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Abstract

Internal self-diagnosis and external evaluation of theaifed results are of major importance
for the relevance of any automatic system for practical plons. Obviously, this statement is
also true for automatic image analysis in photogrammetrg samote sensing. However, so far
only relatively little work has been carried out in this aredhis is mostly due to the moderate
results achieved. Only recently automatic systems reaafstate in which a systematic evaluation
of the results seems to be meaningful.

This paper deals with the external evaluation of automaigdrextraction algorithms by com-
parison to manually plotted linear road axes used as refegettata. The comparison is performed
in two steps: (1) Matching of the extracted primitives to tiierence network; (2) Calculation of
quality measures. Each step depends on the other: the lesaribis matching, the less exhaustive
the extraction is considered to be, but the more accuratmks. Therefore, matching is an impor-
tant part of the evaluation process. The quality measurepgsed for the automatically extracted
road data comprise completeness, correctness, qualiynmaancy, planimetric RMS differences,
and gap statistics. They aim at evaluating exhaustivity el & assessing geometrical accuracy.
The evaluation methodology is presented and discussedail.d@esults of a comparative evalu-
ation of three different automatic road extraction apprbas are presented. They show the overall
status of the road extractors, as well as the individualrggtes and weaknesses of each individual
approach. Thus, the applicability of the evaluation methsogroven.

1: Introduction

Internal self-diagnosis and external evaluation of theaioletd results are of major importance
for the relevance of automatic systems for practical apgibms. Obviously, this statement is also
true for automatic image analysis in photogrammetry andotersensing. However, so far only
relatively little work has been carried out in this area. sTtd mostly due to the moderate results
achieved. Only recently automatic systems reached a stathich a systematic evaluation of the
results seems to be meaningful.



Both, internal self-diagnosis and external evaluatiorutdhgield quantitative results which are
independent of a human observer. A good description for éiselt of internal self-diagnosis is
the traffic light paradigm [8]: a green light stands for a te$ound to be correct as far as the
diagnosis tool is concerned, a red light means an incorestilt;, and a yellow light implies that
further probing is necessary. External evaluation needseskind of reference data and compares
them to the automatically obtained results. In this papeides with the external evaluation of
automatic road extraction algorithms by means of comparieananually plotted linear road axes
used as reference data.

Only few approaches on evaluation of image analysis reapt$ound in the literature. In [15]
and [11] the evaluation of automated building extractiorejgorted. The results of the extraction
are pixels (in image space) or voxels (in object space) warehclassified as “building” or “non-
building”. The degree of overlap between the results of tteraated extraction and a manually
generated reference is determined by matching of the gmnesng pixels or voxels, respectively.
Subsequently, measures for quantifying exhaustivity amdectness of the extraction result are cal-
culated. Road data from maps are analyzed with regard tortists which are induced by the map
production process in [10]. A data set of the French Topdyapatabase (BDTopo) is used as ref-
erence. The comparison is performed manually. The accuitye position of crossroads as well
as the orientation of the connected roads, and their numizenature are investigated. Evaluation
of the roads concentrates on measures for their geomegigcakacy. In [2] an evaluation method-
ology is proposed which is supposed to quantify the bendfasitmmatic and semi-automatic road
extraction algorithms compared to manual data capture. midég@sures comprise geometric accu-
racy, success rate and in particular the time needed foradgture. [17] presents the evaluation
of a multi-phase automatic road extraction. It points ot lienefits of the different phases and
quantifies the quality of the overall results. The referedata used is a data set of the BDTopo.
Measures are geometric accuracy as well as exhaustivitiieo€xtracted data. In [7] the evalu-
ation is directed towards measuring the quality of (seratgmatic road extraction with different
levels of manual intervention. The reference data is geeeray a procedure starting at manually
selected positions, followed by automatic road tracking mxanual editing. Roads are extracted as
regions, and matching of the extracted data with the reterelata is carried out using an intersec-
tion operation. Only the exhaustivity of the extracted datturther considered. [9] evaluates the
effectiveness of different methods for the initializatiohribbon snakes as well as the geometric
accuracy of the extracted road data. Manually generatedl data serve as reference data. The
evaluation focuses on the amount of effort needed by an tipexhich is measured by the number
of necessary mouse actions. Measures for the geometricaagcaf the extracted road data are
average and maximum deviation from the reference data.

