as efficiency.

We propose a pre-segmentation method based on “blob” detec-
tion. As shown in Fig. 1, the input point cloud (left) is rasterized
with the simple “natural neighbor” method and converted into
an image (middle) with the gray values indicating the heights. In
this image a “blob” (right) is a potential building, i.e., an area of
a certain size which sticks out from the ground with a certain
height. The image is binarized using a z-value threshold, which is
gained automatically by finding the most concentrated (range of)
z-value in its histogram. This step works stably for flat and slightly
wavy terrain because the difference between roof and ground is
relatively large and a few meters deviation will not affect the re-
sult. Simple slope or curved ground can be compensated by detect-
ing its form and converted to flat terrain for processing. Based on

Fig. 1. Pre-segmentation: the given point cloud (left) is converted into a raster image (middle). After morphology processing blobs (right) containing individual buildings are
labeled and segmented (red dashed rectangle). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the detected “blobs” the input point cloud can be segmented into
small subzones focusing on buildings.

In the urban scenes, buildings, as well as a number of other ob-
jects (mostly trees) are all presented as bright areas with similar
elevation. We employ mathematical morphology (Serra, 1983;
Kothe, 1996) to reduce small “spots”, which are supposed to be
non-building objects. Let I be the input image and s the structuring
element, which is defined as a disk with a radius of 5 m, an “Open-
ing” operation

Ios=(Ios)®s

is conducted with “Erosion” and subsequent “Dilation”. Essential ef-
fects of “Opening” are to remove the trivial spots and restore the
outline. The relatively large blobs, which are supposed to contain
individual buildings or building groups, are thereby clearly sepa-
rated in spite of the numerous adjacent noises (Fig. 1, right).

Please note that in this case we prefer relatively small structur-
ing element rather than losing objects. As a result, one blob con-
taining more than one buildings or/and clutter objects, i.e.,
adjacent trees (Fig. 1, right, green dashed lines) may happen. Even
though, the proposed algorithm can actually deal with a scene with
multiple buildings as well (cf. also Huang et al., 2011) so that the
pre-segmentation must not be perfect and a fixed radius of the
structuring element is used for simplification.

Given detected “blobs”, the subzones are defined as the mini-
mum circumscribed rectangles (or “bounding boxes”, cf. Fig. 1,
right, red dashed rectangle) of the “blobs” and a tolerance that
equal to the radius of the structuring element is given.

As results the pre-segmentation provides the following
advantages:

1. A number of non-building objects (e.g., trees) can be ignored
because of their relatively small size.

2. The efficiency and the stability of the further statistical recon-
struction are improved. The search areas are well limited in
the segments so that the computational complexity is signifi-
cantly reduced. The search of optimal model is conducted
locally instead of travel the whole scene overcoming many local
minima, which is the most unstable and time-consuming part
in the search. (A comparison of runtimes can be found in
Section 6.)

We consider the city blocks (cf. Section 6, Fig. 12), as the largest
objects to be tackled after pre-segmentation as they cannot be fur-
ther divided into separate houses with “blob” detection. The pure
top-down approach described later will demonstrate its ability to
deal with them.

3. Roof primitives

Parametrized roof primitives are the basis of the stochastic
modeling. We present a library of primitives and rules for their
combinations. An important idea to gain more flexible and stable
reconstruction is to allow the overlapping of primitives in the
reconstruction.

Most related works treat building roofs as a collection of facets
as plane detection has been well studied and works stable (Rotten-
steiner et al., 2008; Vosselman, 2009; Sampath and Shan, 2010). In
comparison with the facet-based reconstruction, the primitive-
based modeling has the following advantages:

- There are no more irregular and incomplete roof facets or build-
ing parts caused by flaws or conflicts in the plane detection. In
roof primitives the constraints of member facets are predefined
and ensure regularized reconstructions.

- The combination of a few primitive is much simpler than the
organization of a bunch of facets. The derived rules can be more
legible because of fewer participants and simpler (in compari-
son with networked facets) relationships (Huang et al., 2011).

Allowing overlaps, furthermore, keeps primitives complete dur-
ing the reconstruction and assembling (Huang et al., 2011) instead
of being cropped to fit the adjacent building parts. In the final roof
model, the redundant parts are always hidden inside the assembly
and they could be easily removed afterwards, e.g., by intersecting
with CAD tools.

Beside the horizontal intersection we allow the vertical one as
well. By this means some combined roofs, e.g., platform roofs (mul-
ti-level flat roofs, cf. Section 6, Fig. 11, buildings 1 and 8) and com-
plex buildings (buildings 3 and 5) are possible to be reconstructed
without adding any more particular models in the library.

