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ABSTRACT:

We propose a novel method to segment MicrosoftTMKinect data of indoor scenes with the emphasis on freeform objects. We use the
full 3D information for the scene parsing and the segmentation of potential objects instead of treating the depth values as an additional
channel of the 2D image. The raw RGBD image is first converted to a 3D point cloud with color. We then group the points into patches,
which are derived from a 2D superpixel segmentation. With the assumption that every patch in the point cloud represents (a part of)
the surface of an underlying solid body, a hypothetical quasi-3D model – the “synthetic volume primitive” (SVP) is constructed by
extending the patch with a synthetic extrusion in 3D. The SVPs vote for a common object via intersection. By this means, a freeform
object can be “assembled” from an unknown number of SVPs from arbitrary angles. Besides the intersection, two other criteria, i.e.,
coplanarity and color coherence, are integrated in the global optimization to improve the segmentation. Experiments demonstrate the
potential of the proposed method.

1. INTRODUCTION

Image segmentation employing depth information has been in-
tensively studied. Silberman and Fergus (2011) use RGB-Depth
(RGBD) data from the Kinect sensor to improve the segmenta-
tion of indoor scenes. Each segment is classified as one of the
seven categories, e.g., bed, wall and floor. Silberman et al. (2012)
further extract the support relationship among the segments. In
(Koppula et al., 2011), RGBD images are segmented into regions
of 17 object classes, e.g., wall, floor, monitor and bed, for office
or home scenes. Li et al. (2011) propose a method to segment en-
gineering objects that consist of regular parts from point clouds.
They consider the global relations of the object parts. In (Bleyer
et al., 2012) the depth is estimated from a stereo image pair and an
unsupervised object extraction is conducted maintaining physical
plausibility, i.e., 3D scene-consistency.

Additionally, many methods have been proposed to segment ge-
ometric primitives , e.g., cubes and cylinders, or regular objects
such as buildings, for which reconstruction rules can be derived.
An overview of point cloud processing is given by Vosselman
(2009). Rabbani et al. (2007) present an approach for the label-
ing of point clouds of industrial scenes. Geometric constraints
are given in the segmentation in the form of the primitives: cylin-
der, torus, sphere and plane. Current research for 3D building
extraction is reported by Lafarge and Mallet (2012) and Huang et
al. (2013), in which the buildings are modeled as an assembly of
primitive components.

In this paper we propose a novel method to segment RGBD im-
ages. First, we calculate “superpixels” in the images using both
color and surface normal information and pre-segment the point
cloud into relatively small groups: the patches. The “synthetic
volume primitive” (SVP) model is then constructed by extending
each patch with a synthetic extrusion in 3D. The SVPs vote for
a common object via intersection as they actually represent the
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same underlying solid body. By this means, an object can be as-
sembled from a number of such primitives of arbitrary shape from
arbitrary angles.We use Markov Random Field (MRF) to model
the SVPs and their relationships. Besides the intersection, two
other criteria, i.e., coplanarity and color coherence, are integrated
in the global optimization to improve the segmentation.

Compared to other approaches, the proposed method focuses on
a full 3D parsing of the scene by working directly on the 3D point
cloud derived from the raw data instead of dealing with 2D im-
ages with the depth values as an additional channel. No specific
physical constraints or top-down modeling is required to ensure
plausible results, because the essential 3D spatial constraints have
been embedded into the SVP model (cf. Section 3.).

The paper is organized as follows: Section 2. introduces the con-
cept of SVP and its construction. In Section 3. we describe the
voting for freeform objects by SVPs. A global optimization of the
segmentation is presented in Section 4. Experiments were per-
formed on open source data-set and are presented in Section 5.
The paper ends up with conclusions in Section 6.

2. THE SYNTHETIC VOLUME PRIMITIVE – SVP

The point clouds from the Kinect sensor (or other sensors pro-
viding RGBD data) only reveal the (partial) surface of a target
scene. E.g., if a cube is scanned, the point cloud shows one up
to three of its facets. We assume that every planar patch in the
point cloud represents (a part of) the surface of an underlying
solid body in the 3D world. For full 3D parsing we use SVPs
to simulate how different patches of an object interact with each
other. A hypothetic volume is generated as an extension along the
normal direction. Multiple SVPs may vote for a common object
by intersection with each other in 3D space. SVPs provide the
following advantages for 3D scene understanding:

1. Freeform objects can be represented by the intersection of
SVPs from arbitrary angles.
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2. There is no limit for the number or size of component SVPs.

