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The majority of contemporary geodesists' considers
Eric Grafarend as a most remarkable and outstand-
ing scientist as well as brilliant scholar in the field of
geodesy. His strong opinions, founded upon a thor-
ough understanding of mathematical reasoning as ap-
plied to geodetic science, his clear views on essentials
and needs for a science oriented university educa-
tion with emphasis on fundamentals, and his openness
to other fields and different cultures has gained him
many friends throughout the world. In fact, Eric Gra-
farend’s creative and productive power is enormous
and can hardly be equaled. His background easily
has enabled him investigating new and old problems
of our common profession from a purely theoretical,
highly mathematical point of view. This is in contrast
to the majority of geodesists who consider geodesy
as engineering science rather than (geo-) science per
se, and which should be primarily oriented towards
practical applications. Although, partly for that rea-
son, most of Eric Grafarend’s scientific publications
are beyond the comprehension for those other geode-
sists, I nevertheless consider his work essential for a
theoretically sound deepening of our profession.
Considering myself one of those other geodesists,
I would not even think of attempting to write some-
thing that could come close to the quality of the level
of Eric Grafarend’s publications in terms of math-
ematical rigor and degree of abstraction. Let alone,
I would not succeed anyhow. Yet, both of us seem
to have a few convictions in common that encour-
age me to a contribution dedicated to him on occa-
sion of his 60" birthday even knowing it would not
meet his high scientific standards. In my scientific en-
deavor one of my peculiarities always has been a cer-
tain desire, if not longing, for search and investigation
of novel ideas and unconventional methods or tech-

! For reason of simplicity and in accordance with Eric
Grafarend’s understanding, in this paper the definition of
geodesy is adopted according to the European view, i.e.
encompassing the entire spectrum of fields of expertise
of surveying engineering (a new term is geomatics), even
though the author, who does not entirely agree with this,
has difficulties in finding his own specialization (pho-
togrammetry and remote sensing) properly represented
under this name.

niques, even though nothing spectacular would have
to be expected from the final results. It is somewhat
strange that my main interests were concentrated not
so much on the outcome of a certain study but often
rather more on the way leading to a solution of the
problem. I think Eric Grafarend’s way of living for
science is not too far off from such an attitude but one
level higher, of course. My modest contribution will
then not be entirely in vain.

1 Introduction

[t remains one of the mysteries in geodesy why most
of the differential geometric relations on the spheroid
(ellipsoid of revolution) always have been developed
into truncated power series for numerical computa-
tions. Although understandable from a historical point
of view when all calculations had to be carried out by
hand, there is no reason why this should be done the
same way today with computers. A typical example
is the computation of Gauss-Kriiger coordinates or
UTM-coordinates (see, e.g., [Hubeny, 1953]). Virtu-
ally all existing software routines employ algorithms
derived solely from incomplete power series that were
developed ages ago and for regional use only, and no-
body asks anymore if there existed more general, uni-
versal and mathematically sound algorithms. For the
same reason I never really could understand why in
geodesy hardly any complex numbers are used and
why practically all geodesists, exceptions, of course,
prove the rule, prefer to circumvent complex arith-
metic despite their claims that conformal mappings
on the spheroid are essential. It is a fact, however,
that conformal mappings such as the Gauss-Kriiger
projection are based on and easiest represented by
complex numbers, and algorithms written in com-
puter languages containing complex arithmetic turn
out to be rather short, effective and transparent.
When we notice departures from this line then
mostly those originating from non-geodesists or out-
right outsiders. E.g., in [Klotz, 1993] efforts are un-
dertaken to extend truncated power series from local
to global by recursive definitions; the treatise [Lee,
1976] elaborates on conformal projections based on
elliptic functions and integrals; and in [Gerstl, 1984]
numerical evaluations of (complex) elliptic integrals
are performed by Landen transformations. Seemingly
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unnoticed in the geodetic community and despite their
innovative character, these research studies have re-
mained in a somewhat dormant state. In a way, this is
rather unfortunate because of the knowledge we are
carelessly throwing away which, on the other hand,
would be of considerable value and help for a bet-
ter understanding of and insight in a truly geodetic
matter. Really disillusioning is, in my opinion, that
the mathematical relevance of transitions from real
to complex by analytic continuation, since inherently
having practical consequences, are rarely understood
by many geodesists. E.g., who knows that any valid,
in this case real, mathematical formulation for the arc
length along the meridian of a spheroid as function
of the (real) isometric latitude, immediately yields
(conformal) Gauss-Kriiger coordinates if the quan-
tities used are extended to the complex domain.

The author remembers with horror the lectures on
"Landesvermessung” when his teacher, with a rela-
tively high degree of dilettantism, tried to explain both
nature and background of the Gauss-Kriiger projec-
tion and derive their mathematical relations. Instead
of having kept to the simple essentials, the matter sub-
merged into a sea of obscurity, and it would take the
author many years of own search until he became suf-
ficiently confident in comprehending the subject. The
following paragraphs are to present the findings and
results of the author’s work as an outsider to the whole
matter. By virtue of his understanding of belonging
to an engineering science, main emphasis will ulti-
mately be placed upon practical applicability rather
than theoretical rigor. This leads to the presentation
of not only general formulations and algorithms de-
rived therefrom but also genuine yet simple and imme-
diately applicable computer programs. Although not
new in mathematical literature, the numerical evalua-
tion of elliptic integrals of the second and third kind,
essentially defining the arc length on the meridian of
a spheroid, will be based entirely on the highly con-
vergent Landen transformation. Whether the geodetic
community finally will appreciate this or not remains
to be seen. While this topic forms the kernel of the pa-
per, the transition to Gauss-Kriiger coordinates rep-
resents but a mere extension from real to complex
numbers without modification of the algorithms.

2 Elliptic Integrals

The radius of curvature 4 of the spheroid with semi-
major axis a = 1 in the direction of the meridian at a
point of geographic latitude  is given by
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where k is the (first) numerical eccentricity of the
meridian (often denoted e or ¢ in geodetic literature).
An element of length d( along the meridian is then
given by

d¢ = p(k,p)dep. (2)

Hence by integration we get
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for the arc length normalized to @ = 1 (denoted arc
latitude here). If, instead, we use the reduced latitude
7 defined by

tant = 1 —k2tanp =k'tangp, (4)

where k' is termed complementary modulus, then arc
latitude is given by
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Equation (5b) is equivalent to Legendre’s normal
(incomplete) elliptic integral of the second kind [Korn
et al., 1968] defined by
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thus yielding, together with (5c), the simple relation
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for arc latitude as function of reduced latitude, viz. as
difference between complete and incomplete elliptic
integral of the second kind.

Equation (3) is proportional to Legendre’s normal
(incomplete) elliptic integral of the third kind, gener-
ally defined by
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