3.1. Library of primitives

The library, as shown in Fig. 2, provides three groups including
11 types of roof primitives. Please note that this library contains
only a limited number of entries with planar shapes and rectangu-
lar footprints. In this work we prefer simpler and less number of
primitives for more efficient reconstruction. The idea is to present
complex roof shapes with the combination of basic primitives. Pla-
nar roofs and rectangular footprints are chosen not only because
they are simple (with less shape parameters), they are actually also
the basic form that most buildings follow, i.e., roofs derived from
the primitives or their combinations will cover the majority of
the buildings in urban areas. Furthermore, the proposed primitive
merging process is also able to represent buildings with non-rect-
angular footprints (cf. Section 3.2).

Their parameters 0 are defined as:

0e@;0={PCS} (1

where the parameter space @ (Fig. 2, top right) consists of position
parameters P = {x,y,azimuth} and contour parameters
C = {length, width} as all primitives are defined to have a rectangle
footprint. P and C have fixed members. S contains shape parame-
ters, e.g., the ridge/eave height and the depths of hips, and is varied
for different primitives.

- Group F: generalized flat roofs including flat roof (F1) and shed
roof (F2).

All possible shape parameters: Sgmax = {Z1,2,} With z; =z, the
roof height for flat roof or z; and z, the lower and higher eave
heights for shed roof.

- Group H: generalized hipped roofs including all variants of
hipped roofs. Gable roof (H4) and mansard roof (H6) are consid-
ered as special cases of hipped roofs.

Shmax = {21,272, hipyy, hipy,, hipy, , hipg, } with z; the eave height,
z, the ridge height, hip;; and hip,, the longitudinal hips, and
hip41 and hipg; the lateral hips.

- Group G: Gambrel roof (G1) and others. The common character
of this group is every roof has three different height levels.
(Please note, same as Groups H, z; and z, are kept for the eave
and ridge heights. z3 is the additional roof level in the middle.)
E.g., although the salt-box roof (G3) is very similar to the asym-
metric gable roof (H5), it cannot be represented as an H-type
because the parameter number of “heights” is limited to two
in Group H. In this library we do not define elliptic roofs, which
can be roughly approximated by gambrel roofs.

Scmax = {21,22, 23, hipyy, hipyy, hipy;, hipg, }
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Fig. 2. Library of roof primitives.

Geometrical features of different levels, i.e., vertices, edges, and
facets, and their relationships are all predefined and encapsulated
in the primitives (Fig. 2, bottom right). They can be called as mem-
bers of the primitives for different purposes like primitive merging,
calculating reconstruction errors, drawing building footprints, etc.

3.2. Primitive combination and merging

By combining primitives we propose a context-sensitive regu-
larization with the following rules:

Rule 1: Intersection angle of the primitives are conditionally
regularized (cf. also below). Let i and j indicate the two inter-
sected primitives, there are:

if 3jazimuth; — azimuth;| < 5°, then azimuth; = azimuth;;
if J|azimuth; — azimuth;| € (90 £ 5)°,
|azimuth; — azimuth;| = 90°.

Rule 2: Heights of flat roofs or ridge heights of hipped roofs are
harmonized if they are close to each other:

if 3z, — 225/ <0.25 m, then z,; =z, ;.

Rule 3: Eave heights of all non-flat roofs are harmonized if they
are close to each other:

then

if 31z1; — 15/ <0.25 m, then z; =7y .

Please note that in principle the thresholds for the azimuth/
height differences should be linked to the point densities because
they somehow reflect the reconstruction accuracy. Here for the
primitive merging, however, we simply use general thresholds
for all datasets with the empirical values derived from the sparsest
data-sets (1 point/m?). Rule 1 helps us to solve another general
problem in flat roof extraction. As the data points (especially in
low density data) on the roof corners are very likely missing and
that on the edges are not perfect either, a slight deviation in azi-
muth (rotation in the roof plane) may lead to similar or even better
evaluation for the candidate model and therefore cannot be de-
tected. It is especially true for the flat roofs with less length to
width ratio and hard to be solved without any prior information.
Fig. 3 shows two examples. For flat roofs the azimuth cannot be
determined as reliably as for shed or hipped roofs, which are com-
posed by non-horizontal plane(s). Therefore, we implement addi-
tional rules for flat roofs as follows:

Rule 1.1: If a flat roof is in the same “blob” with shed/hipped
roofs, then align to the nearest one (cf. Fig. 3, left).
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Fig. 3. Azimuth deviation of flat roofs can be adjusted jointly with the adjacent roofs.

Rule 1.2: If two flat roofs are in the same “blob” (connected or
not), their azimuths are jointly adjusted weighted according to
their areas (cf. Fig. 3, right).