Figure 1: 3D patches: (a) input color image, (b) normal map, (c)
superpixel segmentation and (d) a snapshot of the 3D point cloud
with labeled patches.

By means of preliminary segmentation, we group a point cloud
into a set of relatively small 3D patches. As shown in Figure 1,
the segmentation is conducted on the input color and depth im-
ages. We use the superpixel segmentation of (Felzenszwalb and
Huttenlocher, 2004) with the modifications of adding local nor-
mal information to individual points and separating points by ei-

ther color incoherence or normal direction change. This separates
the segments into mostly planar patches. Please note, however, in
this work we do not detect any plane. In the SVP, a patch does
not have to be planar either. The points in a patch could represent
a surface segment of arbitrary shape, which makes an assembly
of a freeform object possible. The 3D patches are extracted (Fig-
ure 1, d) with the known relationship between the image and the
point cloud.

As shown in Figure 2, an SVP is constructed from a 3D patch
by an extrusion. We assume that the underlying solid body is
always behind the patch. The direction of the extrusion is along
the normal vector that points towards the viewing direction. The
SVPs vote for a common object by intersection with each other
in 3D space. We, thus, use SVP models as “bricks” to build the
3D world.

Figure 2: Definition of SVPs: (left) 3D patches, (middle) an SVP
with hypothetical extrusion and (right) the intersection of SVPs.

Figure 3 shows the construction of SVPs. Since a surface patch
may have an arbitrary shape (top left), in practice we model the
extrusion volume with multiple “sticks” (top right) to approxi-
mate the shape. The stick model is a discrete representation of
the 3D extrusion. For simplification the sticks are given a uniform
diameter, which is equal to the average distance of the neighbor
points. A tricky problem is how to define a reasonable length for
the extrusion. With too short extrusions, the SVPs will fail to in-
tersect with other object components. Too long extrusion, on the
other hand, will result in the merging of multiple objects into a
large one. Without any prior information, we can only assume
a quasi cube shape for a hypothetical 3D body. We empirically
found, that it is reasonable to use the average edge length of the
patch’s bounding box as the length of the extrusion. An example
scene with SVPs is shown in Figure 3 (bottom).

3. FREEFORM OBJECT VOTING

Object-level segmentation is challenging since the objects may
have different sizes, colors and shapes. To decide if two 3D
patches belong to the same object, a simple way would be to
check if they are neighbors and their back sides face to each other.
This, however, might fail in many cases, e.g., two patches belong
to one object, but are not directly adjacent, two patches are con-
nected with each other but do not belong to the same object, the
patch is non-planar, or contains more than one plane, etc. To im-
prove the results, geometric constraints and/or top-down models
(with simplified and regular primitives) could be employed to en-
sure more reasonable segmentation. Even then, such methods are
confined to limited, and mostly convex, shapes.

In this paper, we do not consider the various possibilities of patch
combination, but enforce a single condition: If two patches be-
long to the same object, the hypothetical volumes behind them
should have a certain overlap as they actually represent (parts of)
the same 3D object. This is a simple but reasonable condition
which describes the actual 3D relationship of the patches and the
underlying object. As shown in Figure 4, with the help of SVPs
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Figure 3: Application of SVPs. Top: using “sticks” (cylinders) to
model the extrusion of a freeform patch. Bottom: example scene,
in which the sticks are visualized as their axes (green beams).

the hypothetical components are “assembled” from arbitrary an-
gles into an object. Remote object parts or the patches of concave
shapes, as shown in Figure 4 (c, d), may not link with some neigh-
bors, but still can be included via other object members from a
different direction.

Figure 4: SVPs voting for freeform objects: SVPs can be assem-
bled from arbitrary angles (a) and form concave shapes (c) when
they are either fully (b) or partially (d) connected.

