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Abstract. We present an automatic building type (usage) labeling based on 
the footprint data. The usage information of buildings is of great interest for 
many applications, e.g., navigation, city planning and emergency manage-
ment. This attribute, however, is generally not provided in the volunteered 
data sources like OpenStreetMap and is often incomplete even in the official 
cadastral maps. In this paper, we propose a method to enhance the maps 
with the building usage information exclusively using the geometric and 
topological features in the footprint data. A general category is predefined 
with four classes: residential, commercial, industrial and public. A novel 
inference framework is proposed using two new high-level (composite) ge-
ometric characteristics for the local description of the individual buildings 
and the Markov Random Field model to incorporate the contextual con-
straints of the neighborhood. Experiments are performed on both 
OpenStreetMap and cadastral data showing the potential of the proposed 
method. 
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1. Introduction 
The usage (use and occupancy) information of buildings is of great interest 
for many applications, e.g., navigation, city planning, emergency manage-
ment, etc. This attribute, however, is generally not provided to the buildings 
in a consistent way in the volunteered data sources like OpenStreetMap 
(OSM). Although a map feature catalogue exists, the volunteers are not 
obliged which attributes they set for the usage information. Even in the offi-
cial cadastral maps, the building usage information is not always available. 
An approach to enhance OSM data is presented by Werder et al. (2010), in 
which an unsupervised classification of spatial data solely based on the ge-
ometric and topological characteristics is proposed. Both building outlines 
and road network information are employed. Lüscher et al. (2009) present 



a classification of buildings also based on topographic vector data by means 
of an ontology-driven approach. Supervised Bayesian inference is used to 
deal with the vagueness in definitions of spatial phenomena. 

In this work, we classify the usage type of individual buildings in the urban 
area according also exclusively to their geometric and topological features 
derived from the given footprint data. A general category is predefined with 
four types of usage: (1) residential, e.g., single and multiple family houses, 
apartment buildings; (2) commercial, e.g., office buildings, supermarkets, 
shopping malls; (3) industrial, e.g., factory buildings, warehouses, and (4) 
public, e.g., museums, memorials, hospitals, theaters, stadia, universi-
ties/schools. We propose two new high-level geometric features: "effective 
width" and "branching degree", which are designed to quantify the living 
space and the structural complexity of the buildings, respectively. A novel 
inference framework is presented using (composite)  geometric characteris-
tics for the local description of the individual buildings and the Markov 
Random Field (MRF) model to incorporate the contextual constraints of the 
neighborhood. MRF (Kindermann & Snell, 1980), also known as Markov 
network, is an undirected graph model, in which the random variables hold 
Markov properties (cf. Section 3). It is widely used in image processing and 
computer vision (Li, 2009) for the labeling/segmentation of the image pix-
els or sub-regions and other applications like point cloud grouping, eco-
nomics and sociology. In this work we use the vertices of the MRF to repre-
sent the individual buildings and the edges between vertices to encode the 
neighborhood constraints. By these means the buildings of dense urban 
areas can be classified and labeled with the above defined usage attributes 
more reasonably considering the geometric features and the neighborhood 
constraints. 

The paper is organized as follows. In Section 2 we introduce the two new 
high-level composite geometric features, i.e., the effective width and the 
branching degree, and the definition of the local (unary) energy based on 
them. Section 3 presents the modeling of the building network and their 
neighborhood relationships via MRF, the definition of the contextual (bina-
ry) energy, and the optimization of the overall energy function. Experiment 
results and evaluation are demonstrated in Section 4. The paper ends up 
with conclusions in Section 5. 

2. Building Attributes 
First, we study the contribution of the local geometric features to the identi-
fication of the building types. One basic attribute that can be easily derived 
from the footprint data is the building area. It can somehow reflect the 



building usage, e.g., one building smaller than 200 square meters may be a 
single-family house and that of over 20000 square meters will very likely be 
a factory or warehouse. The problems of using such simple measure, how-
ever, is also clear: e.g., complex buildings such as apartment buildings may 
also have large footprint area and therefore cannot be distinguished from 
industrial or public building without considering the shape characteristics. 