Although the primitives are regularized with the combination
rules, deviations still often exist because of the occlusions from
clutter objects/other building parts and generally the possible
low point density. Most of them do not jeopardize the reconstruc-
tion results as they are hidden inside the intersected domain. How-
ever, for the primitives that share multiple planes the deviation can
be crucial (cf. also Fig. 5). A geometrical adjustment is needed to
“merge” the primitives into a plausible model. We conduct the fol-
lowing rules for the primitive merging:

Rule 4: Geometric merging by primitive intersection

V|azimuth, — azimuth,| > 5°

- Unify the ridge heights (z;) and eave heights (z;) of the two
primitives weighted to their footprint sizes A =length x
width:
z1=(Ai- 21+ Aj- 21)I(Ai + A)); 2o =(Ai- 225+ Aj - 2j)]
(Ai+Aj);

- Calculate the cross point of the ridges (or their extension
lines) and align the end points of the two ridges to it
(Fig. 4, red);

- Calculate the cross points of the two pairs of longitudinal
(along the ridge direction) eave lines and align each end
point of the eave line to the second cross point (Fig. 4, green)
to avoid geometric conflicts.

Two examples with different intersection angles can be found in
Fig. 5 (left and middle).

Rule 5: Geometric merging by primitive extension
V|azimuth,; — azimuth,| < 5° (actually 0° here after the Rule1)

- If the lower (z;) roof has higher eave (z,), its eave has to
be unified to another primitive to avoid geometric
conflicts:

- if3z;>z;5and z,; < 25, then zy ;=74 ;.

An example can be found in Fig. 5 (right).

4. Stochastic modeling

Generative roof models employ full probability information for
all parameters. Multiple hypothetic models are generated via sto-
chastic sampling of the parameters and evaluated by comparing
them with the given measurement data (the point cloud). The goal
is to find the optimum combination of parameters, i.e., the best
estimation of the underlying roof model. The question to be an-
swered in this top-down extraction is if the target roof can still
be stably found without any initial information, which is conven-
tionally provided by bottom-up analyses. Besides the heavier
search task, there are also two difficulties:

Fig. 4. Primitive merging: (left) two building parts generated by sampling; (middle) shifting of ridge (red) and eave (green) lines; (right) the merged building parts. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Examples of the primitive merging with intersection angle larger (left) and smaller (middle) than 90° and longitudinal extension (right).

1. local extrema: in urban scenes clutter objects, e.g., trees, are
very often adjacent to the buildings with similar height and
size;

2. model-minimizing tendency: using the deviation to data points
to evaluate the hypothetic models, the finally found “best”
model tends to shrink to a very small piece as smaller compar-
ison area (corresponding to fewer data points) means less error.
In this case the model size A should be reasonably estimated (cf.
Section 4.3).

We, therefore, use a sampling procedure derived from the
MCMC algorithm for efficiently exploring the high-dimensional
solution space. Information criterion is integrated to give instruc-
tive values for A, which guides the search of the parameter-set C.

The proposed sampling procedure can be seen as closely related
to the Reversible Jump Markov Chain Monte Carlo (RJMCMC) tech-
nique while the jump mechanism is re-designed to break the Mar-
kovian property for search efficiency. In this procedure
conventional MCMC sampler is still employed when the number
of parameters is fixed. A jump mechanism guided by model selec-
tion and specific routine is conducted for the change of primitive
numbers and types during the search.

4.1. Search scheme

The search scheme consists of the following four steps and
starts from the center of the point cloud (with no prior for the po-
sition) with generic parameter priors.

4.1.1. Finding the first primitive

First, a coarse search is conducted to find a primitive arbitrarily.
The gable roof (cf. Fig. 6a) is chosen as the initial primitive instead
of the simpler flat roof because the former is more sensitive to the
azimuth and can actually represent the flat roof as well by harmo-
nizing the ridge and eave heights. Please note that generally the
initial state is not very critical for the MCMC sampler, but in this
case the jumps are not proposed in every MCMC step (cf. Sec-
tion 5.1) so that the initial primitive will has more influence at
the beginning of the search until the jump happens. This is partic-
ularly advantageous to the preliminary determination of the roof
location and orientation.

The model parameters are then refined locally (cf. Fig. 6b) and
the model has the possibility to switch to more appropriate prim-
itives with jumps mechanism (kernel “Switch”, cf. Section 5.1) in
the MCMC sampler (cf. Fig. 6¢c and d). Once the primitive is ac-
cepted, the parameter priors are refined with this new “evidence”
in a Bayesian framework.

Please note that after a primitive has been found, we do not as
usual delete the corresponding points from the source data as
these points may be shared with other parts of this building. This

is more meaningful for low density data. Instead, we record its
parameters and update the prior distributions to avoid this combi-
nation of parameters being sampled twice, i.e., the same primitive
will not be proposed again in the next rounds of search.

