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ABSTRACT 

Due to the speckle effect of coherent imaging the detection of 
lines in SAR scenes is considerably more dificult than in optical 
images. A new approach to detect lines in noisy images using a 
Markov random field ( M W )  model and Bayesian classiJcation 
is proposed. The unobservable object classes of single pixels are 
assumed to fulJill the Markov condition, i.e. to depend on the 
object classes of neighboring pixels only. The influence of 
neighboring line pixels is formulated based on potentials derived 
from a random walk model. Locally, the image data is evaluated 
with a rotating template. As SAR intensity data is deteriorated by 
multiplicative noise, the response of the local line detector is a 
normalized intensity ratio which results in a constant false alarm 
rate. The aporoach integrates intensiq, coherence from 
interferometric processing of a SAR scene pair, and given 
Geographic Injormation System (GIs) data. 

1. INTRODUCTION 

The new approach for the extraction of linear structures is 
related to methods which combine local operators with a more 
global evaluation [l], as it is based on Bayesian inference and 
formulates prior knowledge about the continuity of lines as an 
MRF. To overcome the difficulties in the detection of linear 
structures the approach integrates generic knowledge about lines, 
given CIS data and the S A R  scene data. The generic knowledge 
can be subdivided into three parts. The first part is the knowledge 
about the physical appearance of lines, i.e. narrow, elongated 
areas with approximately constant image intensity (see above). 
This type of knowledge is used to evaluate the scene data. In 
terms of Bayesian approaches it is therefore incorporated in the 
conditional probability density function (PDF) to observe scene 
data given a linear structure. The second part of knowledge about 
lines says that a line is continuous over a certain region of the 
scene. This means that a line can be assumed in a location where 
there is not enough physical evidence, if neighboring locations 
show sufficient evidence. This knowledge is the basis of a 
random walk model which is used in the prior PDF modeling the 
relationships between pixels of linear structures based on an 
MRF. In addition to the generic knowledge about the appearance 
of linear structures, the specific knowledge of the presence of a 
certain linear structure as given by a GIS is incorporated into the 
approach as third part of the knowledge. 
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To solve the inverse problem of computing the location of 
lines from the measured scene data a Bayesian approach is 
applied 123. The posterior probability density of the object 
parameters given the scene data is derived according to Bayes’ 
theorem 

P( +) cc PtYI&). P M  (1 .1 )  

where &is  the object parameter vector, andy is the data vector. E 

contains one element eS for each site SES, i.e. regularly for each 
pixel of the scene S. The object parameters as well as the scene 
data are assumed to be MRF. A random field is Markovian, if for 
all x 

P ( x s l x d  f 3) = P(”rl&s)  (1.2) 
where as is a neighborhood of s considerably smaller than the 
complete scene [3], [4] For the scene data, it is assumed that 
&s = { } , i e. each data sample is independent of its neighbors. 
As the equivalence of MRF and neighborhood Gibbs fields is 
used, energy hnctions and clique potentials can be used instead 
of PDF. The scene data y i:; a vectorial MRF y,* = (yIb yes) 
where yr and yc, are the intensity and the coherence, 
respectivefy. Ifyr and yC are considered as independent [ 5 ] ,  the 
relation between ‘data and prior knowledge can be expressed as 
[61 

f f 3  (Ss IYIs >YC, , ) = 
(1.3) 

ffs(Y151&s)+ ~ s ( Y ~ ~ l & s ) + ~ s ( & s l ~ & s )  
The components of (1.3) are explained in detail in sections 2 and 
3. A more comprehensive description of the approach is given in 
171 

2. PRIOR KNOWLEDGE ABOUT LINEAR STRUCTURES 

The model of continuous curvilinear structures was inspired 
by recent work about stochastic completion fields [SI. They 
describe occluded, but perceptually salient contours by random 
walks of particles having its source at unoccluded points of the 
contours. The path most probably taken by the particles is 
assumed to be the location of the illusory contour. We use a 
similar random walk model to derive the potentials of two-pixel 
cliques of a neighborhood Gibbs field. A neighboring line site t 
is treated as a source of random walks whereas the site s, i.e. in 
terms of MRF the site which is influenced by a neighbor and for 
which the energy is computed, serves as a sink. The more 
particles pass through s the higher is the probability that s is a 
line site. 
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A line or a migrating particle passing a site has more 
properties than only its quality of being a line or a line particle 
Its path has a certain direction and curvature which can be 
estimated as well Thus the state space E, of the object 
parameters E~ is 