This paper proposes and investigates a scheme for the Boalofautomatic road extraction. In
this scheme various quality measures proposed in thetliterare fused in a consistent manner. In
the next Section three different road extraction schenoesylich the evaluation is carried out, are
shortly reviewed. Section 3 is the main part of the paper.rdsents the evaluation methodology
in detail and discusses some implementation issues. liosettthe results of the three differ-
ent algorithms are presented and analyzed. The paper casciuith some final remarks and an
outlook.

2: Road extraction

Basically, approaches for automatic road extraction ugeonioth of the following two proper-
ties: in low resolution imagery with pixel size of a few meteoads are modeled as lines, whereas



in high resolution imagery (pixel size in the dm range) they @nsidered as homogeneous, elon-
gated areas with parallel roadsides. In this paper thrderdiit approaches for the extraction of
roads from digital imagery are evaluated: The first two cameline extraction in low resolution
with a high resolution module based on grouping (TUM-G), arghake-based technique, respec-
tively (TUM-S). Both approaches were developed at Techiddniversitat Minchen (TUM) and
make use of the scale-space behavior of roads [14]. The #ppoach relies on homogeneity
tracking in high resolution imagery and was developed attiisGeographique National (IGN).

TheTUM-G approach [4] is based on lines in an image of reduced resalusing the approach
of [19] and edges in a high resolution image. By combininchbesolutions and introducing ex-
plicit knowledge about roads, hypotheses for roadsidege@nerated. The roadsides are used to
construct quadrilaterals representing road-parts angfjpok representing intersections. Neighbor-
ing road-parts are chained into road-segments. Road:ligksthe roads between two intersections,
are constructed by grouping of road-segments and closiggus between road-segments.

The TUM-S approach [13] is based on lines [19], too. In the high regmhuimagery it uses so-
called “snakes” [12] in the form of ribbon-shakes to extiaetds and discriminate them from other
line-type objects by means of the constancy of the width. M#haore, the approach is able to
bridge gaps between the lines, resulting, e.g., from shadwowwartial occlusions. For the bridging,
ziplock-snakes [16], i.e., snakes which are optimizedisgat their end points, are employed.

The IGN road extractor is based on semi-automatic road plotting [Mje core process is a
road tracker that follows homogeneous elongated areas drgimen seed point. This tracking is
performed by searching for the continuation of the roaduftothe construction of a local tree of
possible paths. The best path is selected according to eygiugiction depending on the curvature
of the path and its average homogeneity calculated fromakie variances of the branches. The
stop criterion for the search relies on the computation cél@arallel borders and of the dispersion
of the search tree. For this experiment, the algorithm wasleg by a road seed detector based
on parallel borders in a region-based segmentation of ttegyénj18]. In order to perform road
extraction in a fully automatic manner, seed detection wafopmed only within a buffer around
the (approximately) known road position.

Global context and contextual information which describescalled “outer characteristics” of
roads, like “land cover area” and “bordered by” strongly uieihce the performance of road extrac-
tion [3, 5]. All three approaches cannot automatically asttroads in highly textured areas such as
forests or urban areas due to their simplified models forsoatierefore, the extraction is restricted
to open areas in all cases. The delineation of the open areasried out automatically by texture
classification.

3: Evaluation scheme

The evaluation of the extracted road data is carried out bypasing the automatically extracted
road centerlines with manually plotted road axes used asaefe data. Both data sets are given in
vector representation. The evaluation is processed in te@ss (1) Matching of the extracted road
primitives to the reference network and (2) Calculation aédlity measures.