4.1.2. Finishing the whole roof

To find other possible roof parts the movements “birth” and
“death” (cf. Section 5.1) are activated. New roof parts are proposed
by “birthing” new primitives near the already found building part
(cf. Fig. 6e, red) and the worse proposals will be removed by the
“death” jumps later. The sampling stops till no more primitive
can be found with an acceptable reconstruction error. The found
roof parts are then assembled (cf. Section 3.2) into a complete roof
model (cf. Fig. 6g and h).

4.1.3. Reconstructing superstructures

In dense point clouds (e.g., with a resolution of about 0.18 m, cf.
Fig. 19) superstructures, e.g., chimneys and dormers, will be
searched in the area above the base roof. Two simple primitives,
flat and gable roofs, are used as primitives for superstructures with
modified priors.

4.1.4. Updating priors

The refined priors of parameters, especially that of the azimuth
and heights, can be (optionally) applied as references for their
neighbor subzones.

4.2. Likelihood function

During the sampling, we use “z-error” (A;), the average abso-
lute deviation in z-direction from the proposed model (M) to the
data points (D), to evaluate the proposed candidate models.

A Dfer (Zies;g |z — Zle) @

with f an individual facet from the facet-set (F) of the primitive, i
the data points in the domain of f: Q5 and K the number of the in-
volved data points.

Please note that for the evaluation we consider the roof surface
as a horizontal mesh rather than a set of 3D planes, so that we just
calculate the deviations in z-direction instead of the normal dis-
tances. By the calculation we, thereby, just observe the points in-
side the 2D (x-y) model contour, any effort for finding and
labeling points that belong to specific planes is not required. z-er-
ror is easier to implement and, most important, also more feasible
in this approach: during the stochastic search process the model
and the roof points could have large offset or even far away from
each other and z-error is more stable than other measures, e.g.,
the absolute normal distance. The absolute deviation (L1-Norm)
is employed instead of the square deviation (L2-Norm) because
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(e)

(f)

35

(g) (h)

Fig. 6. An example of roof reconstruction: (a) rough search with simple gable roof, (b) local search refining the model, (c) jump to the half-hipped roof, (d) jump to the hipped
roof, (e) “birth” of a new primitive near the primitive one (red), (f) refining the new primitive with constraints derived from primitive one, (g) the two found primitives, and
(h) roof model after primitive merging. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

we do not search for the “best fit” to all the (involved) points but a
“consensus” against outliers. Z-error is, therefore, more appropri-
ate for this case with less sensitivity to such data points caused
by the clutter objects and building part occlusions.

The likelihood function L(D) can be expressed as:

0 L(D) = L(X|@) x exp(-A.) 3)

with @ the parameters of the model and X the observations.
4.3. Model size estimation

To overcome the model-minimizing tendency mentioned
above, an instructive constraint for the model size A (correspond-
ing to the parameter-set C) is needed. We conduct a perceptive
estimation employing information criterion to balance the good-
ness of fit and the size of the model.

Fig. 7 (left) shows the average deviation (z-error, blue) from the
proposed model to the data points while the model size (indicated
by K) increases. Please note that this function is neither linear nor
monotonic increasing under the influences of data flaws and clut-
ter objects.

Likelihood vs. Model Size
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We follow the basic idea of Akaike Information Criterion (AIC)
(Akaike, 1973)

AIC = 2k — 2In(L) (4)

to build our goal function. In Eq. (4), k indicates the number of
parameters, which implies the complexity of the model, and L the
maximum likelihood while the employed parameters have been
optimized. In our case, however, what we want to prevent is not
the model being too complicated but the size of the model being
too small. We use the evaluation of model for the L (cf. Section 4.2)
and —K”* to represent the influence of the model size. K, again, is the
number of data points in the domain of the proposed model, which
implies the model size (linear proportion in raster data). The actual
number of involved points is more sensitive than A to the influence
as the likelihood is just calculated with these points. o is the influ-
ence factor for K, which has relatively large impact because of the
usually large number of K. To balance the influences of both the
model size and the goodness of fit, it is empirically determined
o =0.1. The total information entropy of the proposed model (M)
can then be expressed as:

Model Size Estimation
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Fig. 7. Plots of the average deviation (blue), the influence of model size —K* (red) and the information entropy (black) over K. The minimum entropy indicates the optimal
balance of goodness of fit and the model size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Hy = —K* — 2In(L(D|M)) (5)

By these means a better fit is rewarded while size decrease gaining
trivial improvement is discouraged. The conducted information cri-
terion, as shown in Fig. 7 (right), is employed to guide the search of
the parameter-set C. Please note, unlike AIC, this is not a trade-off
between reconstruction accuracy and model complexity because
less error does not mean better reconstruction either in this case.
Besides, there is no general threshold for acceptable errors. The goal
of the entropy function is to find the lower limit of the model size as
large as possible while perceiving its influence on the tendency of
error change.

