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Abstract

Internal self-diagnosis and external evaluation of the obtained results are of major importance
for the relevance of any automatic system for practical applications. Obviously, this statement is
also true for automatic image analysis in photogrammetry and remote sensing. However, so far
only relatively little work has been carried out in this area. This is mostly due to the moderate
results achieved. Only recently automatic systems reacheda state in which a systematic evaluation
of the results seems to be meaningful.

This paper deals with the external evaluation of automatic road extraction algorithms by com-
parison to manually plotted linear road axes used as reference data. The comparison is performed
in two steps: (1) Matching of the extracted primitives to thereference network; (2) Calculation of
quality measures. Each step depends on the other: the less tolerant is matching, the less exhaustive
the extraction is considered to be, but the more accurate it looks. Therefore, matching is an impor-
tant part of the evaluation process. The quality measures proposed for the automatically extracted
road data comprise completeness, correctness, quality, redundancy, planimetric RMS differences,
and gap statistics. They aim at evaluating exhaustivity as well as assessing geometrical accuracy.
The evaluation methodology is presented and discussed in detail. Results of a comparative evalu-
ation of three different automatic road extraction approaches are presented. They show the overall
status of the road extractors, as well as the individual strengths and weaknesses of each individual
approach. Thus, the applicability of the evaluation methodis proven.

1: Introduction

Internal self-diagnosis and external evaluation of the obtained results are of major importance
for the relevance of automatic systems for practical applications. Obviously, this statement is also
true for automatic image analysis in photogrammetry and remote sensing. However, so far only
relatively little work has been carried out in this area. This is mostly due to the moderate results
achieved. Only recently automatic systems reached a state in which a systematic evaluation of the
results seems to be meaningful.



Both, internal self-diagnosis and external evaluation should yield quantitative results which are
independent of a human observer. A good description for the result of internal self-diagnosis is
the traffic light paradigm [8]: a green light stands for a result found to be correct as far as the
diagnosis tool is concerned, a red light means an incorrect result, and a yellow light implies that
further probing is necessary. External evaluation needs some kind of reference data and compares
them to the automatically obtained results. In this paper wedeal with the external evaluation of
automatic road extraction algorithms by means of comparison to manually plotted linear road axes
used as reference data.

Only few approaches on evaluation of image analysis resultsare found in the literature. In [15]
and [11] the evaluation of automated building extraction isreported. The results of the extraction
are pixels (in image space) or voxels (in object space) whichare classified as “building” or “non-
building”. The degree of overlap between the results of the automated extraction and a manually
generated reference is determined by matching of the corresponding pixels or voxels, respectively.
Subsequently, measures for quantifying exhaustivity and correctness of the extraction result are cal-
culated. Road data from maps are analyzed with regard to distortions which are induced by the map
production process in [10]. A data set of the French Topographic Database (BDTopo) is used as ref-
erence. The comparison is performed manually. The accuracyof the position of crossroads as well
as the orientation of the connected roads, and their number and nature are investigated. Evaluation
of the roads concentrates on measures for their geometricalaccuracy. In [2] an evaluation method-
ology is proposed which is supposed to quantify the benefits of automatic and semi-automatic road
extraction algorithms compared to manual data capture. Themeasures comprise geometric accu-
racy, success rate and in particular the time needed for datacapture. [17] presents the evaluation
of a multi-phase automatic road extraction. It points out the benefits of the different phases and
quantifies the quality of the overall results. The referencedata used is a data set of the BDTopo.
Measures are geometric accuracy as well as exhaustivity of the extracted data. In [7] the evalu-
ation is directed towards measuring the quality of (semi-)automatic road extraction with different
levels of manual intervention. The reference data is generated by a procedure starting at manually
selected positions, followed by automatic road tracking and manual editing. Roads are extracted as
regions, and matching of the extracted data with the reference data is carried out using an intersec-
tion operation. Only the exhaustivity of the extracted datais further considered. [9] evaluates the
effectiveness of different methods for the initializationof ribbon snakes as well as the geometric
accuracy of the extracted road data. Manually generated road data serve as reference data. The
evaluation focuses on the amount of effort needed by an operator which is measured by the number
of necessary mouse actions. Measures for the geometric accuracy of the extracted road data are
average and maximum deviation from the reference data.