Instead of using a binary decision, we use an “intersection de-
gree” which quantifies the interaction of two SVPs by a contin-
uous (floating point) value. Besides a discrete approximation of
the 3D volume, the above mentioned stick model also provides
an easy way to quantify the intersection of 3D objects by just
counting the intersecting sticks of different objects instead of cal-
culating the real 3D volume overlap. We define the degree of
intersection for a patch pair i and j as follows:

I(i, j) = max{Ji→j ,Jj→i} (1)

with the intersection degree of the individual patch

Ji→j =
mi

ni
· t

mi · n0.5
j

=
t

ni · n0.5
j

, (2)

where n is the number of sticks, t the total number of intersec-
tions and m is the number of sticks involved in the intersection.
The intersection degree J is defined as the product of the per-
centage of intersected sticks and the degree of intersection depth.
We use n0.5

j to approximate the maximum possible depth. The
larger value is taken for the patch pair (i, j). This score is then
used as the likelihood for a valid grouping of these two patches.

4. GLOBAL OPTIMIZATION

A global optimization is beneficial because various scales of ob-
jects in the scenes significantly influence the parameter setting in
the segmentation. An MRF is employed to model the SVPs and
their relationships. As shown in Figure 5, the SVPs are repre-
sented as vertices and their neighborhood relationship as edges.
In this undirected graphical model each SVP is only related to
its first-order neighbor. The SVPs are defined as neighbors if the
corresponding 3D patches are adjacent, which is practically cal-
culated by finding the common boundaries in the 2D image (see
Figure 1, c) and checking their 3D distance.

4.1 Coplanarity and Color Coherence

Coplanarity is an important geometric relationship. Patches may
be merged if they are coplanar or their SVPs intersect. In this
paper we use a simple threshold of 5◦ for the normal angle dif-
ference to determine coplanarity. Color coherence is employed
as an additional criterion. We use the YUV distance to evaluate
the color similarity. As shown in Figure 5, both of the criteria
contribute to the correct segmentation (1-2-3-4-5 and 6-7).

4.2 Binary Energy

We defined the MRF model as:

G = (V, E) (3)

with v = vi, i ∈ V the vertices and e = e(i, j), {i, j} ∈ E the
pairwise neighbor relationship. Any pair of non-neighbor vertices
are conditionally independent given all other vertices, i.e.:

vi ⊥⊥ vj , if {i, j} /∈ E. (4)

Please note that there is no unary energy in the MRF. Different
from most labeling tasks, e.g., figure/ground separation, the num-
ber and types of groups are unknown. There is no likelihood that
can be derived from the local features of the individual vertex. In
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Figure 5: Coplanarity and color coherence are integrated in the
neighbor relationship of an MRF and lead to an improved seg-
mentation.

this segmentation task we observe only the binary energy of the
pairwise cliques which is defined as:

B(i, j) =

{
0.7 · P(i, j) + 0.3 · C(i, j) ∀vi, vj coplanar
0.7 · I(i, j) + 0.3 · C(i, j) ∀vi, vj intersecting
−1 otherwise

(5)

The binary energy is calculated for the intersection (I ∈ [0, 1])
or the co-plane (P=1, otherwise 0) in combination with the color
coherence (C ∈ [0, 1]). For these two cases, the binary energy
represents the probability that the pair of patches belongs to the
same object. We empirically found it to be advantageous to give
70% of the weight for the geometric relationship and 30% for
the color. We assume that in the other cases the patches do not
belong to the same object, which will be penalized with “-1” to
discourage any group to include this pair.

The goal of the optimization is to find the maximum overall en-
ergy H of the graph model with the configuration K, i.e., the
grouping. Let p(i, j) indicate the state of each pair in K (if con-
nected p(i, j) = 1, otherwise 0). The goal function can be ex-
pressed as:

K̂ = argmax
K
{H} = argmax

K

{∑ B(i, j) · p(i, j)

}
subject to:
i and j are guaranteed to be disconnected if p(i,j)=0.

(6)

By this means the main objects in the scenes are segmented with-
out previously giving the number of objects.

4.3 Stochastic Sampling

In the Markov field every edge has its probability to be broken and
thus lead to a different grouping result. This makes the segmenta-
tion a high-dimensional optimization task. We employ a Markov
Chain Monte Carlo (MCMC) sampler with Metropolis-Hastings
scheme to solve this high-dimensional optimization task. The
positive edge weight has been normalized to [0, 1] and quanti-
fies the likelihood of two patches belonging to the same object,
i.e., the edge persists conditionally to the sampling result. The
negative value will be just treated as 0 in the sampling, i.e., the

edge remains broken. The sampling process can be summarized
as follows:

1. Initialization: (M(s=0),K(s=0))

2. Propose new stateM′

2.1 Sample new configuration K from B(i, j), for all
{i, j} ∈ E

2.2 Recover the above broken edges inside the new groups

2.3 Calculate the overall energyH′

3. Accept the new proposal with the probability

A(M(s),M′) = min

{
1,

p(M′|D)

p(M(s)|D)
=
H′
H(s)

}
(7)

4. M(s+1) =M′ if accepted, otherwiseM(s+1) =M(s)

with s the step number and p(M|D) the likelihood that the state
M fits the data D, which is represented by the overall energyH.