5. Sampling procedure and optimization
5.1. Specified jump mechanism

Reversible Jump Markov Chain Monte Carlo (RIMCMC) is an
extension of the MCMC algorithm to handle solution spaces of var-
iable dimensions. As introduced by Green (1995), the Markov
Chain sampler is allowed to switch (“jump”) between subspaces
with variable dimensions in the search. Inspired by this concept,
we conduct a modified MCMC technique with specified “jump
mechanism” in this work. The jumps, i.e., modeling with varying
numbers of parameters (dimensions), are employed to simulate
the change of configurations (number and type of roof primitives).

We define the possible jumps in a mixed transition kernel:

K = {Swy,Sw,, Bi, De} (6)
with

- Swy: “switch case 1” to more complex primitive (with more
parameters);

- Swy: ‘“switch case 2” to simpler primitive
parameters);

- Bi: “birth” of a new primitive adjacent to the original one;

- De: “death” of the last born primitive.

(with less

The “switch” is the jump between different types of primitives.
Studying the primitives, we narrow down all the possible move-
ments into a specific “jump routine”, as shown in Fig. 8 (left). It en-
sures that each jump step only changes a limited number and more
sensible parameters.

Let M; and M; be two models in {M,;n =1,...,N} with N the
number of possible states, in this case the number of primitive
types. The jump from i to j will be accepted according to the
probability:

A(Mi, M;) = min {1 P(D]O 5,)P(O r)) JH} 7)

'p(D|OM)DP(On,) Ti-i

with 7;_; the Jacobian matrix, in which the proposal density, i.e.,
the probabilities for all the possible jumps from i to j, are coded.
As mentioned in (Lafarge et al., 2010b), the computation of the tran-
sition matrix can be greatly simplified in the practical implementa-
tion. In our case, we use a fixed transition matrix 7, as shown in
Fig. 8 (right), instead of the Jacobian 7. Note that 7 is sparse and
asymmetric because the number of possible movements is signifi-
cantly reduced and we encourage jumps to more complex models
rather than the other way around.

The “birth” and “death” are jumps between different numbers of
primitives. Including all kinds of jumps defined in K, the M; and M;
can be extended to represent the states (i.e., the numbers as well as
the types of primitives) before and after the jump. The “detailed
balance” condition in the Markov Chain can be expressed as:

p(Mi|D) - T (M, M;) = p(M;|D) - T (Mj, M) ¥ M; # M; 8)

with the posterior:

p(D‘@/\/ﬁ) ) p(@/\/h')
p(D)

where P(D) is the marginal probability and a constant. 7 (M;, M;) is
the transition density from state M; to state M;. The Markov Chain
is constructed with Metropolis-Hastings algorithm as:

T (Mi, Mj) = q(Mi, M;) - A(Mi, M;) (10)

p(Mi|D) = 9

where q(M;, M;) indicates the proposal density for the jump be-
tween states and A(M;, M;) again the acceptance probability.
The sampling procedure can then be summarized as follows:

—

. Initialization: (M2, @1=9),
2. Proposing new state M.
2.1
Sampling configuration from K = {Swy, Sw,, Bi, De}.
2.2
Sampling parameters @'.
3. Accepting new proposal with the probability.

pM'D) gM", M)
‘pMPD) g(M, M)

4. M"Y = M’ if accepted, otherwise M) = pm®,

AMD M) = min {1

As long as the jump kernels keep the balance condition, i.e.,
being reversible - possible to return to the previous state, the con-
ducted sampler is able to explore in a great wider variety of

— Sw,
—— —> Sw,
= ™| F1| F2 |H1|[H2 |H3|H4|H5|H6|Gl|G2|G3
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—

Fig. 8. Possible “switch”-jumps between primitives are limited by a “jump routine”(left) and the transition matrix (right) becomes therefore sparse.
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hypothesis models. Although this also implies that such sampling
procedure has itself model selection effect, it is usually time-con-
suming. We, therefore, employ explicit model selection mecha-
nism in the transition kernel. The information entropy of the
model H,, is calculated as:

Hy =K' = 2In(L(D|M)) (12)

where $ is given an empirical value of 1/12. 8 is set small to reduce

the sensitivity to the parameter number (model complexity) as in

this case we prefer better reconstructions than simpler models.
The acceptance probability in the kernel can thus be expressed

as:
H-!
. M;
A(M;, My) = min {1, = ~q<M1-,M,->} (13)
M;

Please note that in the sampling process, jumps are not proposed in
every MCMC move but only when the maximum likelihood for the
current configuration (with determined number and types of the
primitives) has been reached. The specified schedule (cf. Section 4.1)
and the jump routine keep the search from reaching any state in the
solution space, i.e., the irreducibility is not guaranteed. Although
the jumps break the stationary (irreducible and aperiodic) rules re-
quired by Markovian process (which makes the whole scheme no
more a MCMC process), this allow our process to be more efficient
and stable with the scheduled “cooling down” of the search
entropy.

