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ABSTRACT

Internal self-diagnosis and external evaluation of the obtained results are essential for any automatic system. In the long run
these factors are of major importance for the relevance of the system for practical applications. Obviously, this statement
is also true for image analysis in photogrammetry and remote sensing. However, so far only relatively little work has been
carried out in this area.

This paper deals with the external evaluation of automatic road extraction algorithms by means of comparison to manually
plotted linear road axis used as reference data. The comparison is performed in two steps: (1) Matching of the extracted
primitives to the reference network; (2) Calculation of quality measures. Each part depends on the other: the less tolerant
is matching, the less exhaustive the extraction is considered to be, but the more accurate it looks. Therefore, the matching
process is an important part of the evaluation process. The quality measures proposed for the automatically extracted road
data comprise completeness, correctness, quality, redundancy, planimetric RMS differences and gap statistics. They aim at
evaluating exhaustivity as well as assessing geometrical accuracy. The evaluation methodology is presented and discussed
in detail. Results of a comparative evaluation of three different automatic road extraction approaches are presented. They
show the overall status of the road extractors, as well as the individual strengths and weaknesses of each individual

approach. Thus, the applicability of the evaluation method is proven.

1 INTRODUCTION

Internal self-diagnosis and external evaluation of the ob-
tained results are essential for any automatic system. In the
long run these factors are of major importance for the rel-
evance of the system for practical applications. Obviously,
this statement is also true for image analysis in photogram-
metry and remote sensing. However, so far only relatively
little work has been carried out in this area to date.

Both, internal self-diagnosis and external evaluation should
yield quantitative results which are independent of a human
observer. Internal self-diagnosis can be based upon the
traffic light paradigm (Forstner, 1996): a green light stands
for a result found to be correct as far as the diagnosis tool
is concerned, a red light means an incorrect result, and a
yellow light implies that further probing is necessary. Ex-
ternal evaluation needs reference data of some sort and
compares them to the automatically obtained results. In
this paper we deal with the external evaluation of automatic
road extraction algorithms by means of comparison to man-
ually plotted linear road axes used as reference data.

A few approaches on evaluation of image analysis results
can be found in the literature. In (McGlone and Shufelt,
1994) and (Hsieh, 1995) evaluation of automated building
extraction is reported. The results of the extraction are
pixels (in image space) or voxels (in object space) which
are classified as “building” or “non-building”. The analysis
of the degree of overlap between the results of the auto-
mated extraction and a manually generated reference is
carried out by comparison of corresponding pixels or vox-
els, respectively. In (Guérin et al., 1995) road data from
maps are analyzed with regard to distortions which are in-
duced by the map production process. The evaluation is

TMost of this work was carried out, while Olivier Jamet was a visiting
professor at Technische Universitat Minchen in autumn 1996

performed manually. First, the accuracy of the position
of crossroads as well as the orientation of the connected
roads, and their number and nature are investigated. Eval-
uation of the roads concentrates on measures for their ge-
ometrical accuracy. In (Airault et al., 1996) an evaluation
methodology is tackled which is directed towards quantify-
ing the benefits of automatic and semi-automatic road ex-
traction algorithms. The proposed measures comprise ge-
ometric accuracy, success rate and particularly the capture
time. In (Ruskoné, 1996) evaluation of a multi-phase auto-
matic road extraction is performed to point out the benefits
of the different phases as well as to quantify the quality of
the overall results. The measures used are geometric accu-
racy as well as exhaustivity of the extracted data. In (CMU,
1997) evaluation is directed towards measuring the quality
of (semi-)automatic road extraction with different levels of
manual intervention. Only the exhaustivity of the extracted
data is regarded.

In this paper an attempt is undertaken to fuse the quality
measures discussed in the references cited above for au-
tomatic road extraction. In the next Section three different
road extraction schemes, for which the evaluation is car-
ried out, are shortly reviewed, and the proposed evaluation
methodology is presented. Then, some implementation is-
sues are discussed and in Section 4 the results of three
different algorithms for automatic road extraction are pre-
sented and analyzed. The paper concludes with some final
remarks and an outlook.