The proposed quality measures aim at assessing exhaustivivell as geometrical accuracy.
Each step depends on the other: the less tolerant is mafchimd¢ess exhaustive the extraction is
considered to be, but the more accurate it looks. Therefoetching is an important part of the
evaluation process.

The quality measures address two questions: (1) How comjddhe extracted road network,
and (2) How correct is it. The completeness corresponds d¢autier's demands: (“how much



is missing in the network”). The correctness, on the oth&dha related to the probability of an
extracted linear piece to be indeed aroad. Thus, itis of inigfortance for a self-diagnosis module.

3.1: Matching procedure

The purpose of the matching is twofold: Firstly, it yield®ge parts of the extracted data which
are supposed to be roads, i.e., which correspond to theereferroad data. Secondly, it shows
which parts of the reference data are explained by the agtiatata, i.e., which correspond to the
extracted road data.

There are various ways to perform the actual matching of tetavarks. Especially if the geo-
metric distortions are large and not known beforehandtioglal matching was used successfully
[20, 6]. Special issues arise from the fact that the tope®gif the reference and the extracted net-
work can be different, and that the extraction can be redoinde., extracted pieces overlap each
other. The so called “buffer method”, is a simple matchinggedure in which every portion of one
network within a given distance from the other network issidared as matched. The matching is
not affected by different network topologies. The drawbatthis procedure is that a highly redun-
dant extraction will not be detected and that directionediéhces between parts of the two networks
are not taken into account. Yet another method for matchimgists in searching for a unique, i.e.,
bijective correspondence between the two networks. Suempts have been made [21], however,
it is not clear how to define such a correspondence for tojadly different networks on a general
basis.

In our case, there are very good approximations for posdiwhorientation of the road data to be
matched. As a consequence, matching is performed accalihg buffer method and additional
attention is paid to the problem of redundancy and diredtiiffierences.

In the first step both networks are split into short piecegjofatlength. Then, a buffer of constant
predefined width (buffer width) is constructed around tHemence road data (see Fig. 1a). The parts
of the extracted data within the buffer are considered asimeatif the direction difference between
the reference road data and the part to be matched does meidea@iven threshold. The direction
difference can be derived directly from the vector reprémtions of both networks. Following
the notation of [15] and [7] the matched extracted data ar®tdel agdrue positivewith length
TP, emphasizing the fact that the extraction algorithm hageéd found a road. The unmatched
extracted data is denotedfasse positivawith length FP, because the extracted road hypotheses are
incorrect.

In the second step matching is performed the other way rodine. buffer is now constructed
around the extracted road data (see Fig. 1b), and the pailie oéference data lying in the buffer
and fulfilling the direction constraint are considered agamed. In case of low redundancy their
length can be approximated with TP. The unmatched referdateare denoted dalse negative
with length FN.

3.2: Quality measures

The quality measures for road extraction are intended topementhe results of different algo-
rithms, rather than to evaluate the extraction and the nrajatesults in an absolute way. Because
these results are additionally quite different and stilhtigely far away from a perfect solution, a
simplified set of measures is justified.

The definitions of the quality measures are presented inolt@mnfing.
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Figure 1. Matching principle

e Completeness

length of matched reference

completeness =
P length of reference

TP
~ TPLFN (for low redundancy)

completeness € [0;1]

The completeness is the percentage of the reference dath ishexplained by the extracted
data, i.e., the percentage of the reference network whehvithin the buffer around the
extracted data.

The optimum value for the completeness is 1.

e Correctness

length of matched extraction

correctness =
length of extraction

TP

TP+ FP
correctness € [0;1]

The correctness represents the percentage of correcthcead road data, i.e., the percentage
of the extracted data which lie within the buffer around teference network.
The optimum value for the correctness is 1.

e Quality

length of matched extraction

lit
quanty length of extraction + length of unmatched reference

TP
TP+ FP+ FN
quality € [0;1]

The quality is a more general measure of the final result coimpicompleteness and cor-
rectness into a single measure:

completeness x correctness

quality =
completeness — completeness * correctness + correctness

The optimum value for the quality is 1.