This paper proposes and investigates a scheme for the evaluation of automatic road extraction. In
this scheme various quality measures proposed in the literature are fused in a consistent manner. In
the next Section three different road extraction schemes, for which the evaluation is carried out, are
shortly reviewed. Section 3 is the main part of the paper. It presents the evaluation methodology
in detail and discusses some implementation issues. In section 4 the results of the three differ-
ent algorithms are presented and analyzed. The paper concludes with some final remarks and an
outlook.

2: Road extraction

Basically, approaches for automatic road extraction use one or both of the following two proper-
ties: in low resolution imagery with pixel size of a few meters roads are modeled as lines, whereas



in high resolution imagery (pixel size in the dm range) they are considered as homogeneous, elon-
gated areas with parallel roadsides. In this paper three different approaches for the extraction of
roads from digital imagery are evaluated: The first two combine line extraction in low resolution
with a high resolution module based on grouping (TUM-G), anda snake-based technique, respec-
tively (TUM-S). Both approaches were developed at Technische Universität München (TUM) and
make use of the scale-space behavior of roads [14]. The thirdapproach relies on homogeneity
tracking in high resolution imagery and was developed at Institut Géographique National (IGN).

TheTUM-G approach [4] is based on lines in an image of reduced resolution using the approach
of [19] and edges in a high resolution image. By combining both resolutions and introducing ex-
plicit knowledge about roads, hypotheses for roadsides aregenerated. The roadsides are used to
construct quadrilaterals representing road-parts and polygons representing intersections. Neighbor-
ing road-parts are chained into road-segments. Road-links, i.e., the roads between two intersections,
are constructed by grouping of road-segments and closing ofgaps between road-segments.

TheTUM-S approach [13] is based on lines [19], too. In the high resolution imagery it uses so-
called “snakes” [12] in the form of ribbon-snakes to extractroads and discriminate them from other
line-type objects by means of the constancy of the width. What is more, the approach is able to
bridge gaps between the lines, resulting, e.g., from shadows or partial occlusions. For the bridging,
ziplock-snakes [16], i.e., snakes which are optimized starting at their end points, are employed.

The IGN road extractor is based on semi-automatic road plotting [1]. The core process is a
road tracker that follows homogeneous elongated areas froma given seed point. This tracking is
performed by searching for the continuation of the road through the construction of a local tree of
possible paths. The best path is selected according to a quality function depending on the curvature
of the path and its average homogeneity calculated from greyvalue variances of the branches. The
stop criterion for the search relies on the computation of local parallel borders and of the dispersion
of the search tree. For this experiment, the algorithm was seeded by a road seed detector based
on parallel borders in a region-based segmentation of the image [18]. In order to perform road
extraction in a fully automatic manner, seed detection was performed only within a buffer around
the (approximately) known road position.

Global context and contextual information which describesso-called “outer characteristics” of
roads, like “land cover area” and “bordered by” strongly influence the performance of road extrac-
tion [3, 5]. All three approaches cannot automatically extract roads in highly textured areas such as
forests or urban areas due to their simplified models for roads. Therefore, the extraction is restricted
to open areas in all cases. The delineation of the open areas is carried out automatically by texture
classification.

3: Evaluation scheme

The evaluation of the extracted road data is carried out by comparing the automatically extracted
road centerlines with manually plotted road axes used as reference data. Both data sets are given in
vector representation. The evaluation is processed in two steps: (1) Matching of the extracted road
primitives to the reference network and (2) Calculation of quality measures.

The proposed quality measures aim at assessing exhaustivity as well as geometrical accuracy.
Each step depends on the other: the less tolerant is matching, the less exhaustive the extraction is
considered to be, but the more accurate it looks. Therefore,matching is an important part of the
evaluation process.

The quality measures address two questions: (1) How complete is the extracted road network,
and (2) How correct is it. The completeness corresponds to the user’s demands: (“how much



is missing in the network”). The correctness, on the other hand is related to the probability of an
extracted linear piece to be indeed a road. Thus, it is of highimportance for a self-diagnosis module.