2 METHODOLOGY
This Section describes the generation of the road network

data and the evaluation scheme together with a detailed
description of the proposed quality measures.



2.1 Road extraction

Basically, approaches for road extraction use one or both
of the following two properties of roads: in low resolution
images roads are usually modeled as lines, whereas in
high resolution imagery they are considered as homoge-
neous, elongated areas with parallel roadsides. In this pa-
per three different methods are used for the extraction of
roads from digital imagery: Line extraction in low resolu-
tion by itself, an algorithm combining line extraction with a
high resolution module based on grouping, and a third al-
gorithm combining line extraction with a snake-based tech-
nigue in high resolution. The two latter approaches use the
results of the first one as input, and thus make use of the
scale-space behavior of roads (Mayer and Steger, 1996).
All three algorithms were developed at the Technische Uni-
versitdt Miinchen. Their choice for this study is motivated
by the interest in the gain, a high resolution module yields
in comparison with line extraction in low resolution. Also,
the behavior of the two high resolution modules were to be
compared in a controlled situation.

Line extraction (Steger, 1996) is based on differential ge-
ometry. Line points are characterized by having a local
minimum or maximum in the direction perpendicular to the
line. This direction is assumed to be the one in which the
second derivative of the image function (i.e. the curvature)
attains its maximum absolute value. To calculate the deriva-
tives of the image function, the image is convolved with the
corresponding derivatives of a Gaussian smoothing kernel
with scale o. The direction of maximum curvature is subse-
quently computed from the elements of the Hesse matrix,
containing the second partial derivatives in row and column
direction, and the mixed second derivative. The value of o
can be derived from the maximum line width which is to be
extracted. The result of this step are individual line points
with sub-pixel location, and directions. In a second step
these points are linked into lines using a hysteresis thresh-
old technique.

The TUM-G approach (Baumgartner et al., 1997) is based
on the extraction of lines in an image of reduced resolu-
tion using the approach of (Steger, 1996) and the extrac-
tion of edges in a high resolution image. Using both resolu-
tion levels and explicit knowledge about roads, hypotheses
for roadsides are generated. The roadsides are used to
construct quadrilaterals representing road-parts and poly-
gons representing intersections. Neighboring road-parts
are chained into road-segments. Road-links, i.e., the
roads between two intersections, are constructed by group-
ing of road-segments and closing of gaps between road-
segments.

The TUM-S approach (Mayer et al., 1997) is based on the
line extraction (Steger, 1996), too, and thus also takes ad-
vantage of the information of more than one scale resolu-
tion. Opposed to the TUM-G approach, it uses so-called
“snakes” in the form of ribbon-snakes to verify roads and
discriminate them from other line-type objects by means of
the constancy of the width. What is more, the approach is
able to bridge gaps between the lines, resulting e.g. from
shadows cast on the roads. For the bridging ziplock-snakes
(Neuenschwander et al., 1995), i.e., snakes which are opti-
mized starting at their end points, proved to be important.
Global context or contextual information which describes
so-called “outer characteristics” of roads, like “land cover
area” and “bordered by” strongly influences the perfor-
mance of road extraction , (Baumgartner et al., 1997), (Bor-
des et al., 1997). Using the sketched road models for all
three approaches roads cannot be automatically extracted

in highly textured areas such as forests or urban areas.
Therefore, the extraction is restricted to open areas. The
delineation of the open areas is carried out automatically
by texture classification.

2.2 The evaluation scheme: matching procedure and
quality measures

The evaluation of the extracted road data is made by com-
parison of the automatically extracted road centerlines with
manually plotted road axes used as reference data and is
processed in two steps: (1) Matching of the extracted road
primitives to the reference network and (2) Calculation of
quality measures. The proposed measures aim at assess-
ing exhaustivity as well as geometrical accuracy of the re-
sults. Each part depends on the other: the less tolerant is
matching, the less exhaustive the extraction is considered
to be, but the more accurate it looks. Therefore, the match-
ing process is an important part of the evaluation process.

2.2.1 Matching procedure  The purpose of the match-
ing is twofold: First, it yields those parts of the extracted
data which are roads, i.e., match reference road data. Sec-
ondly, it shows which parts of the reference data are ex-
plained by the extracted data, i.e., match extracted road
data, and which are not.