¢ Redundancy

length of matched extraction — length of matched reference

dund
reaunaancy length of matched extraction

redundancy € | — 00;+00|

The redundancy represents the percentage to which theet¢matched) extraction is redun-
dant, i.e., it overlaps itself.
The optimum value for the redundancy is 0.

¢ RMS difference

]: L. 2
RMS = \/Zﬂ(d(e-’l;tm,re.f))

I = number of pieces of matched
extraction
d(extri;ref) = shortest distance between the

1 — th piece of the matched
extraction and the reference

network

RMS € [0;buf fer width]

The RMS difference expresses the average distance betiveenatched extracted and the
matched reference network, and thus the geometrical ancprential of the extracted road
data. The value depends on the buffer width. If an equalibligion of the extracted road
data within the buffer around the reference network is agglrit can be shown that

1
RMS = % x buf fer width

The optimum value for RMS is 0.
e Gap statistics
— Number of gaps per kilometer

n

No. km =
0. of gaps per km length of reference [km]

n = number of gaps

The number of gaps in the reference data, i.e., the numbesrofectedalse negative
parts, is an indicator for the fragmentation of the exti@ttiesults.
The optimum value for the number of gaps per kilometer is 0.

— Mean gap length

Kgap length [m] = #
gli = length of thei —th gap [m]

The optimum value for the mean gap length is O.

Note that the completeness can be calculated from the nuofilgeips per kilometer and the
mean gap length as follows:

completeness = 1 — (No.of gaps per km * [igap 1ength/1000)



3.3: Discussion of the evaluation scheme

There are several issues worth mentioning which may infleidine significance of the proposed
evaluation scheme and the accuracy of the results. Theyardymelated to the employed match-
ing strategy. Firstly, the two parameters which have to lmseh for the evaluation process as such,
namely the buffer width and the maximum direction differenare explained. Secondly, a property
of extracted road data which may influence the result of tleduetion is discussed.

Buffer width: A suitable setting of the buffer width has tonsider the expected internal accuracy
of the road extraction algorithm. If the buffer width is sebtlarge, false extractions close to the
actual road will incorrectly be considered as roads. If @thesen too small, correct road data which
are only slightly geometrically inexact will be rejected.

For the evaluation of the results of the approaches destiibé&Section 2, a buffer width of
approximately half of the road width was chosen, i.e., isistamed that a road is extracted correctly
if the road axis lies between the roadsides.

Maximum direction difference: Some errors will not be déek if the direction of the road axes is
not taken into account during matching. Extracted road data e.g., result in a scenario similar to
the one displayed in Figure 2. Without considering the dioecconstraint, the extracted road data
within the buffer would be matched to the reference dathpalgh this result is obviously incorrect.
The directions of the extracted and the reference roadsrdiffnificantly which is an indicator for
the error. This problem is solved by investigation of the=diron difference of the two pieces to
be matched. If it is larger than a threshold (maximum digectifference) no match between these
pieces is established. Nevertheless, it is possible thathea exist to other pieces further away but
with smaller direction differences.

The maximum direction difference should not be chosen tetiiotive because of the direction
uncertainty of short line segments, especially if they arapproximation of highly curved lines.

extracted road data

reference road data

Figure 2. Incorrectly extracted road data

Shape: In some cases the results can wiggle around thermegedata as depicted in Figure 3.