5.2. Optimization

For optimization we employ the posterior instead of the likeli-
hood of the proposed model as the goal function, which integrates
the priors of the roof parameters:

P(0i) = P(Myound|0i0) - P(0i0); 0; € ©;0;0 € Op (14)

with @ the initial parameters and Mg the already found mod-
el(s), i.e., new evidence(s) to refine the p(®y) in a Bayesian frame-
work. The priors are supposed to provide the following information:

- generic value ranges of parameters, which sort out implausible
candidates, e.g., roofs with the height near ground;

- recorded parameters of the already found primitives: thus the
joint distribution is simplified by labeling particular areas. Pos-
sible further (often smaller) primitives are thereby easier to be
found.

The Maximum A Posteriori (MAP) estimate of @ can then be ex-
pressed as:

L(p|o)p(e)

it } ~ argmax{L(P|©)p(6)} (15)

Oy = argmax{
o

where p(®) is the synthesis prior with @ indicating all the param-
eters. For the computation the priors of individual parameters are
combined by multiplication with the assumption that they are basi-
cally independent to each other. The multiplication is chosen to
combine the priors because it is more sensitive to unreasonable
parameters. P(D) is again the marginal probability, which can be
seen as a constant in the optimization as it does not depend on ©.

In practice, the z-errors of individual roof reconstructions may
be varied even in the same scene. E.g., in the example scene shown
in Fig. 11 the error range of individual accepted primitives is be-
tween 0.05 and 1.10 m. The reconstruction is conducted to main-
tain the plausibility of the model in spite of the outliers. So that
some qualified primitives have relatively large deviation to the
data points due to the occlusion of adjacent trees and/or inter-
sected primitives. Therefore, the z-error should be seen as a mea-

surement of “consensus” instead of “reconstruction error”. For
the same reason a fixed threshold of z-error for acceptance is no
more feasible. We therefore set the stop criteria as: (1) the z-error
becomes stable or (2) a predefined maximum number of iterations
is reached. Fig. 9 presents the convergence of z-errors in a two-
primitive search process (cf. also Fig. 6).

6. Experiment results and assessment

Experiments are performed on data-sets of different building
types, i.e., from simple houses, high-rise buildings to combined
building groups, and resolutions, i.e., from 1m (cf. Fig. 10a),
0.5m to ~0.18m (cf. Fig. 19, left), using a laptop with a
2 x 2.8 GHz processor.

6.1. Experiments

An experiment with 1 m raster data (approximate 89,000 m?,
21 buildings and 1 city block) of Hannover, Germany, in shown
in Fig. 10. The input point cloud (a) is firstly segmented into subz-
ones according to the detected blobs (b). Primitive models are ex-
tracted (c) and assembled into entire buildings in the form of
Virtual Reality Modeling Language (VRML) models (d). The build-
ing roofs in the test scene have been reconstructed with correct
positions and plausible shapes. The runtime for this scene is about
24 min in total.

In Fig. 11 we compare one section (left) of the reconstruction re-
sult with the reference image (right). Some small and narrow
building parts, e.g., that of the east wing of building 2, the fire es-
cape shaft of building 1, the small structures in the north of build-
ing 4, and the terrace of building 7 (pointed by the red' arrows),
have not been extracted as the point cloud is not dense enough to
represent them meaningfully. It is the same reason why a number
of small structures on the roofs have not been reconstructed. Even
relatively bigger dormers (e.g., that on building 5) have only less
than 10 data points on it. It is hard to tell if they belong to an indi-
vidual structure or just data flaw or clutter. Structures of unusually
low height (e.g., the two storages of building 3, blue arrows) are also
missing because they are out of the search range (which is limited by
the given priors).

We also compare the runtimes of this section (nine buildings
including 20 primitives) with and without the pre-segmentation
(cf. Section 2), which are about 8 and 15 min respectively. The
pre-segmentation improves the efficiency significantly by avoiding
the most expensive “global” search.

A city block, as mentioned before, is usually the largest “blob”
and the most complicated subzone after the pre-segmentation.
Fig. 12 shows an example of free-form city blocks which are typical
in European cities. In this case the building group is reconstructed
with a larger number of connected primitives and the primitive
merging plays an more important role to ensure a plausible result.
Under the limit of errors we prefer primitives as large as possible to
simplify the model. The runtime of this city block with 11 primi-
tives is about 7 min. Compared with the section shown above,
which takes 8 min for 20 primitives, the search of each primitive
in the larger “blob” is more time-consuming.

6.2. Assessments

In this section we present assessments of the reconstruction re-
sults without 3D ground truth data.

