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Abstract. In this paper we propose a generative statistical approach for
the three dimensional (3D) extraction of the branching structure of un-
foliaged deciduous trees from urban image sequences. The trees are gen-
eratively modeled in 3D by means of L-systems. A statistical approach,
namely Markov Chain Monte Carlo – MCMC is employed together with
cross correlation for extraction. Thereby we overcome the complexity and
uncertainty of extracting and matching branches in several images due
to weak contrast, background clutter, and particularly the varying order
of branches when projected into different images. First results show the
potential of the approach.

1 Introduction

Trees are an essential component of three dimensional (3D) urban information.
They add a natural touch and influence the character of an urban scene con-
siderably. Because of their difficult and thus costly acquisition, they are often
neglected in 3D urban data sets. This is particularly true if their partly very
distinctive shape and texture is to be represented.

Our basic goal is to extract and 3D reconstruct individual unfoliaged decidu-
ous trees from image sequences. Deciduous trees are popular in cities worldwide
further away from the equator, as they provide shadow in summer and yet let
through most of the light in winter. Thus, they often form the majority of trees
in urban areas. From a practical point of view images for data acquisition in
cities will often be taken when the trees are unfoliaged as facades etc. are then
more readily visible. For us this has the big advantage that one can directly see
the branching structure which one can only guess from the foliaged tree.

From a scientific point of view extracting the branching structure in 3D by
matching from multiple images is a difficult problem nobody to our knowledge
has ever even tried to solve. Extraction and matching of branches is difficult
because of bad contrast, clutter by background objects, and because the order
of the branches even in neighboring images can vary considerably due to the
pronounced 3D structure of trees.

Former work has mostly dealt with tree extraction in aerial images and par-
ticularly recently laser scanner data. Much work focuses on forests. The only



approach we mention here is [1] as they also use a statistical (Reversible Jump)
Markov Chain Monte Carlo – (RJ)MCMC [2] approach to model trees, in their
case by a spatial point process.

Work for terrestrial urban images is more limited. In [3] foliaged deciduous
trees are segmented in color images based on their texture. There is neither a
segmentation of individual trees nor any 3D interpretation. Also [4] focuses only
on a two dimensional (2D) interpretation, yet for individual trees. The model is
based on the particular symmetries of coniferous trees. [5] is mostly concerned
with the animation of trees. For their 3D extraction first a volume is generated by
intersecting the view cones resulting from the tree silhouettes in multiple images.
The voxels of the volume are colored with the average brightness from the rays
from the different images. A branching process is started at the ground extending
into dark areas assumed to correspond to the trunk or branches. The given
results are plausible, but there is much human intervention involved. The most
sophisticated approach today is [6]. 3D volumes are generated as in [5]. From
the volumes 3D medial axes are constructed. The medial axes are constrained to
“botanical fidelity of the branching pattern and the leaf distribution” [6] via an
open Lindenmayer-, or in short L-system [7]. Again, a lot of manual interaction
is employed to generate results which are good in terms of visualization.

In this paper we show how by means of generative statistical modeling it be-
comes feasible, to match branches in wide-baseline image sequences taken uncon-
strained with a standard consumer camera in spite of the problems stated above.
We assume, that we can orient images highly precisely by an automatic orienta-
tion procedure in the spirit of [8], yet making use of calibration via the five-point-
algorithm [9], determining matches by a least-squares procedure highly precisely
and bundle-adjusting everything [10]. We note, that our modeling should be use-
ful to find trees in much more explicit laser-scanner data, though the latter is
linked to more effort for data acquisition.

In Section 2 the basic idea of generative statistical extraction employing L-
systems for the modeling of the 3D characteristics of trees is described. We use
statistical sampling in the form of MCMC to generate the parameters of an
L-system which comply with the data as described in terms of likelihood.

The generation of 3D hypotheses, their 2D projection and verification are
described in Sections 3 and 4. Hypotheses for trunks are generated from vertical
lines matched in several images. For the branches suitable prior distributions for
the parameters are discussed particularly focusing on issues with the branching
angles. The verification of new hypothesis is currently done using the (normal-
ized) cross correlation coefficient (CCC) as (a substitute for) likelihood. After
presenting fist results which show the potential of the approach in Section 5, the
paper ends up with conclusions.

2 Generative Statistical Extraction Using L-Systems

Branches of trees are difficult to extract from terrestrial urban image sequences
due to their weak contrast and background clutter from other objects, e.g.,



facades or other trees. As we want to construct 3D models of trees, we need to
match the branches. Because of the complex 3D structure of trees, the ordering
constraint, i.e., a point left of another point on an epipolar line in one image is
also left of the corresponding point on the epipolar line in the other image, often
employed to guide matching, is often not valid even for images taken close to each
other. All this means that the bottom-up extraction of branches and matching
them in 3D does not seem promising and suitable constraints describing the
structure of trees are needed for their 3D reconstruction.