A shape measure for the extracted data, e.g. based on aervesun detect such problems. In the

current implementation, however, no such measure has bekméed, because roads are implicitly

or explicitly modeled as more or less straight segmentslithede approaches. Consequently, no
such effects have been observed in the extracted data.ulidsbe pointed out that a shape measure
becomes important as soon as generalized road axes aresusddrance data.



extracted road data

reference road data

Figure 3. Extracted road data wiggling around the reference

3.4: Implementation issues

Both, the extracted data and the reference data are inteddnto the evaluation procedure in
vector representation, each as a set of polygons. Both netvape split into pieces of equal length
(split length). Then, the shortest distance between eaemf one network and the other network
data is calculated as explained below. The resulting distaare assigned to the respective pieces.
Each piece is labeled asatchedor unmatchedased upon a check if its distance value is below
the buffer width and if the direction constraint is fulfilled

Because of the known and equal length of the pieces (spétfgithe length of the matched and
unmatched network data can be easily computed by multificaf the number omatchedun-
matchedpieces with the split length. This yields the length of thenatched reference datgN]),
the length of the matched extracted datR); and the length of the unmatched extracted daB).(
From these values the quality measures completenesscitass, quality, and redundancy are
computed using the formulas given in Section 3.2. The RMfemifice is calculated from the
distances assigned to the matched pieces of the extradted-ae the determination of the number
of gaps per km and the mean gap length, the connectivity afitineatched pieces of the reference
data is analyzed.

There are three aspects to be discussed in more detail:

1. The definition of the shortest distance
2. The accuracy of the whole matching and the computed messur

Ad 1: The definition of the shortest distance defines the outlirteebuffer used for the match-
ing. In the following, two possible definitions are descdhia detail (there are, of course, other
options, they are not further pursued here).

Assume networkm to be the one which will be labeled asatchedor unmatcheddepending
on the overlap with the buffer around netwdsk For a particular poinP on m the distance td
can be defined as the Euclidean distance betwesmmd the intersectioh betweerb and a straight
line | throughP, wherel can be chosen either perpendiculamtoin P (case 1, see Fig. 4a), or
perpendicular td in | (case 2, see Fig. 4b).

As P travels omrm the shortest distance bois calculated for every piece. In case 1 the calculation
is self-evident, whereas it needs some further explamatiorcase 2: First, the correbtkpiece
has to be chosen. This is done by compultirig all b-pieces in a predefined vicinity &, and
subsequently selecting the piece with the smalldstfilling the direction constraint. There are
pieces ofm for which| lies outside any piece &f (see Fig. 5a). This problem is solved by allowing
a non-perpendicular intersectionlofith b if | is placed on a node d&fwhich is connected to more
than one other node (see Fig. 5b). In those cases, the diragtb is defined as the direction of the
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Figure 4. Distance definition

adjacent piece which yields the smallest direction difiese

b
I
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(a)l outside any piece dj (b) I on a node ob

Figure 5. Special case of distance calculation in case 2

The value of the labeihfjatchedunmatchellis determined for each piece wf based on a check
if the distance value is below the buffer width, i.e., thetpaf m which lie within the buffer around
b are labeled as matched.

Case 1 of the distance definition yields a buffer width whiep&hds on the direction difference
between the two parts to be matched (see Fig. 6a). Probleich wéin be solved by an analysis of
the direction difference (see Section 3.3) are treatediaitlyl by using a smaller buffer in case of
larger direction difference.

In case 2 the resulting buffer width is constant and theesiiodependent of any direction differ-
ence (see Fig. 6b).

The evaluation results described in this paper are based ongementation of case 2, because
of the strict separation between distance and direction.

Ad 2: The accuracy of the matching and the quality measures istljirafluenced by the split
length used for splitting the networks. Obviously, a highecuracy is achieved if a smaller split
length is chosen. The split length used in this study wasiderably smaller than the pixel size
of the original grey value image (see also discussion orstiole parameters below). In this way,
problems associated with the discretization are kept tacaaable level.