Considering the shape factor, a simple one can be defined as the ratio of 
building length and width. This L/W ratio helps to differentiate bar-like 
shape (often for residential or industrial buildings) and square-like shape 
(often for public or commercial buildings). But it works only well with rec-
tangular buildings. For complex buildings, although the bounding box can 
be used to calculate L/W ratio, the values cannot reflect their real shape any 
more. 

High-level attributes are therefore required to integrate multiple geometric 
attributes and provide more precise description to the building shape. In 
this work two new composite measures: "effective width" and "branching 
degree" are proposed specifically for the purpose of building usage classifi-
cation.  

2.1. Effective width 
The effective width (EW) is an estimated width of buildings with arbitrary 
shapes. It is defined as the average width of the footprint along the center-
line. For this we have to determine the centerline of the building skeleton, 
which describe the approximate length of the building. 

Haunert & Sester (2008) compare different types of skeletons that are 
commonly used in geographic information systems for deriving polygon 
centerlines. As the basis of our work, we select a simple skeleton, the 
"straight skeleton", which only comprises straight lines in contrast to the 
"medial axis". The latter comprises also second-order lines, that would 
cause computational overhead. The straight skeleton is presented by 
Aichholzer et al. (1995) and is exemplarily shown in Figure 1 (a).  
Please note, as shown in Figure 1 (building 1), the length of the centerline 
-To de .(஻=7.50 mܮ) can differ from the actual building length (஼=1.50 mܮ)
rive a reliable ܮ஼෢ to approximate the ܮ஻, we modify the original straight 
skeleton by extending the derived centerlines to the building boundary (red 
line in Figure 1, b). The effective width is practically calculated as the ratio 
of the building area (ܣ஻) to the building length: ܹܧ = ஻ܮ஻ܣ  = ஼෢ܮ஻ܣ   . 



 

Figure 1. Building skeletons: (a) Straight skeleton of buildings (centerlines bold) 
and (b) modified centerlines (red lines). 

The effective width is of interest in the usage classification because it actual-
ly implies the general living/movement space inside the building. By this 
means the residential buildings can be well distinguished from the industri-
al or public ones. In many building category definitions the single-family 
houses and multi-family houses (e.g., apartment buildings) must be defined 
as two separate classes because their area and complexity are remarkably 
different. Using EW, as demonstrated in Figure 2, the values of these two 
types of residential buildings show consistency, although the building areas 
and the complexities (calculated by "branching degree", cf. Section 2.2) are 
not close to each other. 

 

Figure 2. Effective width shows value consistency for the apartment building (top) 
and the single-family house (bottom) by indicating the living space of the buildings. 

 

2.2. Branching degree 
Another novel high-level attribute proposed in this work is the branching 
degree (BD). It scores the number and distribution of the building segments 



(called "branches") derived from the skeleton centerline to measure the 
structural complexity of the building. Please note that in this case the con-
ventional straight skeleton as shown in Figure 1 (a) is employed for better 
overall structural analysis. 

First, we define the longest linear segment of the skeleton centerline as the 
"trunk" and then the other segments as the "branches". The number, size, 
and branching angle of the branches are integrated as: ܦܤ = ෍ ௜ݓ ⋅ ௧௥௨௡௞ܮ௜ܮ

௠
௜ୀ଴    , 

where ݉ is the total number of branches and ܮ indicate the length of the i-
th branch or the trunk (also the 0-th segment, ܮ଴ =  ௧௥௨௡௞). The weight ofܮ
each branch or trunk is  ݓ௜ = 2 ⋅ -௜ the intersection angle (in radiߙ with ߨ/௜ߙ
ans, ߙ௜ ∈ (0,  of the current branch to its parent (as shown in Figure ( [2/ߨ
3). The higher order branches have the same weight as that of the first or-
der. A set of BD examples are given in Figure 3. Generally, we can imagine 
that the residential (except the apartment complex, cf. Section 2.1) and in-
dustrial buildings may have lower BD while the public buildings have nor-
mally higher complexity. One advantage of giving the weight ݓ௜ is the sim-
ple building with slight curve shape (Figure 3, building 5) can be better 
scored. The curved centerline in the straight skeleton is represented by a 
chain of linear segment and the weights can help to prevent the BD value 
being too high with the large number of "branches". 