In our case the structure of trees is described in terms of their growing, or
more particularly branching, by an L-system [7]. It is a parallel string rewriting
system representing branching structures in terms of bracketed strings of sym-
bols with associated numerical parameters, called modules. The simulation of
branching starts with an initial string (axiom) and proceeds in a sequence of
steps. By means of productions all modules in the predecessor string are substi-
tuted by successor modules. Whether a production is applicable can depend on a
predecessor’s context, values of parameters, and like in our case on random fac-
tors (also called stochastic L-systems). By means of context-sensitive L-systems
interactions between plant parts can be represented. We do not use this for our
simple first prove-of-concept implementation described in this paper, although it
would certainly be helpful. By recursively using the same productions, L-systems
represent self-similarity, an important biological characteristic of plants.

The modeling with L-systems results in tree-like structures. Yet, L-systems
alone only give means to generate and also visualize trees. For their extraction
from images, they need to be linked to a means for extraction. We decided to
employ a generative statistical approach based on MCMC and L-systems, where
likely candidates of branches are generated by stochastical sampling and are
verified by comparing simulated and real images.

Figure 1 presents the basic idea of our approach. After extracting the trunk
as described below, branches are grown randomly guided by appropriate prior
distributions and are projected into the images via the given highly precisely
known orientation parameters. The simulated images are then matched to the
given images. As model for the background clutter we use Gaussian noise.

Linking stochastic sampling, L-systems, and likelihood from the images ren-
ders it possible to find a tree structure very similar to that of the real tree. I.e.,
while L-system and MCMC alone can produce a typical tree, e.g., a beech, the
link with the likelihood in the images results into a beech with the particular
characteristics that can be seen in the images.

3 3D Hypotheses Generation

While we focus on the branches, the basic part of many trees and particularly
those we are interested in is the trunk. For it we extract lines, assuming that
trunks correspond to thick, mostly vertical lines. The vertical direction is pre-
sumed to be known approximately by basically taking images horizontally. It
usually can be improved by computing the vertical vanishing point from the



⇒

Fig. 1. left: Stochastical sampling based on an L-system results in a 3D tree hypothesis
– left / right: Projection of a new branch (red) into three empty images with randomly
textured background

vertical edges of trunks or on facades as we focus on urban scenes. Found verti-
cal lines, i.e., hypotheses for trunks, are verified by matching in several images.
We use the trifocal tensor [11] derived from our highly precisely known orienta-
tion parameters to predict from lines in two images a hypotheses for a line in a
third image. We further assume that the position of the tree is determined by
the trunk.

The scope of this proof-of-concept paper is limited to the first several levels
of branches. We right now assume, that the upper stages of branches with very
thin twigs might be grown stochastically to just match the image density, but it
is to be seen if and on which level of branching this is a valid assumption.

A new branch is modeled in 3D object-space as a cylinder with known be-
gin and the following parameters (the vertical direction is assumed to be ap-
proximately known (cf. above) and the x- and y-axis are taken from the local
coordinate system of the first camera after aligning it with the vertical direction):

– Azimuth: angle with x-axis of branch projected into horizontal plane
– Inclination: angle between branch and horizontal plane
– Length
– Diameter

MCMC should basically sample the azimuth with a uniform distribution
between 0◦ and 360◦ (cf. blue horizontal dashed line in Fig. 2, right). However,
if a limited number of images is taken forming an acute angle together with the
trunk as, e.g., the blue area for the three images in Fig. 2, left, accepted branches
trend to concentrate in the area of the acute angle. The reason for this is, that
in the center of the tree there is usually the vertical trunk, or there are at least
only very few thicker vertical branches. All branches with whatever inclination
generated in a vertical plane inside the acute angle or close to it will be more



likely accepted as they are projected onto the trunk in all given views and are not
disambiguated from another viewing angle. One solution that we have devised
for this consists in a modified prior distribution for the azimuth as given as red
line in Fig. 2, right.

Fig. 2. left: Area (blue) where for a smaller number of closely-spaced cameras a con-
centration of hypotheses can occur as hypotheses are not disambiguated from a larger
viewing angle – right: Prior distribution (red) for azimuth (with 0◦ at central camera)
helps to reduce the concentration – original uniform distribution as blue dashed line

In combination with the azimuth only a half circle is needed for the inclination
(cf. Fig. 3). Moreover, for most types of trees, the majority of branches look
upwards. We thus have devised a prior distribution for the inclination shown in
Fig. 3 with darker color denoting higher probabilities.

Fig. 3. Prior distribution of inclination – Darker color means higher probability

For length and diameter normal distributions are considered. Our first ex-
periments were conducted with a mean of 1 meter for the length for the first
level of branches. The diameter is set to a fixed value. For the higher levels of
branches we use contraction coefficients.