3.1: Matching procedure

The purpose of the matching is twofold: Firstly, it yields those parts of the extracted data which
are supposed to be roads, i.e., which correspond to the reference road data. Secondly, it shows
which parts of the reference data are explained by the extracted data, i.e., which correspond to the
extracted road data.

There are various ways to perform the actual matching of two networks. Especially if the geo-
metric distortions are large and not known beforehand, relational matching was used successfully
[20, 6]. Special issues arise from the fact that the topologies of the reference and the extracted net-
work can be different, and that the extraction can be redundant, i.e., extracted pieces overlap each
other. The so called “buffer method”, is a simple matching procedure in which every portion of one
network within a given distance from the other network is considered as matched. The matching is
not affected by different network topologies. The drawbackof this procedure is that a highly redun-
dant extraction will not be detected and that direction differences between parts of the two networks
are not taken into account. Yet another method for matching consists in searching for a unique, i.e.,
bijective correspondence between the two networks. Such attempts have been made [21], however,
it is not clear how to define such a correspondence for topologically different networks on a general
basis.

In our case, there are very good approximations for positionand orientation of the road data to be
matched. As a consequence, matching is performed accordingto the buffer method and additional
attention is paid to the problem of redundancy and directiondifferences.

In the first step both networks are split into short pieces of equal length. Then, a buffer of constant
predefined width (buffer width) is constructed around the reference road data (see Fig. 1a). The parts
of the extracted data within the buffer are considered as matched if the direction difference between
the reference road data and the part to be matched does not exceed a given threshold. The direction
difference can be derived directly from the vector representations of both networks. Following
the notation of [15] and [7] the matched extracted data are denoted astrue positivewith length
TP, emphasizing the fact that the extraction algorithm has indeed found a road. The unmatched
extracted data is denoted asfalse positivewith length FP, because the extracted road hypotheses are
incorrect.

In the second step matching is performed the other way round.The buffer is now constructed
around the extracted road data (see Fig. 1b), and the parts ofthe reference data lying in the buffer
and fulfilling the direction constraint are considered as matched. In case of low redundancy their
length can be approximated with TP. The unmatched referencedata are denoted asfalse negative
with length FN.

3.2: Quality measures

The quality measures for road extraction are intended to compare the results of different algo-
rithms, rather than to evaluate the extraction and the matching results in an absolute way. Because
these results are additionally quite different and still relatively far away from a perfect solution, a
simplified set of measures is justified.

The definitions of the quality measures are presented in the following.
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Figure 1. Matching principle� Completeness completeness = length of matched referencelength of reference� TPTP + FN (for low redundancy)completeness 2 [0; 1]
The completeness is the percentage of the reference data which is explained by the extracted
data, i.e., the percentage of the reference network which lie within the buffer around the
extracted data.
The optimum value for the completeness is 1.� Correctness correctness = length of matched extractionlength of extraction= TPTP + FPcorrectness 2 [0; 1]
The correctness represents the percentage of correctly extracted road data, i.e., the percentage
of the extracted data which lie within the buffer around the reference network.
The optimum value for the correctness is 1.� Quality quality = length of matched extractionlength of extraction+ length of unmatched reference= TPTP + FP + FNquality 2 [0; 1]
The quality is a more general measure of the final result combining completeness and cor-
rectness into a single measure:quality = completeness � correctnesscompleteness� completeness � correctness+ correctness
The optimum value for the quality is 1.



� Redundancyredundancy = length of matched extraction� length of matched referencelength of matched extractionredundancy 2 ]�1; +1[
The redundancy represents the percentage to which the correct (matched) extraction is redun-
dant, i.e., it overlaps itself.
The optimum value for the redundancy is 0.� RMS difference RMS = sPli=1(d(extri; ref)2)ll = number of pieces of matchedextractiond(extri; ref) = shortest distance between thei� th piece of the matchedextraction and the referencenetworkRMS 2 [0; buffer width]
The RMS difference expresses the average distance between the matched extracted and the
matched reference network, and thus the geometrical accuracy potential of the extracted road
data. The value depends on the buffer width. If an equal distribution of the extracted road
data within the buffer around the reference network is assumed, it can be shown thatRMS = 1p3 � buffer width
The optimum value for RMS is 0.� Gap statistics

– Number of gaps per kilometerNo: of gaps per km = nlength of reference [km]n = number of gaps
The number of gaps in the reference data, i.e., the number of connectedfalse negative
parts, is an indicator for the fragmentation of the extraction results.
The optimum value for the number of gaps per kilometer is 0.