E s i  = " n o - ~ l n e " , " l i n e ( 8 , , K i ) "  z E { ~ , K I ) , J  e{ l ,KJ )}  (2 1) 

where are I discrete directions equally spaced in the interval 
[O,n[, and K are J discrete curvatures equally spaced in the J 
interval [ -K~ , , ,K , , , , ]  where is the magnitude of a maxi- 
mum curvature 

The particles of the random walk originate at a certain 
position P(xb yo) in the x, y-coordinate plane and possess a 
direction O0 and a curvature K~ During each step of the random 
walks x, y ,  6, and K are updated With each step a certain fraction 
of the particles decays Fig 2 1 shows an example of simulated 
random walks 
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For the computation of the energies H,(s,I&,) a neighbor- 

hood system of two-site cliques is defined. Each site has 
neighbors of varying order forming a clique with each of those 
neighbors. For an element cS of the state space E,, the counts of 
the random walk model are summed clique by clique. Each count 
depends on the parameter values st and E ~ ,  i.e. on direction and 
curvature in the neighboring site f and the direction and 
curvature proposed at site s, as well as on the location o f t  with 
respect to s. If is "no line", the counts at s are 0 independent of 
E ~ .  High counts for ss indicate a high probability of sS, as the 
presence of neighboring line sites support the presence of a line 
with the corresponding direction and curvature. 

The neighborhood model is further extended, as a line should 
also make certain neighboring lines improbable. This is because 
line sites parallel to a directly neighboring line site do not 
conform with the elongatedness of lines. It can be modeled with 
the same type of random walks. We only imagine a different type 
of particles, called inhibiting particles, diffusing perpendicularly 
to the direction of a line site. The particles inhibit the presence of 

lines perpendicular to the direction of propagation in the same 
way the particles used before supported the presence of lines in 
the direction of propagation. Therefore, the corresponding counts 
make the presence of those lines improbable and are subtracted 
from the supporting counts. 

Introducing a one-site clique containing only s, we can 
control the overall probability of a line independent from the 
state of neighboring sites. 

Hence, in agreement with (1.3), HS(ssl&,) is computed 

from 

c = CA, (ss) + CCA, (&SI&*; s,t E '!2) 
A2 

where C A ,  is the count-equivalent of the one-pixel clique: 
cl if E, =1tline(6,, K ~ > "  

c, if E, ="no - line" 

.- I  

CA, (8s) = 

cl and c, are empirically chosen "basic currents" which control 
the overall probability of line and no-line sites. I C A ,  is the 

A2 

sum of the counts of the two-site cliques containing s. 

The proposed approach uses GIS data to support the 
extraction of linear structures. It may for instance be known that 
a road is crossing the imaged area, and an approximate 
registration of the S A R  scene and the GIS data may be given. 
Around the projection of the road center line into the S A R  scene 
the probability to detect a line with the direction and curvature of 
the road center line should be increased. These facts have to be 
used to compute the energy of the prior PDF. A corridor 
symmetrical around the object center line is defined inside of 
which the probability of the object class = l i r ~ e ( Q ~ , ~ ~ )  is 

uniformly increased. Bi and K~ are the direction and curvature of 
the object center line at the point i closest to site s. The increase 
in probability is taken into account by changing the computation 
of CAI in (2.2) to 

CI + cc if E, ="line(Q,, K ~ ) I I A  
s E corridor A 6, = 6, A K ,  = K ,  

CA,(&,) = c/ if E, ="line(6,, K ~ ) "  otherwise .(2.3) 

if E, ="no - line" c, 1 
c, is an "additional current" due to the presence of a GIS object. 

3. LOCAL DATA EVALUATION 

For edge detection in SAR intensity data the ratio edge 
detector has been shown to give the best measure of edge 
strength. It corresponds with the multiplicative noise 
characteristics of the data and results in a constant false alarm 
rate [9]. Therefore, this approach is also based on the ratio 
detector. In general it compares two small neighboring regions of 
the image. In each of the two regions the averages of the 
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Fig. 3.1. Geometries of detector masks for line detection. The spot in 
the center of the window marks the site to be investigated. 

intensities are computed. The normalized ratio is the ratio of the 
two averages using the larger one as the denominator. 