 

Figure 3. Definition of trunk/branches and the intersection angle (top) and exam-
ple values of the branching degree (bottom). 

 



2.3. The local energy 
Figure 4 shows a rough sketch to summarize the distribution of building 
clusters with different usage types in the space of EW-BD. Each building 
can be represented as a point in this 2D parameter space and the probabil-
ity this building belongs to one of the classes is inversely proportional to its 
(standardized) distance to the centroid of the class, which is empirically 
given with generic values. 

 

Figure 4. Distribution of buildings with different usage types in the parameter 
space of EW-BD. 

The local potential of a building is then defined as a quaternary value of the 
probabilities:  ݌௟௢௖௔௟ = ,ோ݌} ,஼݌ ,ூ݌  {௉݌
that this building should be labeled. The probabilities are standardized with 
a sum of 1. E.g., if one building with a probability distribution of {݌ோ =0.2, ஼݌ = 0.1, ூ݌ = 0.6, ௉݌ = 0.1} is given a label ܴ, the current local energy of 
this vertex is 0.2, if label ܫ then 0.6.  

3. Context model 
In this work, we use the MRF to model the buildings in the dense urban 
area and their neighborhood relationships. We define the graph model ܩ as: ܩ = {ܸ,  , {ܧ
where the individual buildings are represented as vertices, ݒ = ,௜ݒ ݅ ∈ ܸ, and 
the edges, ݁ = ݁(݅, ݆), {݅, ݆} ∈ -connecting pairs of vertices. Any pair of non ,ܧ
neighbor vertices is conditionally independent given all other vertices. 



3.1. The definition of neighborhood 
As shown in Figure 5, the neighborhood of buildings is defined based on the 
determination of Voronoi cells of the buildings centroids (distance-based 
approach). That is, as illustrated in Figure 5 (left), the polygons divide the 
whole area into seamless cells. For each centroid there will be a correspond-
ing region consisting of all points closer to that centroid than to any other 
(Euclidean distance). And thus, all cells which share an edge are called 
neighbors. With the determination of neighbors, MRF holds the Markov 
properties: (1) pairwise Markov property: any two non-neighbor vertices 
are independent; (2) local Markov property: a vertex is conditionally inde-
pendent to all other vertices given its neighbors, and (3) global Markov 
property: any two non-adjacent subsets are conditionally independent giv-
en a separating subset. 

 

Figure 5. Definition of neighborhood of buildings: (left) polygons of buildings and 
their centroids marked with red points and their Voronoi cells; (right) the MRF 
model with the edges connecting neighbor buildings. 

3.2. The overall energy 
The overall energy function of the MRF consists of two components: the 
unary and the binary terms: ℋ = ෍ ,௜ݔ)ݑ ܿ௫)௜ + ෍ ܾ൫ݔ௜, ௝൯   .௜,௝ݔ  

The unary energy ݔ)ݑ௜, ܿ௫) summarizes the local features of the individual 
buildings. It is calculated with the local potential described in Section 2.3: ݔ)ݑ௜, ܿ௫) =  (௜ݔ)௟௢௖௔௟݌

with ݔ௜ ∈ {ܴ, ,ܥ ,ܫ ܲ} being the random labeling assignment. It indicates the 
likelihood of the labeling. 



The neighborhood inferences are encoded into the binary term, which im-
plies the neighborhood plausibility of usage in the pairwise cliques. The 
plausibility is evaluated in two aspects:  

1. Type consistency: neighbor buildings are inclined to have the same 
type;  

2. Logical neighborhood: it reflects reasonable city planning for adja-
cent areas, e.g., residential buildings are more likely be found near 
public building instead of industrial zone. 