– Mean gap length�gap length [m] = Pni=1(gli)ngli = length of the i� th gap [m]
The optimum value for the mean gap length is 0.

Note that the completeness can be calculated from the numberof gaps per kilometer and the
mean gap length as follows:completeness = 1� (No: of gaps per km � �gap length=1000)



3.3: Discussion of the evaluation scheme

There are several issues worth mentioning which may influence the significance of the proposed
evaluation scheme and the accuracy of the results. They are mainly related to the employed match-
ing strategy. Firstly, the two parameters which have to be chosen for the evaluation process as such,
namely the buffer width and the maximum direction difference, are explained. Secondly, a property
of extracted road data which may influence the result of the evaluation is discussed.

Buffer width: A suitable setting of the buffer width has to consider the expected internal accuracy
of the road extraction algorithm. If the buffer width is set too large, false extractions close to the
actual road will incorrectly be considered as roads. If it ischosen too small, correct road data which
are only slightly geometrically inexact will be rejected.

For the evaluation of the results of the approaches described in Section 2, a buffer width of
approximately half of the road width was chosen, i.e., it is assumed that a road is extracted correctly
if the road axis lies between the roadsides.

Maximum direction difference: Some errors will not be detected, if the direction of the road axes is
not taken into account during matching. Extracted road datacan, e.g., result in a scenario similar to
the one displayed in Figure 2. Without considering the direction constraint, the extracted road data
within the buffer would be matched to the reference data, although this result is obviously incorrect.
The directions of the extracted and the reference roads differ significantly which is an indicator for
the error. This problem is solved by investigation of the direction difference of the two pieces to
be matched. If it is larger than a threshold (maximum direction difference) no match between these
pieces is established. Nevertheless, it is possible that matches exist to other pieces further away but
with smaller direction differences.

The maximum direction difference should not be chosen too restrictive because of the direction
uncertainty of short line segments, especially if they are an approximation of highly curved lines.

Buffer

extracted road data

reference road data

Figure 2. Incorrectly extracted road data

Shape: In some cases the results can wiggle around the reference data as depicted in Figure 3.
A shape measure for the extracted data, e.g. based on curvature, can detect such problems. In the
current implementation, however, no such measure has been included, because roads are implicitly
or explicitly modeled as more or less straight segments in all three approaches. Consequently, no
such effects have been observed in the extracted data. It should be pointed out that a shape measure
becomes important as soon as generalized road axes are used as reference data.
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Figure 3. Extracted road data wiggling around the reference

3.4: Implementation issues

Both, the extracted data and the reference data are introduced into the evaluation procedure in
vector representation, each as a set of polygons. Both networks are split into pieces of equal length
(split length). Then, the shortest distance between each piece of one network and the other network
data is calculated as explained below. The resulting distances are assigned to the respective pieces.
Each piece is labeled asmatchedor unmatchedbased upon a check if its distance value is below
the buffer width and if the direction constraint is fulfilled.

Because of the known and equal length of the pieces (split length) the length of the matched and
unmatched network data can be easily computed by multiplication of the number ofmatched/un-
matchedpieces with the split length. This yields the length of the unmatched reference data (FN),
the length of the matched extracted data (TP), and the length of the unmatched extracted data (FP).
From these values the quality measures completeness, correctness, quality, and redundancy are
computed using the formulas given in Section 3.2. The RMS difference is calculated from the
distances assigned to the matched pieces of the extracted data. For the determination of the number
of gaps per km and the mean gap length, the connectivity of theunmatched pieces of the reference
data is analyzed.

There are three aspects to be discussed in more detail:

1. The definition of the shortest distance

2. The accuracy of the whole matching and the computed measures.

Ad 1: The definition of the shortest distance defines the outline ofthe buffer used for the match-
ing. In the following, two possible definitions are described in detail (there are, of course, other
options, they are not further pursued here).