4 2D Projection and Evaluation

The generated hypotheses are projected into the 2D images, to be evaluated
there by comparing the simulated images constructed from the projected hy-
potheses with the given images. The projection of 3D cylinders entails a larger
computational effort. As we do many of these projections in MCMC, we decided
for the proof-of-concept prototype, where we did not want to use a graphical
processing unit (GPU) due to missing experience with its programming, to use
a simple and efficient 2D representation derived from the 3D representation. An-
other reason for this is that the projection of the branches results into patches
of nearly constant brightness anyhow. The chosen 2D representation consists of
trapezoids. The color is taken as average of the trunk. A trapezoid is described
by the following four parameters:

– Direction: angle with x-axis
– Length
– Width of begin
– Width of end

The parameters of the trapezoid are obtained in the following way: The
centers of the begin and the end are obtained by projecting the centers of the
circles, i.e., the end points of the axis, delimiting the cylinder on both sides, into
the image via

x′ = PX

with (homogeneous) 3D points X, image points x′, and the projection matrix
P [11]. To compute reasonable approximations for the widths, we connect the
end points of the axis of the cylinder with the camera center and determine one
of the normals to this vector. The distance between the projections of the end
point of the axis and of the intersection point of the normal with the cylinder
surface equals half the width in the image.

The projection of a hypothesis is compared with the corresponding original
image i by means of the cross correlation coefficient CCCi for the intensities com-
puted by HSI color transformation. To compare different hypotheses, the whole
images have to be compared with the projections of the complete 3D models.
As MCMC sampling consists of a larger number of iterations, the comparison
has to be efficient. This is done by an incremental update of only those parts of
the 2D projection and the corresponding variances and covariances, which have
been changed.

The CCCi values for the n individual images are combined via multiplication
into a global CCC value

CCC =
n∏

i=1

CCCi .

Multiplication is used as we interpret the CCCi values as likelihoods and we
assume independence of the images given the 3D model. Additionally, we found
empirically that this conservative combination helps to sort out bad hypotheses



early. We are aware that the actual size of CCCi values can be far from correct
likelihoods. Yet, our experiments give evidence to assume that they are propor-
tional to correct likelihoods. A function linking raw CCCi values and likelihoods
could be obtained by determining a statistics of CCCi values for a larger number
of known correct and incorrect hypotheses for branches at a certain level. This
is subject of further work.

We found empirically that it is not useful to sample all parameters of a
branch at the same time. Thus, the MCMC sampling of the parameters is done
sequentially. First, only azimuth and inclination are jointly varied over 1000
iterations while the length is kept fixed. The latter is optimized only afterwards
with 500 iterations. In future work we plan to relax the sequential sampling via
conditional probabilities controlling which parameter to sample next.

5 Results

Fig. 4 and 5 show first results. The input data consists of an image triplet for the
former and an image quadruple for the latter, both taken unconstrained with a
hand-held 5 Megapixel camera. As output we obtain a VRML (virtual reality
modeling language) model describing the trunk and the first two levels of the
main branching system of the trees.

The scenes, taken on different continents under very different lighting condi-
tions demonstrate, that we can basically determine branches on the first two lev-
els. Yet, we note that our proof-of-concept implementation still misses branches
and reaches only a limited accuracy. We assume that with more experience and
particularly by using more levels and RJMCMC, the latter to dynamically gen-
erate and delete competing hypotheses via the jumps, we will be able to drop
most wrong hypotheses as they will be substituted by better fitting hypotheses.

6 Conclusions

We have proposed a generative statistical approach for the extraction of the
branching system of unfoliaged trees. By combining the descriptive power for
trees of L-systems with statistical sampling by means of MCMC and simple
cross correlation we are able to extract partly occluded branches with possibly
weak contrast from image sequences as shown by our first results.

Concerning future work, we first want to generalize the implemented L-
system in the direction of open L-systems [7]. We might need to change the
parameterization away from the vertically centered azimuth and inclination an-
gles to a more local representation based on branching angles. Yet, we note that
generative statistical modeling is not confined to L-systems. We basically just
need a means to construct realistic trees that can be efficiently controlled. For
this, e.g., also [12] could be a good basis.

Parameters such as contraction rates or branching angles could be learned
by extracting a larger number of trees leading to priors probably conditional
to the branching level. As already noted above, by correlating against trees
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Fig. 4. Extraction from an image triplet limited to the the trunk and the first two
levels of branches – intermediate stage of processing projected into images (left) and
final result (right)

and representative samples of the background, a function to upgrade correlation
coefficients to likelihoods could also be learned.

An important question will be to decide, how many branches are to be formed
on a level and how many levels are appropriate for the tree, i.e., to control
the complexity. E.g., for our proof-of-concept implementation, if we had not
limited the branching level, a small tree could keep growing, even though new
branches are just hallucinated into the background, as there is no obvious way
of stopping. This leads to the issue of model selection. The idea is to balance
the complexity of a hypothesis, i.e., the size of the tree or more particularly the
number of parameters, against its likelihood according to the data. For this, the
theory developed for compositional systems [13] might prove helpful, possibly
also in conjunction with RJMCMC, to dynamically add and delete hypotheses,
the latter, if better solutions evolve.
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Fig. 5. Extraction from an image quadruple limited to the trunk and the first two
levels of branches – images (top) and result (bottom) showing the tree, the cameras as
(green) pyramids and points used by the orientation procedure
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