The rewards as well as penalties of neighborhood proposals are embedded 
in a symmetric matrix N: 

N R C I P 

R 1 0 -1 0.5

C . 1 0 0.5

I . . 1 -1 

P . . . 1 

 

The binary energy of each clique is directly calculated based on this matrix 
as: ܾ൫ݔ௜, ௝൯ݔ = ܰ(݅, ݆) . 
The goal is to find the maximum ℋ of the graph model. We use ࣥ to repre-
sent the configuration, i.e., a set of label assignments to all the vertices. The  
optimization task can be expressed as: 

෡ࣥ = ࣥݔܽ݉݃ݎܽ {ℋ} = ࣥݔܽ݉݃ݎܽ ቐ෍ ,௜ݔ)ݑ ܿ௫)௜ + ෍ ܾ൫ݔ௜, ௝൯௜,௝ݔ ቑ 
with ݔ௜, ௝ݔ ∈ ࣥ. 

3.3. Stochastic sampling 
Dealing with the data for dense urban area, the established MRF model is 
highly connected. In the optimization process the labels of all the vertices 
can be altered and lead to different configurations. These make the optimi-
zation task being a extremely high-dimensional problem and computational 
intractable for direct solution. In this work we employ statistical approxi-
mation by means of a Gibbs sampler (Geman & Geman, 1984) for this task. 
A Gibbs sampler is one Markov Chain Monte Carlo (MCMC) algorithm. It 



performs the random sampling specifically from the potentially complicat-
ed multivariate probability distribution with a large set of variables. 

Let ݏ be the step number and ℳ the corresponding state of the model, the 
sampling process can be summarized as follows: 

1. Initialization: ℳ௦ୀ଴, ࣥ௦ୀ଴(give ݔ௜  based on unary likelihood only) 

2. Propose a new state ℳ′ with the corresponding configuration ࣥ′. 
 2.1 Sample new label for the first building ݔଵᇱ ∼ ݌ ቀݔଵቚݔଶ(௦ିଵ), … , ௡(௦ିଵ)ቁݔ = ݌ ቀݔଵቚݔ෤ଵ(௦ିଵ)ቁ 

 with ݊ the total number of buildings and ݔ෤ଵ ⊂ ,ଵݔ} … ,  ௡} theݔ
 neighbors of building 1. As mentioned before, the current vertex is 
 conditionally independent to the non-neighbor vertices. The condi-
 tional  probability of the current vertex is defined following Bayesi-
 an inference: ݌(ݔ|ݔ෤) = (ݔ)௟௢௖௔௟݌ ⋅ (෤ݔ)݌(ݔ|෤ݔ)݌   , 
 where the discrete likelihood ݌(ݔ෤|ݔ) can be directly derived from 
 the Matrix N given different labels to ݔ and update the ݌௟௢௖௔௟(ݔ). The 
 resulting quaternary distribution is in practice directly normalized 
 without calculating the margin probability of the neighbor buildings 
 .(෤ݔ)݌ 

 2.2 Sample new labels for the further buildings ݔ௜ᇱ ∼ ݌ ቀݔଵቚݔଵᇱ , … , ௜ିଵᇱݔ , ,௜ାଵ(௦ିଵ)ݔ … , ௡(௦ିଵ)ቁݔ = ෤௩ᇱݔ|௜ݔ)݌ ,  (෤௩ത(௦ିଵ)ݔ

 with ݔ෤௩ the previously labeled neighbors and ݔ෤௩ത  the other neighbors.  

 2.3 Calculate the overall energy ℋ′ (cf. Section 3.2) according to ࣥ′.  
3. Accept the new proposal with Metropolis-Hastings criterion ܣ(ℳ(௦), ℳ′) = ݉݅݊ ቊ1, (ܦ|ℳ(௦))݌(ܦ|ℳᇱ)݌ = ℋ′ℋ(௦)ቋ  
with ݌(ℳ|ܦ) the likelihood that the current model fitting the data ܦ, whose 
ratio can be represented by that of the overall energy ℋ. 

4. ℳ(௦ାଵ) =  ℳ′ if accepted, otherwise ℳ(௦ାଵ) =  ℳ௦. 

The search stops when there is no more ℋ improvement in the last 1000 
iterations with the assumption that the overall energy converges.  



4. Experiments 
Experiments are performed on data-sets of urban areas from the OSM and 
the official cadastral maps. Figure 6 shows the OSM data of one part of Bos-
ton, USA, with 94 buildings. The manually labeled ground truth is given in 
Figure 1 (b). Figure 6 (c) presents a temporary labeling result based only on 
local geometric features: 68 out of 94 buildings (72.3%) are correctly identi-
fied. Figure 1 (d) shows the final labeling result considering both the local 
features and the contextual constraints. The classification accuracy is im-
proved to 97.8%. 