Assume networkm to be the one which will be labeled asmatchedor unmatched, depending
on the overlap with the buffer around networkb. For a particular pointP on m the distance tob
can be defined as the Euclidean distance betweenP and the intersectionI betweenb and a straight
line l throughP, wherel can be chosen either perpendicular tom in P (case 1, see Fig. 4a), or
perpendicular tob in I (case 2, see Fig. 4b).

As P travels onm the shortest distance tob is calculated for every piece. In case 1 the calculation
is self-evident, whereas it needs some further explanations in case 2: First, the correctb-piece
has to be chosen. This is done by computingl to all b-pieces in a predefined vicinity ofP, and
subsequently selecting the piece with the smallestl fulfilling the direction constraint. There are
pieces ofm for which I lies outside any piece ofb (see Fig. 5a). This problem is solved by allowing
a non-perpendicular intersection ofl with b if I is placed on a node ofb which is connected to more
than one other node (see Fig. 5b). In those cases, the direction ofb is defined as the direction of the
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Figure 5. Special case of distance calculation in case 2

The value of the label (matched/unmatched) is determined for each piece ofm based on a check
if the distance value is below the buffer width, i.e., the parts ofm which lie within the buffer around
b are labeled as matched.

Case 1 of the distance definition yields a buffer width which depends on the direction difference
between the two parts to be matched (see Fig. 6a). Problems which can be solved by an analysis of
the direction difference (see Section 3.3) are treated implicitly by using a smaller buffer in case of
larger direction difference.

In case 2 the resulting buffer width is constant and therefore independent of any direction differ-
ence (see Fig. 6b).

The evaluation results described in this paper are based on an implementation of case 2, because
of the strict separation between distance and direction.

Ad 2: The accuracy of the matching and the quality measures is directly influenced by the split
length used for splitting the networks. Obviously, a higheraccuracy is achieved if a smaller split
length is chosen. The split length used in this study was considerably smaller than the pixel size
of the original grey value image (see also discussion on threshold parameters below). In this way,
problems associated with the discretization are kept to an acceptable level.
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Figure 6. Resulting buffer

4: Experiments and results

The proposed scheme has been used to evaluate the results of the three described approaches
on three different black and white images. A description of the test images and the evaluation
procedure, the evaluation results and a detailed analysis thereof are presented in this Section.

4.1: Test images and test procedure

The test images are described in table 1 and are depicted below along with the extraction results.
The image Marchetsreut with a groundel size (pixel size on the ground) of 0.225 m is a rather easy
scene, Erquy (groundel size 0.45 m), and Montserrat (groundel size 0.225 m) are more difficult,
because in some parts, the road models of the approaches are violated. It should be noted that all
three images are rather large, their size amounts to approximately 1/16 of a photogrammetric aerial
image.

Name of test
site

description of im-
age content

scale pixel
size in
image
space
[�m]

groundel
size in
object
space
[m]

image
size
[pixel]

length
of ref-
erence
network
[km]

Marchetsreut flat, agricultural,
easy

1:15,000 15 0.225 40002 3.84

Erquy flat, agricultural,
difficult

1:30,000 15 0.45 45002 24.10

Montserrat hilly, agricultural,
very difficult

1:15,000 15 0.225 40002 8.42

Table 1. Description of test images

For the test all three algorithms were run in a totally automatic fashion. As described in Section
2 road extraction was only carried out in the open areas. It should be mentioned that each algo-
rithm requires a number of threshold parameters to be set prior to the computations. E.g., the line
algorithm for the TUM approaches is based on low resolution images. They were generated by
subsampling the test images to a pixel size of 3.6 m. As mentioned earlier, the aim of the study is to
investigate the evaluation scheme. Information concerning the general applicability of each algo-



rithm across different images is of secondary importance only. Therefore, it was thought acceptable
to change threshold parameters from one image to the next according to visual inspection.

Also the matching procedure needs some parameters to be set,namely the buffer width, the
maximum direction difference, and the split length. These parameters were chosen equal for all
evaluations, and were set to 3 m for the buffer width (assuming a maximum road width of 6 m), 20�
for the maximum direction difference, and 0.1 m for the splitlength.