(a) case 1 (b) case 2

Figure 6. Resulting buffer

4: Experiments and results

The proposed scheme has been used to evaluate the resuits tbfée described approaches
on three different black and white images. A descriptionh#f test images and the evaluation
procedure, the evaluation results and a detailed analysiedf are presented in this Section.

4.1: Test images and test procedure

The test images are described in table 1 and are depicted b#ag with the extraction results.
The image Marchetsreut with a groundel size (pixel size ergtiound) of 0.225 m is a rather easy
scene, Erquy (groundel size 0.45 m), and Montserrat (greluside 0.225 m) are more difficult,
because in some parts, the road models of the approachemkated. It should be noted that all
three images are rather large, their size amounts to appetgly 1/16 of a photogrammetric aerial
image.

Name of test| description of im-| scale pixel groundel| image | length
site age content size in| size in| size of ref-
image | object | [pixel] erence
space | space network
[pem] [m] [km]
Marchetsreut || flat, agricultural, | 1:15,000[ 15 0.225 4000 3.84
easy
Erquy flat, agricultural, | 1:30,000| 15 0.45 4500 24.10
difficult
Montserrat hilly, agricultural, | 1:15,000 15 0.225 4000 8.42
very difficult

Table 1. Description of test images

For the test all three algorithms were run in a totally autbofashion. As described in Section
2 road extraction was only carried out in the open areas. dulshbe mentioned that each algo-
rithm requires a number of threshold parameters to be set frithe computations. E.g., the line
algorithm for the TUM approaches is based on low resolutmages. They were generated by
subsampling the test images to a pixel size of 3.6 m. As meedi@arlier, the aim of the study is to
investigate the evaluation scheme. Information concerttie general applicability of each algo-



rithm across different images is of secondary importandg drherefore, it was thought acceptable
to change threshold parameters from one image to the nesitding to visual inspection.

Also the matching procedure needs some parameters to baasagly the buffer width, the
maximum direction difference, and the split length. Theammeters were chosen equal for all
evaluations, and were set to 3 m for the buffer width (assgraimaximum road width of 6 m), 20
for the maximum direction difference, and 0.1 m for the siglitgth.

The results are depicted in the Figures 7 through 9. For ezstlirhage the image superimposed
with the mask for open area, the manually plotted referened axes, the three results delivered
by the extraction algorithms, and a table listing the quatieasures are shown.

4.2: Discussion of results

First, the results of each algorithm are discussed separdteen some comments valid for the
whole investigation are given.

TUM-G algorithm: Due to the strong road model and the contimneof low and high resolution
image information, the TUM-G approach is able to deliveatigkly stable road hypotheses which
are also used to bridge small gaps. Consequently, the tedragad parts are well connected and
thus quite long, the number of gaps is moderate, and the gezgyap length is not too high. Most
important, the correctness is relatively high. The geoit&taccuracy lies between 1 and 4 pixels.
Although this result is acceptable, there is room for imgroent.

Whereas for Marchetsreut most parts of the road network haee extracted, the algorithm has
some problems with the more difficult scenes Erquy and ealhedilontserrat in which roads have
a greatly varying appearance.

TUM-S algorithm: The TUM-S approach is especially aimingetging gaps due to shadows
and occlusions. As desired TUM-S is bridging some of the gatiee result of TUM-G. Therefore,
the overall number of gaps is smaller than that of TUM-G wtiidicates that the connectivity of
the extracted road parts is better. The geometrical acg@again lies approximately between 1 and
4 pixels.

For Marchetsreut and Erquy the performance is a little walnse that of TUM-G (except the
correctness), whereas better results were achieved onahésktrat image.

IGN algorithm: The road model of the IGN approach dependsiiyain the homogeneity of the
road instead of the parallelity of the roadsides. Therefarperformance different from the two
TUM approaches can be expected. This is correctly exprdsgdide quality measures: the IGN
approach performs good for the Marchetsreut image, ratber for the Erquy image, but best for
the Montserrat image. The geometrical accuracy lies betesnd 4 pixels. The connectivity of
the extracted road parts is relatively good.