 

Figure 6. Example data of Boston, USA: (a) OSM data, (b) ground truth labeled 
manually, (c) labeling based on local features (unary energy) only, and (d) final 
labeling result considering both unary and binary terms. The incorrectly labeled 
buildings are highlighted with bold red contours in the results (c) and (d). 



Another example for the cadastral map can be found in Figure 7. There are 
456 buildings in total in this section of Hanover, Germany. Figure 7 (left) 
presents the final classification result with the accuracy of 89.7%. The ma-
jority of the buildings are correctly labeled with the proposed method. The 
errors often happen in the classification of the commercial buildings, which 
is in many cases tricky as they have less distinct geometric characteristics 
(moderate values of EW and BD, cf. also Figure 4) than the other types.  
Commercial buildings have, therefore, more possibility to be mislabeled to 
the other buildings and vice versa. 

Please note that the classification is solely based on geometric and topologic 
criteria of the building footprint, i.e. shape and geographic context of the 
objects. The use of neighborhood information includes additional 
knowledge, which improves the classification based only on the characteris-
tics of individual buildings – as shown in Figure 6.  

As a matter of fact there is an inherent uncertainty in the classification of 
building usage, which sometimes makes it difficult or even impossible also 
for a human to decide on the correct classification – even when additional 
knowledge is taken into account. E.g., are residential buildings with shops 
in the ground floor residential or commercial buildings? Is a train station 
with shops still a public or a commercial building? 

 

Figure 7. Example data (cadastral map) of Hanover, Germany: the labeling result 
(left) and the ground truth (right). The incorrectly labeled buildings are highlighted 
with bold red contours in the result. 



5. Conclusion 
This paper presents an automatic labeling of building type (use and occu-
pancy) solely based on the building footprint data. A category is predefined 
with four classes: residential, commercial, industrial and public. We pro-
pose two new high-level geometric features: effective width and branching 
degree, which are designed to quantify the average living space and the 
structural complexity of the buildings, respectively. MRF is employed to 
model the network of buildings, in which the local geometric features are 
given to the vertices that represent the individual buildings while the con-
textual constraints are embedded in the edges that model the neighborhood 
relationship. The optimized labeling configuration is statistically searched 
by means of the Gibbs sampler. The OSM or cadastral maps can thereby be 
enhanced with the predicted building usage information, which is derived 
from the existing geometric and topologic features. 

In this work we have proposed a general and rather rough category with 
only four types as our main goal is to explore the potential of using only the 
building footprint data. Please note that there is actually a wide variety of 
definitions for the building usage. More concrete classification or definition 
for specific purposes, e.g., the ten-classes building occupancy classification 
(International code council, 2006) primarily for the fire code enforcement,  
could be used. However, then more non-geometric building attributes are 
required, because of the class definition like "educational" (schools up to 
the 12th grade) or "high-hazard" (places that product and store flammable 
or toxic materials). If additional knowledge is available, it can be included, 
e.g. one could start off with a more elaborate (supervised) classification, 
and include more contextual knowledge, such as knowledge about the vicin-
ity to other features, which might give an indication concerning the usage. 
An example would be the inclusion of the knowledge of a market square, 
which would increase the likelihood that the surrounding buildings are 
commercial.     

For the future work we first consider a new definition of neighborhood, 
which is essential to the MRF model. In this work we simply use the 
Voronoi cells to defined the neighbors based only on the centroids of the 
buildings (cf. Section 3.1). More sophisticated methods like the "con-
strained Delaunay triangulation" considering the object points and lines 
(Sester, 2005) can be employed to determine more reasonable neighbor-
hood and thereby improve the labeling result.  More experiments can be 
performed on larger urban areas/whole cities with appropriate pre-
partitioning. 



Furthermore, the introduced framework for building classification is easily 
extendable and adaptable: new attributes/measures can be added into both 
the unary and binary terms to improve the labeling performance or the user 
can select certain attribute(s) corresponding to their specific task and defi-
nition of building types.  
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