To detect a line a detector mask is defined which consists of 
three regions [lo]: a line region and two regions at the sides of 
the line region (see Fig. 3.1). Curved lines of varying widths can 
be considered. 

The ratio operator is applied to all combinations of the 
detector mask regions. The line detector has to be prevented from 
giving a response to the location of edges or strong 
scatterers[lO]. In case a line is present at the processed location 
the line region is homogenous, which means that the pixel 
intensities do not vary much. For S A R  intensity data, this 
condition can be checked by computing the coefficient of 
variation 

where ( I )  is the mean intensity and or is the standard deviation 

of the intensity I. As orI for homogenous regions, vI of the 
investigated region has to be less than a threshold somewhat 
larger than 1 if the region does not contain any structures. 

As the average values of the side regions may be influenced 
by the presence of strong scatterers, the median of the intensity 
values is computed. It is checked whether the line intensity 
differs significantly from the intensities of both side regions by 
computing the ratios between the line region and the side 
regions. These ratios are tested for membership in the PDF of the 
ratio of regions without contrast, i.e. regions which have the 
same intensities. For this purpose a threshold is derived from the 
PDF of the normalized ratio r for SAR intensity statistics [ l  11. 
Two regions are considered to be significantly different, if the 
ratio is smaller than 95% of the ratios computed from 
homogenous regions. If the line region is significantly different 
from both side regions, a line site has been found. 

From the resulting ratio responses the energy values of the 
intensity data Hs(yIs l~ ,y )  are computed. Instead of the intensity 

of a pixel the ratio rs is used to compute H,, i.e. 

where rs is a derived observation. The complete energy function 
of the intensity ratio is formulated as 

H,(YI,l"F) = 4(rsI%) (3.2) 

r, 
i f s  is a line site 

i f s  is a no - line site 
H ,  (5 1%) = (3.3) 

where r,, and or are empirically chosen values. 

The coherence is processed in a similar manner as the inten- 
sity. The data is evaluated applying the same detector masks, but 
instead of the ratio the difference is computed. The checks for 
homogeneity, dissimilarity and similarity of regions are 
essentially the same as for intensity data except that the 
thresholds are derived more empirically, as the statistical 
properties of coherence data are not as well known as those of 
intensity data (but cf. [ 121). 

The estimation of the object parameters is conducted using 
simulated annealing as a stochastic or local highest confidence 
first (LHCF) estimation as a faster deterministic method [13]. 

4. RESULTS 

A TOPSAR airborne data set consisting of intensity (Fig. 
4.1) and coherence was evaluated. Fig. 4.2 shows the lines 
extracted from the intensia data. Many of the gaps have been 
closed even in locations where the ratio image does not show a 
significant response of the ratio line detector. This demonstrates 
the usefulness of the line imodel. Wide lines are not detected 
correctly as only detector masks for narrow lines were applied. 
Results comparing the use of intensita data with the combined 
use of intensity, coherence and GIS data are shown in [7]. 

Fig. 4.3 and 4.4 show that the approach is also suited for 
edge detection. In a satelliteborne SAR scene ridge lines, river 
banks and shadow boundaries have been detected. 

5. CONCLUSIONS AND RECOMMENDATIONS 

A new approach for the extraction of linear structures from 
S A R  intensity and coherence data in a Bayesian framework using 
a MRF to model continuous curvilinearity was proposed. Results 
demonstrate the plausibility of the MRF line model. 

Further tests of the approach are necessary. Presently, 
improvements regarding scale space integration are investigated. 
Scale space requirements can presently be met by using different 
line widths in the detector masks. A more effective way would be 
the use of an image pyramid or a multi-resolution MRF model 
[14]. We intend to make this topic subject of future publications. 
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Fig 4 1 Histogram-equalized amplitude of TOPSAR siene OF 
94108105 

Fig 4 3 Histogram-equalized amplitude of TOPSAR scene of 
94/08/05 

Fig. 4.4. Extracted edges 
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