The high correctness of the extracted data especially foMbntserrat image is partly due to
the limited search space used for the road seed detectierséssion 2).

Additional comments: Looking at all results it becomes clbat the proposed quality measures
adequately capture the impression obtained when visua|yeicting the extracted road data. Thus,
they can serve as a basis for the comparison of differentnzatio road extraction algorithms.
Besides, the results are an indication for the applicgbditthe road extraction algorithms: they
can serve as automatic extraction tools for easy scendwutdbe noted, however, that due to the
effects mentioned in Section 3.3 and the discretizatioa §ertion 3.4), the numerical accuracy of



the quality measures is not extremely high.

The significance of these measures for a detailed compacaoroe further improved by clas-
sifying the reference data into different local categogash as clearly visible road parts, roads in
shadow, occluded roads etc. or regional categories like apea, urban area, forest, etc.

The number and mean length of the gaps needs some furtheissiiss. Obviously the best
result consists in having very few and short gaps. Howeves,riot clear whether a small number
of long gaps is to be preferred to a large number of short gape. choice depends on the extra
work necessary for closing the gaps. More detailed invastgs are needed to clarify this issue.

5: Summary and conclusions

Automatic evaluation of the obtained results is an increglgi important topic in image anal-
ysis as results are approaching a point where they beconiel dise practice. In this paper a
methodology for the evaluation of automatic road extractdgorithms based on the comparison
to manually plotted reference data is presented. This rdetbgy was tested using the results of
three approaches across three different test images.

The obtained results are representative for the statbeskitt of automatic road extraction from
aerial images. In easy scenes a completely automatic égtras possible. As the scenes become
more difficult the obtained results start degrading. Lowohatson images with a pixel size of a
few meters can (and should) be used as a preprocessing stepartraction. Reliable extraction
only on the basis of these images, however, is not realistlee key factor for improvement is
a more detailed modeling of the roads and their surroundirtgg., improvements of the TUM-
G approach could be achieved firstly by analyzing the gapkérektraction results, and finding
and subsequently modeling the underlying reasons for tase such as shadows, occlusions etc.
Secondly, other criteria like the homogeneity of the pathpleyed in the IGN approach could
complement the approach.

The proposed evaluation scheme adequately captures thactdréstics of the individual ex-
traction results and can thus serve as a basis for their aisppaand integration. Depending on
the application at hand some of the quality measures suclorapleteness in a semi-automatic
environment may be more relevant than others. Additionasuees could be thought of, e.g. an
analysis of topological differences between extracted rafetence data, especially in the vicin-
ity of crossings, or the ratio between completeness anecmess, which should remain constant
over different images, once a suitable ratio has been foligb, the algorithmic complexity and
thus the computational effort needed will become a critasi@utomatic road extraction advances
further towards practical applications.

The proposed evaluation scheme can also form the basis fomatic updating of geo-data,
which is becoming an increasingly important issue. In thiss; the reference data are substituted by
existing, but out-dated geo-data, and these are compaextr&mted data from an up-to-date image.
It should be noted that in this scenario some of the propossasares such as the correctness and
the RMS difference loose their significance, and a soundrtaingy management is needed because
the assumption that the given vector data be correct andleterip no longer valid. This topic will
be further investigated in future research.
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Figure 7. Test image Marchetsreut



a) Gr
with mask for open area

ey value image superimposed

_

b) Manually plotted\reference

| [ TUM-G ] TUM-S| IGN |
Completeness 0.77 0.72 0.43
Correctness 0.93 0.95 0.60
Quiality 0.73 0.69 0.34
Redundancy 0.02 -0.01 0.00
RMS [m] 0.53 0.47 0.92
No. of gaps per km 5.11 4.85 4.94
Hgap length [M] 44.35 58.00 | 115.05

¢) Quality measures

f) Results of IGN algorithm
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