There are various ways to perform the actual matching of
two road networks. Special issues arise from the fact that
the topologies of the reference and the extracted network
can be different, and that the extraction can be redundant,
i.e., extracted pieces overlap each other. A simple matching
process consists in the so called “buffer method”, in which
every portion of one network within a given distance from
the other is considered as matched. This procedure is not
satisfying in itself in the sense that a highly redundant ex-
traction will not be detected. Another method consists in
searching for a unique, i.e., bijective correspondence be-
tween the two networks. Such attempts have been made
(Walter, 1996), however it is not clear how to define such
a correspondence for topologically different networks on a
general basis. As a consequence matching is performed
according to the buffer method and additional attention is
paid to the problem of redundancy. In the first step a buffer
of constant predefined width (buffer width) is constructed
around the reference road data. The parts of the extracted
data within the buffer are considered as matched (see
Fig. 1a). Following the notation of (McGlone and Shufelt,
1994) and (CMU, 1997) the matched extracted data are de-
noted as true positive with length TP emphasizing the fact
that the extraction algorithm has indeed found a road, the
unmatched extracted data is denoted as false positive with
length FP, because the extracted road hypotheses are in-
correct.

In the second step matching is performed in the other di-
rection. The buffer is now constructed around the extracted
road data, and the parts of the reference data lying in the
buffer are considered to be matched (see Fig. 1b). In case
of low redundancy their length can be approximated with
TP (see above) The unmatched reference data are denoted
as false negative with length FN.

2.2.2 Quality measures  For the evaluation of the road
extraction results a number of quality measures is defined.
The measures are not meant to evaluate the extraction and
the matching results in an absolute way. Rather, they are
used to compare the results of different algorithms. This
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Figure 1: Matching principle.

view justifies a simplified set of measures.

Two questions are thought to be answered by means of the
quality measures: (1) How complete is the extracted road
network, and (2) How correct is the extracted network. The
completeness corresponds to the user's demands (“what is
missing in the network | want”), whereas the correctness is
related to the probability of an extracted linear piece to be
indeed a road. Thus, the correctness can be used within a
self-diagnosis module.

The definitions of completeness and correctness, as well as
the other quality measures are presented in the following.

e Completeness

length of matched reference

completeness
P length of reference

TP
TP+ FN
completeness €  [0;1]

(for low redundancy)

The completeness is the percentage of the reference
data which is explained by the extracted data, i.e., the
percentage of the reference network which lies within
the buffer around the extracted data.

The optimum value for the completeness is 1.

e Correctness

length of matched extraction

correctness = -
length of extraction

TP
TP+ FP
correctness € [0;1]

The correctness represents the percentage of cor-
rectly extracted road data, i.e., the percentage of the
extracted data which lie within the buffer around the
reference network.

The optimum value for the correctness is 1.

e Quality
length of matched extraction
aq

quality =

TP
TP+ FP+ FN
quality € [0;1]
aq

length of extracted data

+ length of unmatched reference
The quality is a measure of the “goodness” of the final
result. It takes into account the completeness of the

extracted data as well as its correctness.
The optimum value for the quality is 1.

Redundancy
rr

redundanc
Y length of matched extraction

redundancy € [0;+oof
rr = length of matched extraction
—length of matched reference
The redundancy represents the percentage to which
the correct (matched) extraction is redundant, i.e., it

overlaps itself.
The optimum value for the redundancy is 0.

RMS difference

] : -
RMS = \/zi1(d(e-7’7t7"i71"6f))

RMS € [0;buffer width]

I = number of pieces of matched
extraction
d(extri;ref) = shortest distance between the

i — th piece of the matched
extraction and the reference
network
The RMS difference expresses the average distance
between the extracted and the reference network, and
thus the geometrical accuracy of the extracted road
data. The value depends on the buffer width. If an
equal distribution of the extracted road data within the

buffer around the reference network is assumed, it can
be shown that

1
RMS = —— xbuffer width
7 ff

The optimum value for RMS is 0.
Gap statistics

— Number of gaps per kilometer

n
No. k _
0. of gaps per km ref. length [km)]
n = number of gaps

The number of gaps in the reference data,
i.e., the number of connected FN parts, is an
indicator for the fragmentation of the extraction
results. Only gaps larger than the approximate
road width are taken into account, since the
smaller gaps are usually closed during the ex-
traction process. The optimum value is 0.