! For interpretation of color in Fig. 11, the reader is referred to the web version of
this article.
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Fig. 9. The convergence of z-error during the search of a two-primitive model: after 1500 iterations the z-error of the first primitive converged at 20 cm. The second primitive
was then “born” and brought an additional error to the model. The z-error of the whole model became stable under 80 cm after about 4900 iterations in total.
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Fig. 10. Building reconstruction: (a) input point cloud; (b) pre-segmentation; (c) primitive (blue/orange: flat/non-flat roofs) extraction and combination; and (d) building
models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.2.1. Qualitative assessment

A qualitative assessment, as shown in Fig. 13, is manually con-
ducted by comparing the reconstructed models with the reference
image (e.g., Fig. 11e).

We use the following two measures:

1. “Completeness”: the percentage of the reconstructed building
parts.
Assuming one building consists of n essential parts and m aux-
iliary parts, fail in finding one of the essential part will cost

(1 —m x 0.1)/n of the completeness while each auxiliary part
costs 0.1. For instance, the building 7 in Fig. 11, which has
two essential parts (the two wings) and one auxiliary part
(the terrace), is given the reconstruction completeness of 0.9
because of the missing terrace.

. “Plausibility”: the score given to the reconstructed shape of the

roofs.

Totally false roof type, e.g., flat roof (model) for hipped roof
(ground truth), will lose all its partition of score while “inaccu-
rate” reconstruction, e.g., flat roof for saw-tooth roof (buildings
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Fig. 11. The comparison of the reconstructed models (left) with the reference image (right).
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Fig. 12. Reconstruction of a city block: (a) the point cloud; (b) the first primitive; (c) further primitives; (d) all extracted primitives; (e) primitive merging; and (f) the

reconstructed building model.
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Fig. 13. Qualitative assessment: completeness and plausibility. Building 2 has 0.7
as three auxiliary parts of the east wing are missing. Building 11, 13, 21 and 22 have
the penalty of 0.1 in “plausibility” because of the inaccurate roof type of one of the
primitives.

11 and 13) or slightly hipped roof for gable roof (buildings 21
and 22), will has a penalty of 0.1. The same weights is given
to the building parts as in the “completeness”. The “plausibil-
ity” is therefore no larger than “completeness”. Fig. 13 shows
the results (for building numbers please refer to Fig. 14).

6.2.2. Quantitative assessment

For a quantitative measurement of the reconstruction errors we,
as shown in Fig. 14, derive footprints of the building models and
compare them with the manually surveyed cadastral map.

The precision and accuracy of the reconstruction are calculated
as:

TP

Precision = l Accuracy = ——————
TP+ FP’ Y= TPT P IN

(16)
with
TP: True Positive, regions of ground plan that have been

reconstructed;
FP: False Positive, incorrect reconstructed regions;
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Fig. 14. The footprints (lilac) of the reconstructed models is compared with the cadastral map (green) for a quantitative assessment. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Quantitative assessment: accuracy and precision.

FN: False Negative, regions of ground plan that have not been
covered.

The results are shown in Fig. 15. Referring to the qualitative
measures (cf. Fig. 13), the “completeness” of reconstruction may
directly influence the quantitative assessments, particularly the
“accuracy” (e.g., buildings 2, 3, 21 and 22), which is more sensitive
by taking the False Negative regions (the missing building parts)
into account. “Plausibility” evaluates only the roof shape and has
less impact to the footprints coverage. The roof types themselves,
however, do influence the performance. Flat roofs (e.g., buildings
12, 14 and 17) generally show more errors than hipped roofs.
The latter may have more accurately extracted azimuths (because
of ridges, cf. Section 3.2) and embedded constraints like symmetry
to ensure better reconstruction of the footprints.

The assessments show that the essential parts of all the build-
ings, have been reconstructed with the average values of 82% and
94% for the precision and accuracy. Furthermore, we notice that
a newly demolished building as well as a constructed building part
(Fig. 14, red arrows) are also correctly presented in the result,
which gives a potential possibility of using laser scanning data to
update the existing cadastral maps.

6.3. Stability in the results

The generative modeling is driven by the random sampling,
which implies we will not obtain the exactly same result every
time we rerun the program. Furthermore, we prefer more efficient
search and the sampling will stop when the z-error is stable. To
evaluate the stability of the sampling we repeat the experiment
with the same data points and search settings (priors and iteration
limits) for multiple times and observe the results. Six most differ-
ent results are selected from 20 independent runs and shown in
Fig. 16. First, the deviations of the output models are quite slight
in comparison with the roof size. Second, all the trials present
robustness against the tree clutter and occlusion shown in Fig. 1
(right). We compare the individual parameters as well as the z-er-
rors (red) for one of the primitive (the upper one) in Fig. 16 (right).
The deviation of most of the parameters are under 2% and the z-er-
rors show less difference either, i.e., anyone of the results can be
identically qualified.