The results are depicted in the Figures 7 through 9. For each test image the image superimposed
with the mask for open area, the manually plotted reference road axes, the three results delivered
by the extraction algorithms, and a table listing the quality measures are shown.

4.2: Discussion of results

First, the results of each algorithm are discussed separately. Then some comments valid for the
whole investigation are given.

TUM-G algorithm: Due to the strong road model and the combination of low and high resolution
image information, the TUM-G approach is able to deliver relatively stable road hypotheses which
are also used to bridge small gaps. Consequently, the extracted road parts are well connected and
thus quite long, the number of gaps is moderate, and the average gap length is not too high. Most
important, the correctness is relatively high. The geometrical accuracy lies between 1 and 4 pixels.
Although this result is acceptable, there is room for improvement.

Whereas for Marchetsreut most parts of the road network havebeen extracted, the algorithm has
some problems with the more difficult scenes Erquy and especially Montserrat in which roads have
a greatly varying appearance.

TUM-S algorithm: The TUM-S approach is especially aiming atbridging gaps due to shadows
and occlusions. As desired TUM-S is bridging some of the gapsin the result of TUM-G. Therefore,
the overall number of gaps is smaller than that of TUM-G whichindicates that the connectivity of
the extracted road parts is better. The geometrical accuracy again lies approximately between 1 and
4 pixels.

For Marchetsreut and Erquy the performance is a little worsethan that of TUM-G (except the
correctness), whereas better results were achieved on the Montserrat image.

IGN algorithm: The road model of the IGN approach depends mainly on the homogeneity of the
road instead of the parallelity of the roadsides. Therefore, a performance different from the two
TUM approaches can be expected. This is correctly expressedby the quality measures: the IGN
approach performs good for the Marchetsreut image, rather poor for the Erquy image, but best for
the Montserrat image. The geometrical accuracy lies between 2 and 4 pixels. The connectivity of
the extracted road parts is relatively good.

The high correctness of the extracted data especially for the Montserrat image is partly due to
the limited search space used for the road seed detection (see Section 2).

Additional comments: Looking at all results it becomes clear that the proposed quality measures
adequately capture the impression obtained when visually inspecting the extracted road data. Thus,
they can serve as a basis for the comparison of different automatic road extraction algorithms.
Besides, the results are an indication for the applicability of the road extraction algorithms: they
can serve as automatic extraction tools for easy scenes. It should be noted, however, that due to the
effects mentioned in Section 3.3 and the discretization (see Section 3.4), the numerical accuracy of



the quality measures is not extremely high.
The significance of these measures for a detailed comparisoncan be further improved by clas-

sifying the reference data into different local categoriessuch as clearly visible road parts, roads in
shadow, occluded roads etc. or regional categories like open area, urban area, forest, etc.

The number and mean length of the gaps needs some further discussion. Obviously the best
result consists in having very few and short gaps. However, it is not clear whether a small number
of long gaps is to be preferred to a large number of short gaps.The choice depends on the extra
work necessary for closing the gaps. More detailed investigations are needed to clarify this issue.

5: Summary and conclusions

Automatic evaluation of the obtained results is an increasingly important topic in image anal-
ysis as results are approaching a point where they become useful for practice. In this paper a
methodology for the evaluation of automatic road extraction algorithms based on the comparison
to manually plotted reference data is presented. This methodology was tested using the results of
three approaches across three different test images.

The obtained results are representative for the state-of-the-art of automatic road extraction from
aerial images. In easy scenes a completely automatic extraction is possible. As the scenes become
more difficult the obtained results start degrading. Low resolution images with a pixel size of a
few meters can (and should) be used as a preprocessing step inthe extraction. Reliable extraction
only on the basis of these images, however, is not realistic.The key factor for improvement is
a more detailed modeling of the roads and their surroundings. E.g., improvements of the TUM-
G approach could be achieved firstly by analyzing the gaps in the extraction results, and finding
and subsequently modeling the underlying reasons for thesegaps such as shadows, occlusions etc.
Secondly, other criteria like the homogeneity of the path employed in the IGN approach could
complement the approach.