— Mean gap length
>y (gli)

n
length of the i — th gap

Hgap length =

gli
The optimum value is 0.



2.3 Discussion of the evaluation scheme

There are several issues worth mentioning which may in-
fluence the significance of the proposed evaluation scheme
and the accuracy of the results. They are mainly related to
the employed matching strategy.

2.3.1 Bufferwidth  The only parameter which has to be
chosen for the evaluation process is the buffer width used
for the matching. A suitable setting of the buffer width has
to consider the expected internal accuracy of the road ex-
traction algorithm. If the buffer width is set too large, false
extractions close to the actual road will incorrectly be con-
sidered as roads. If it is chosen too small, correct road
data which are only slightly geometrically inexact will be re-
jected.

For the evaluation of the results of the extraction algorithms
described in Section 2.1 we have chosen a buffer width of
approximately half of the road width, i.e., it is assumed that
a road is extracted correctly if the road axis lies between
the roadsides.

2.3.2 Direction There are extraction errors which can-
not be detected during the matching because the direction
of the road axes is not taken into account. Extracted road
data can e.g. result in a scenario similar to the one dis-
played in Figure 2. Based on the simple matching criterion
employed the extracted road data are matched to the refer-
ence data, although this result is obviously incorrect. The
directions of the extracted and the reference roads differ
significantly which is an indicator for the error. Based on
our experience, however, these problems occur mostly in
highly textured areas such as forests which are excluded
from our investigations (see Section 2.1).

Extraction result

Figure 2: Incorrectly extracted data.

2.3.3 Shape In some cases the extraction results can
wiggle around the reference road data as depicted in Figure
3. A shape measure for the extracted data, e.g based on
curvature, can detect such problems. In the current imple-
mentation, however, no such measure has been included,
because roads are implicitly or explicitly modeled as more
or less straight segments in all 3 algorithms. Consequently,
no wiggling effects have been observed in the extraction
results.

Extraction result

;Buffer

Reference

Figure 3: Extracted data wiggling around reference.

2.3.4 Road crossings and junctions In the presentim-
plementation of the evaluation approach roads and road
crossings/junctions are handled in the same way. This
may lead to some inaccuracies in the case of cross-
ings/junctions. One such case is depicted in Figure 4.
The reference data show a road junction. The extraction
algorithms, however, only delivered the horizontal road, the
branching road was not detected. Nevertheless, the part of
this branching road lying inside the buffer of the extracted
road is incorrectly considered to be matched.

reference road data

T guffer width

extracted road data

Figure 4: Matching in the vicinity of a junction.

The influence of this error on the accuracy of the final
measures is considered to be small because of the small
number of crossings and junctions compared to the overall
length of the road network.

3 IMPLEMENTATION ISSUES

Due to resulting flexibility, simplicity and speed, matching is
implemented in the raster domain using the HORUS image
analysis system and is carried out pixel by pixel. It consists
of the following steps:

e \ector/raster conversion of the extracted and the refer-
ence data,

e Calculation of the exhaustiveity measures:

— Dilation of extracted and reference data (buffer
generation)

— Intersection of reference data with dilated ex-
tracted data, yielding the matched reference and
unmatched reference data (FN)

— Intersection of extracted data with dilated refer-
ence data, resulting in the matched extracted
data (TP) and unmatched extracted data (FP)

— Computation of completeness, correctness,
quality and redundancy
e RMS Computation:
— Distance transformation of the matched parts of
the extracted data

— Intersection of reference data with squared result
of distance transformation

— Calculation of the mean value of the intersection
result. The square root of this mean value is the
desired RMS difference.

e Gap statistics:

— Determination of the number and length of con-
nected FN sets and computation of mean gap
length



There are two aspects to be discussed in more detail:

1. The dilation of the raster data and

2. the accuracy of the whole matching and the computed
measures.