The relatively large deviation (approximate 20% of 6 m) of the
hip-depth, however, demonstrates in certain extent the possible
instability. The hipped end of the roof has much fewer scanning
points and therefore higher data uncertainty. These two different
models (trials 3 and 4) are considered fitting the data points
equally well because of the similar z-errors.
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Fig. 16. Stability of the reconstruction: the roof models generated by rerunning the program multiple times (left) and the deviations of roof parameters as well as the z-error

(right).

Fig. 17. Building models derived from the extracted roofs.

Fig. 18. Reconstruction of an urban area of 0.4 km?.
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Fig. 19. High-density data reconstruction: the point cloud (left), the extracted primitives (middle) for roof (orange) and superstructures (blue), and the reconstructed building
model (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. An example of building model generalization.

6.4. Building models and other datasets

3D building models, as shown in Fig. 17, can be derived from the
roof models by extruding the eave contours to the ground.

Another reconstruction result of a larger urban area of Olden-
burg, Germany, is presented in Fig. 18. The total runtime of this
data set (0.5 m raster, approximate 0.4 km?, 96 buildings) is about
60 min.

High resolution data provides denser points representing smal-
ler objects on the roof. As shown in Fig. 19, superstructures, e.g.,
chimney and dormers, have been reconstructed from a point cloud
with the average density of about 0.18 m. Simple flat roof (F1) and
garble roof (H4) are used as primitives for the superstructures. The
search is limited just in the area above the base roof and more con-
straints for the azimuth and size can also be derived accordingly.

7. Extension of the approach for building generalization

The presented approach for building reconstruction can also be
adapted to create building models in different levels of detail
(LoDs). The proposed primitive library and the modeling rules (cf.
Section 3) provide a good basis. Instead of geometrically modifying
existing high resolution models, which is the usual way for deter-
mining different LoDs, we re-generate new models with corre-
sponding descriptions. We modify the employed primitives and
even the statistical search scheme for different LoDs. For the selec-
tion of primitives it is easy to derive a multi-stage simplification
routine, e.g., G2 - H1 —» H4 — F1 (cf. Fig. 2). The primitive library
as well as the jump routine is designed considering the number
of parameters, which also implies their complexity and geometric
inheritance (cf. Fig. 8). For complex buildings that contain multiple
parts, the combinations of primitives can be replaced with fewer
and simpler primitives for simplification. An example can be found
in Fig. 20.

As mentioned before, in our approach, the simplified models are
not obtained using a geometrical transformation of a higher LoD
but are newly generated by statistical sampling with reduced com-
plexity and numbers of primitives. As shown in Fig. 20, in the case
of lower resolution the model (b) is achieved by just skipping the

(c) (d)

search of superstructures (cf. Section 4.1); (c) is generated by re-
sampling in the roof points with only one primitive instead of a
flexible number of them; LoD1 model (d) can be seen as using
the simple flat roof model to fit the scanning data. By these means
a flexible multi-stage simplification can be conducted and the
models of every level maintain integrity and regularity. This ap-
proach corresponds to the “star”-approach in generalization,
where the different representations are generated from one origi-
nal representation (in this case the raw data in terms of point
clouds). It generates homogeneous representations in different
LoDs, as it is based on the same set of primitives, which are se-
lected based on geometric criteria to differentiate varied
resolutions.

8. Conclusions and outlook

In this paper we have proposed a hybrid generative statistical
framework to automatic extraction and reconstruction of building
roofs from airborne laser scanning point clouds. The main contri-
butions of this work can be summarized as follows:

- A novel primitive-based modeling scheme with combination
and merging rules designed to allow primitive overlapping.

- Generative statistical reconstruction driven by reversible jump
MCMC with explicit model selection methods.

- A new extension of generative models for building generaliza-
tion/multi-scale representations.

Additionally, a pre-segmentation based on blob detection is
conducted for the efficient processing of large urban scenes. By
all these means the reconstruction becomes robust against data
flaws and clutter objects and a plausible result is guaranteed.

Although we have shown the power and flexibility of the top-
down method, it has its own issues of uncertainty and instability.
Also the completeness of the reconstruction, as shown in Sec-
tion 6.1, is influenced by the prior knowledge (e.g., building 3 in
Fig. 11) and the scene complexity (e.g., buildings 21 and 22 in
Fig. 14). Concerning possible future work we, therefore, first con-
sider integrating additional bottom-up information. Cadastral
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maps, for instance, will provide reliable initial values for the model
parameters and help to segment the point cloud more reasonably
concerning individual buildings. The reconstruction results could
become more complete and stable while the computational com-
plexity is reduced.

In this work our primitive library contains only planar roofs
with at most three differing height levels. New entries, e.g., flat
roofs in the forms of triangle and ellipse, domes, cones, and other
curved shapes, can be added to represent the more sophisticated
constructions like churches, exhibition centers and stadia.
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