5. EXPERIMENTS AND RESULTS

Experiments are performed on the New York University RGBD
dataset (Silberman et al., 2012). Figure 6 shows some examples.

Figure 6: Segmentation examples (snapshots of 3D models):
point clouds with color (left), patches/superpixels (middle) and
the segmentation results (right).

We use the “accuracy” of region reconstruction:

S = Accuracyrec. =
TP

TP + FP + FN
, (8)

with
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TP: True Positive, regions of the object that have been seg-
mented

FP: False Positive, incorrectly segmented regions

FN: False Negative, regions of the object that have not been
covered

to quantitatively evaluate the segmentation result of individual
objects. For each scene we only consider the (five to ten) domi-
nant objects and calculate the total score as:

Sscene =

∑
Ai · Si∑

Ai
(9)

with Si the accuracy of individual objects and the ground truth
object regions Ai used as weights.

Table 1 shows the segmentation results of the four scenes pre-
sented above. The scores are compared with the (best) object
segment proposal presented in (Endres and Hoiem, 2010).

Scene 1 2 3 4 ... ave.
objects 6 4 9 5 ... 6.3
Prop. 0.8633 0.9182 0.9021 0.8811 ... 0.89
SVP 0.9006 0.9234 0.9563 0.9193 ... 0.93

Table 1: Test scenes and evaluations (accuracy) in comparison to
the work of Endres and Hoiem (2010).

The results of more test scenes are summarized in Figure 7.
Again, the results are compared with the work in (Endres and
Hoiem, 2010), in which a category-independent method is intro-
duced to generate a number of regions and find good segmen-
tation schemes (proposals) based on the top-ranked ones. The
average accuracy values for the 20 test scenes are 0.9289 (SVP)
and 0.8910 (the best proposal of Endres and Hoiem (2010)), re-
spectively.

Figure 7: Segmentation accuracy and comparison with the object
segment proposals of Endres and Hoiem (2010).

The proposed method shows encouraging object segmentation
accuracy and robustness in finding the dominant objects in a 3D
scene. Please note that we compare our segments with the best
proposals in (Endres and Hoiem, 2010), which are selected from
hundreds of unsorted proposals. I.e., our method shows better
precision as well. The main source of error are anomalous ini-
tial patches from the superpixel segmentation, e.g., patches that
already link two objects and curved threadlike patches which are
hard to assemble correctly.

Please note that although we have enriched the pre-segmentation
of the color image with normal information, cross-object seg-
ments can still not be avoided or perfectly planar patches be guar-
anteed. We conduct RANdom SAmple Consensus (RANSAC)
(Fischler and Bolles, 1981) for each patch to estimate more rea-
sonable plane parameters in spite of outliers, which improves the
results. Still, the strangely shaped patches, e.g., curved bars,
sparse patches (along the viewing direction) and those that cross
two objects, lead to errors. One way to reduce this effect would
be to segment the image into smaller patches. This, however, will
require much more computational effort while it cannot totally
avoid false segments.

6. CONCLUSIONS

We have proposed a novel method for object-level segmentation
of RGBD data. The synthetic volume primitive – SVP is intro-
duced to parse the 3D geometrical relationships between the pre-
segmented data patches. The proposed method demonstrates its
potential in finding the dominant objects in indoor scenes includ-
ing the walls and the floor without using domain knowledge of
specific object classes.

The main contributions of this paper can be summarized as fol-
lows:

1. The introduction of SVP: A hypothetical quasi-3D model;

2. A novel segmentation scheme for freeform objects based on
assembling SVPs;

3. A global optimization integrating both 3D spatial and color
consistency constraints.

One possible future work is to improve the pre-segmentation to
avoid trivial patches and patches across objects, which are now
the main cause of errors in the results. Furthermore, the SVP
model could be improved by an adaptable context-sensitive ex-
trusion length instead of a fixed one, which will help the SVP to
connect more remote components or avoid wrong ones.
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