Ad 1: Buffer generation through conventional dilation leads
to a result similar to the one shown in Figure 5. If this buffer
is used for the matching, particularly for the intersection of
reference and dilated extracted data, smaller gaps will be
closed by the dilation. This lengthens the matched refer-
ence data and affects completeness, quality, redundancy,
and the gap statistics. This problem is fixed by constructing
the buffers from rectangles and circles (see Fig. 6). This
method uses the vector representation as input. Around
two nodes of the road network a rectangle is constructed
with a width of twice the buffer width. A circle with radius
equal to the buffer width is centered on each node which
is connected to more than one other node. The resulting
buffer is used for the matching.

2

Figure 5: Buffer resulting from conventional dilation using a
circle as structuring element.

&

e

Figure 6: Outline of buffer constructed from rectangles and
circles.

Ad 2: The accuracy of the matching and the quality mea-
sures is influenced by the pixel spacing used in the vec-
tor/raster conversion. Obviously, a higher accuracy is
achieved if smaller pixels are chosen. The spacing used
in this study was considerably smaller than the pixel size
of the original grey value image (see also discussion on
threshold parameters below). In this way, problems asso-
ciated with the discretization such as directional effects in
the computation of the lengths TP, FP, and FN, as well as
an overly optimistic estimation for the RMS difference are
kept to an acceptable minimum.

4 EXPERIMENTS AND RESULTS

The proposed evaluation scheme has been tested for the
results of the three described algorithms and three differ-

ent black and white test images. A description of the test
images and the test procedure, the obtained results and a
detailed analysis are presented in this Section.

4.1 Testimages and test procedure

The test images are described in table 1 and are depicted
below along with the extraction results. The image Marchet-
sreut with a groundel size (pixel size on the ground) of
0.225 m is a rather easy scene, Erquy (groundel size 0.45
m) and Montserrat (groundel size 0.225 m) are more diffi-
cult, because in some parts, the road model used for the
extraction is violated. It should be noted that all three im-
ages are rather large, their size amounts to approximately
1/4 of a photogrammetric aerial image.

As described in Section 2.1 road extraction was only car-
ried out in the open areas. The line algorithm needs low
resolution images. They were generated by subsampling
the test images to a pixel size 3.6 m. The results of the
line algorithm were subsequently fed into the high resolu-
tion modules of the two other algorithms.

All three algorithms were run in a totally automatic fash-
ion. It should be mentioned, however, that each algorithm
requires a number of threshold parameters to be set prior
to the computations. As mentioned earlier, the aim of the
study is to evaluate the extraction results based on differ-
ent test images. Information concerning the general ap-
plicability of each algorithm across different images is of
secondary importance only. Therefore, in the case of the
lines and the TUM-G algorithm it was thought acceptable to
change the threshold parameters required for the extraction
algorithms from one image to the next according to visual
inspection. For the TUM-S algorithm this parameter tuning
was not performed.

Also, the matching procedure needs some free parameters,
namely the pixel spacing and the buffer width for matching.
These parameters were chosen equal for all evaluations,
and were set to 0.1 m for the pixel spacing, and 3 m for
the buffer width, thus assuming a maximum road width of
approximately 6 m.

The results are depicted in the Figures 7 through 9. For
each test image the image superimposed with the forest
mask, the manually plotted reference road axes, the three
results delivered by the extraction algorithms, and a table
listing the quality measures are shown.

4.2 Discussion of results

We first discuss the results of each algorithm separately,
before giving some comments valid for the whole investiga-
tion.