The proposed evaluation scheme adequately captures the characteristics of the individual ex-
traction results and can thus serve as a basis for their comparison and integration. Depending on
the application at hand some of the quality measures such as completeness in a semi-automatic
environment may be more relevant than others. Additional measures could be thought of, e.g. an
analysis of topological differences between extracted andreference data, especially in the vicin-
ity of crossings, or the ratio between completeness and correctness, which should remain constant
over different images, once a suitable ratio has been found.Also, the algorithmic complexity and
thus the computational effort needed will become a criteriaas automatic road extraction advances
further towards practical applications.

The proposed evaluation scheme can also form the basis for automatic updating of geo-data,
which is becoming an increasingly important issue. In this case, the reference data are substituted by
existing, but out-dated geo-data, and these are compared toextracted data from an up-to-date image.
It should be noted that in this scenario some of the proposed measures such as the correctness and
the RMS difference loose their significance, and a sound uncertainty management is needed because
the assumption that the given vector data be correct and complete is no longer valid. This topic will
be further investigated in future research.
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[10] P. Guérin, O. Jamet, and H. Maı̂tre. Distortion Model in Road Networks from Topographic Maps: identification
and Assessment. InSPIE: Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision II,
volume 2486, pages 232–243, April 1995.

[11] Y. Hsieh. Design and Evaluation of a Semi-Automated Site Modeling System. Technical Report CMU-CS-95-195,
Computer Science Department, Carnegie Mellone University, 1995.

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International Journal of Computer
Vision, 1(4):321–331, 1987.

[13] H. Mayer, I. Laptev, A. Baumgartner, and C. Steger. Automatic Road Extraction Based on Multiscale Modeling,
Context, and Snakes. InInternational Archives of Photogrammetry and Remote Sensing, volume32(3-2W3), pages
47–56, 1997.

[14] H. Mayer and C. Steger. A New Approach for Line Extraction and its Integration in a Multi-Scale, Multi-
Abstraction-Level Road Extraction System. InIAPR TC-7 Workshop: Mapping Buildings, Roads and other Man-
Made Structures from Images, pages 331–348, Vienna, Austria, 1996. Oldenbourg Verlag.

[15] C. McGlone and J. Shufelt. Projective and Object Space Geometry for Monocular Building Extraction. InComputer
Vision and Pattern Recognition, pages 54–61, 1994.
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a) Grey value image superimposed
with mask for open area

b) Manually plotted reference

TUM-G TUM-S IGN

Completeness 0.90 0.85 0.80
Correctness 0.99 0.98 0.94
Quality 0.89 0.84 0.76
Redundancy 0.00 -0.01 0.00
RMS [m] 0.27 0.38 0.52
No. of gaps per km 7.06 5.97 7.06�gap length [m] 13.58 24.80 27.84

c) Quality measures

d) Results of TUM-G algorithm

e) Results of TUM-S algorithm

f) Results of IGN algorithm

Figure 7. Test image Marchetsreut



a) Grey value image superimposed
with mask for open area

b) Manually plotted reference

TUM-G TUM-S IGN

Completeness 0.77 0.72 0.43
Correctness 0.93 0.95 0.60
Quality 0.73 0.69 0.34
Redundancy 0.02 -0.01 0.00
RMS [m] 0.53 0.47 0.92
No. of gaps per km 5.11 4.85 4.94�gap length [m] 44.35 58.00 115.05

c) Quality measures

d) Results of TUM-G extraction

e) Results of TUM-S algorithm

f) Results of IGN algorithm

Figure 8. Test image Erquy



a) Grey value image superimposed
with mask for open area

b) Manually plotted reference

TUM-G TUM-S IGN

Completeness 0.31 0.45 0.46
Correctness 0.61 0.66 0.90
Quality 0.25 0.36 0.44
Redundancy -0.01 -0.03 0.00
RMS [m] 0.91 0.66 1.05
No. of gaps per km 5.05 4.56 4.92�gap length [m] 137.54 120.56 108.92

c) Quality measures

d) Results of TUM-G extraction

e) Results of TUM-S algorithm

f) Results of IGN algorithm

Figure 9. Test image Montserrat