4.2.1 Lines algorithm  Judging from visual inspection
the lines algorithm delivers the most detections. However,
the extracted data are highly fragmented, i.e., there is a
large number of small gaps, and many road hypotheses are
incorrect. The reason for this behavior is the rather weak
road model adopted: roads are assumed to be bright lines
on a dark background, and there are hard constraints about
the connectivity of line pixels (see Section 2.1). This model
indeed fits many road parts, but also a lot of other linear
structure in the image, and there is no further information
to discriminate between the two groups. Consequently, the
completeness is rather high, but the correctness and the
quality have comparatively low values. Redundancy is not
a problem for the algorithm due to the small buffer width of



Name of test site || description of image | scale pixel size | groundel | image length buffer
content in image | size in | size of  ref- | width
space object [pixel] erence [m]
[pem] space network
[m] (km]
Marchetsreut flat, agricultural, 1:15,000 | 15 0.225 40002 3.84 3
easy
Erquy flat, agricultural, 1:30,000 0.45 45002 24.10 3
difficult
Montserrat hilly, agricultural, 1:15,000 0.225 40007 8.42 3
very difficult

Table 1: Description of test images

3 m compared to the employed pixel size of 3.6 m used for
the extraction. The geometrical accuracy is adequate con-
sidering this 3.6 m pixel size. These observations are valid
for all three test images.

An amelioration of the results can only be obtained by in-
troducing a stronger road model. Since the roads in low
resolution are only a few pixels wide, information about the
surrounding objects plays a major role in strengthening the
model. Such models, however, are very difficult to realize.

4.2.2 TUM-G algorithm  Due to the stronger road model
and the high resolution image information, the TUM-G ap-
proach is able to discriminate much better between “roads”
and “non-roads” than the lines algorithm, thus delivering
more stable road hypotheses. These hypotheses are also
used to bridge small gaps. Consequently, the extracted
road parts are better connected and thus longer, the num-
ber of gaps is greatly reduced, and the average gap length
is larger. Most important, the correctness is significantly
larger. Some of the detected lines in the low resolution
module of TUM-G are in fact roads but do not comply with
the model criteria for the high resolution module (parallel
road edges, homogeneous surface). Therefore, they are
lost lost during processing. An example is the long road in
the lower right of the Erquy image running at a 45 degree
angle. Thus, the completeness is somewhat reduced. The
resulting quality, however, is better than that of the lines al-
gorithm, especially for Marchetsreut, but to a lesser extent
also for Erquy and Montserrat.

The algorithm has a small problem with redundancy due
to a known weakness: when extracting parallel roadsides,
multiple parallel edges rather than only a pair of anti-parallel
edges are allowed. The geometrical accuracy lies in be-
tween 2 and 4 pixels. Although this result is acceptable,
there is room for improvement.

Whereas for Marchetsreut most parts of the road network
have been extracted, the algorithm has problems with the
more difficult scenes Erquy and especially Montserrat in
which roads have a greatly varying appearance. This result
is an indication for the applicability of the algorithm: it can
serve as an automatic extraction tool for easy scenes. Im-
provements can be expected by analyzing the gaps in the
extraction results, and finding and subsequently modeling
the underlying reasons for these gaps such as shadows,
occlusions etc.

4.2.3 TUM-Salgorithm  The TUM-S algorithm has been
designed to overcome some of the problems of the TUM-
G algorithm, and is especially aiming at generating very
stable road hypotheses. For Marchetsreut the exhaustivity
results are very similar, there is no redundant extraction,
and sub-pixel accuracy was reached for the RMS differ-

ence. The advantages of the TUM-S algorithm are most
obvious when inspecting the Erquy results: completeness
and correctness are significantly improved due to the abil-
ity of the algorithm to analyze and bridge gaps in the ex-
traction results, e.g. for shadowed or partly occluded ar-
eas. Especially striking is the fact that the completeness is
higher than that of the lines algorithm, even though the long
road running at the 45 degree angle was missed (see also
TUM-G algorithm). This shows the effectiveness of the gap
bridging. The limits of focusing the algorithm on generat-
ing stable road hypotheses become clear in the Montserrat
scene: the winding roads with partly changing width and
non-homogeneous surface are not handled correctly.

As in the case of the TUM-G approach improvements can
be expected by advanced modeling of the roads and their
surroundings.

4.2.4 Additional comments Looking at all the pre-
sented results it becomes clear that the proposed qual-
ity measures adequately capture the impression obtained
when visually inspecting the extracted roads data. Thus,
they can serve as a basis for the comparison of different
automatic road extraction algorithms. It should be noted,
however, that due to the effects mentioned in Section 2.3
and the discretization (see Section 3) the numerical accu-
racy of the quality measures is not extremely high. The sig-
nificance of these measures for a detailed comparison can
be further improved by classifying the reference road net-
work into different categories such as clearly visible road
parts, roads in shadow, occluded roads etc.

The number and mean length of the gaps needs some fur-
ther discussion. Obviously the best result consists in having
very few and short gaps. However, it is not clear whether
a small number of long gaps is to be preferred to a large
number of short gaps. The choice depends on the extra
work necessary for closing the gaps. More detailed investi-
gations are needed to clarify this issue.

5 SUMMARY AND CONCLUSIONS

Automatic evaluation of the obtained results is an increas-
ingly important topic in image analysis. In this paper a
methodology for the evaluation of automatic road extraction
algorithms based on the comparison to manually plotted
reference data as presented. This methodology was tested
using the results of three extraction algorithms across three
different test images.

The obtained results are representative for the state-of-the-
art of automatic road extraction from aerial images. In easy
scenes a completely automatic extraction is possible. As
the scenes become more difficult the obtained results start



degrading. Low resolution images with a pixel size of a few
meters can (and should) be used as a preprocessing step
in the extraction. Reliable extraction only on the basis of
these images, however, is not realistic. The key factor for
improvement is a more detailed modeling of the roads and
their surroundings.

The proposed evaluation scheme adequately captures the
characteristics of the individual extraction results and can
thus serve as a basis for their comparison and integration.
Depending on the application at hand some of the quality
measures such as completeness in a semi-automatic en-
vironment may be more relevant than others. Additional
measures could be thought of, e.g. the ratio between com-
pleteness and correctness, which should remain constant
over differentimages, once a suitable ratio has been found.
Also, the algorithmic complexity and thus the computational
effort needed will become a criteria as automatic road ex-
traction advances further towards practical applications.
The proposed evaluation scheme can also form the basis
for automatic updating of geo-data, which is becoming an
increasingly important issue. In this case, the reference
data are substituted by existing, but out-dated geo-data,
and these are compared to extracted data from an up-to-
date image. It should be noted that in this scenario some
of the proposed measures such as the correctness and the
RMS difference loose their significance, and a sound un-
certainty management is needed because the assumption
that the given vector data be correct and complete is no
longer valid. This topic will be further investigated in future
research.
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a) Grey value image superimposed
with mask for open area.

b) Manually plotted reference.

[| Lines | TUM-G | TUM-S

Completeness 0.72 0.77 0.75
Correctness 0.42 0.95 0.97
Quality 0.36 0.76 0.74
Redundancy 0.05 0.11 0.01
RMS [m] 1.74 0.60 0.24
No. of gaps per km 29.2 6.8 10.4
Hgap length [M] 9.7 33.7 23.7

¢) Quality measures.

d) Results of line extraction.

e) Results of TUM-G algorithm.
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f) Results of TUM-S algorithm.

Figure 7: Test image Marchetsreut




a) Grey value image superimposed
with mask for open area.

b) Manually plotted reference.

| [| Lines | TUM-G [ TUM-S | h o \ P S

Completeness 0.63 0.47 0.66 ,

Correctness 0.42 0.78 0.87 L (

Quality 0.34 0.42 0.60

Redundancy 0.05 0.04 0.01

RMS [m] 1.59 0.45 0.46

No. of gaps per km 22.6 7.8 9.0

Hgap length [M] 16.3 68.4 37.7

¢) Quality measures.

f) Results of TUM-S algorithm.

Figure 8: Test image Erquy



a) Grey value image superimposed
with mask for open area.

i

=)

d) Results of line extraction.

b) Manually plotted reference.
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[| Lines | TUM-G [ TUM-S |

Completeness 0.47 0.33 0.15
Correctness 0.36 0.61 0.55
Quality 0.26 0.29 0.13
Redundancy 0.03 0.09 0.01
RMS [m] 1.67 0.99 0.58
No. of gaps per km 213 12.0 4.3
Hgap length [M] 25.0 55.9 199.1

¢) Quality measures.
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f) Results of TUM-S algorithm.

Figure 9: Test image Montserrat



