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Abstract

This thesis presents a fully three dimensional (3D) surface reconstruction algorithm from
wide-baseline image sequences. Triangle meshes represent the reconstructed surfaces al-
lowing for an easy integration of image- and geometry-based constraints. We extend the
successful approach for 2.5D reconstruction of Heipke (1990) to full 3D. To take into ac-
count occlusion and non-Lambertian reflection, we apply robust least squares adjustment to
estimate the model. The input for our approach are images taken from different positions and
derived accurate image orientations as well as sparse 3D points (Bartelsen and Mayer 2010).
The first novelty of our approach is the way we position additional 3D points (unknowns)
in the triangle meshes constructed from given 3D points. Owing to the precise positions of
these additional 3D points, we obtain more precise and accurate reconstructed surfaces in
terms of shape and fit of texture. The second novelty is to apply individual bias parame-
ters for different images and adapted weights for different image observations to account for
differences in the intensity values for different images as well as to consider outliers in the es-
timation. The third novelty is the way we factorize the design matrix and divide the meshes
into layers to reduce the run time. The essential element for our model is the variance of
the intensity values of image observations inside a triangle. Applying the approach, we can
reconstruct accurate 3D surfaces for different types of scenes. Results are presented in the
form of VRML (Virtual Reality Modeling Language) models, demonstrating the potential of
the approach as well as its current shortcomings.



Zusammenfassung

Diese Arbeit präsentiert einen vollständig dreidimensionalen (3D) Algorithmus zur Ober-
flächenrekonstruktion aus Bildfolgen mit großer Basis. Die rekonstruierten Oberflächen
werden durch Dreiecksgitter beschrieben, was eine einfache Integration von Bild- und
Geometrie-basierten Bedingungen ermöglicht. Die vorgestellte Arbeit erweitert den erfol-
greichen Ansatz von Heipke (1990) zur 2,5D Rekonstruktion zur vollständigen 3D Rekon-
struktion. Verdeckung und nicht-Lambertsche Spiegelung werden durch robuste kleinste
Quadrate Ausgleichung zur Schätzung des Modells berücksichtigt. Ausgangsdaten sind
Bilder von verschiedenen Positionen, abgeleitete genaue Orientierungen der Bilder und
eine begrenzte Zahl von 3D Punkten (Bartelsen and Mayer 2010). Die erste Neuerung
des vorgestellten Ansatzes besteht in der Art und Weise, wie zusätzliche Punkte (Un-
bekannte) in dem Dreiecksgitter aus den vorgegebenen 3D Punkten positioniert werden.
Dank den genauen Positionen dieser zusätzlichen Punkte werden präzisere und genauere
rekonstruierte Oberflächen bezüglich Form und Anpassung der Bildtextur erhalten. Die
zweite Neuerung besteht darin, dass individuelle Bias-Parameter für verschiedene Bilder
und angepasste Gewichtungen für unterschiedliche Bildbeobachtungen verwendet werden,
um damit unterschiedliche Intensitäten verschiedener Bilder als auch Ausreißer zu berück-
sichtigen. Die dritte Neuerung sind die verwendete Faktorisierung der Design-Matrix und die
Art und Weise, wie die Gitter in Ebenen zerlegt werden, um die Laufzeit zu reduzieren. Das
wesentliche Element des vorgestellten Modells besteht in der Varianz der Intensitätswerte
der Bildbeobachtungen innerhalb eines Dreiecks. Mit dem vorgestellten Ansatz können
genaue 3D Oberflächen für unterschiedliche Arten von Szenen rekonstruiert werden. Ergeb-
nisse werden als VRML (Virtual Reality Modeling Language) Modelle ausgegeben, welche
sowohl das Potential als auch die derzeitigen Grenzen des Ansatzes aufzeigen.
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Chapter 1

Introduction

1.1 Motivation

This thesis deals with dense 3D surface reconstruction. The purpose is to compute a 3D
surface model of a scene from multiple images. The thesis focuses on two main problems
in dense surface reconstruction, namely the matching algorithm and the technique applied to
optimize the objective function in order to derive a photorealistic reconstructed shape.

The topic of recovering the surface shape from images has received tremendous attention in
the computer vision and photogrammetry community particularly in recent years. In spite of
this, the topic is still interesting with many remaining open questions. While there are many
approaches which can successfully solve the problem in a specific direction, there are still
weaknesses and unsolved problems in each approach. I.e., there is no perfect approach that
can handle all issues and produces the best possible output. For example, some approaches
achieve very good results, but are computationally very expensive. Some methods produce
very good results, but do not work for all types of objects, because of strong assumptions such
as Lambertian surfaces, low image noise, or no occlusions. In addition, some methods only
take into account the image information and mostly ignore geometric cues which sometimes
are very important for the reconstruction. In the next paragraphs, we will summarize several
recent approaches to clarify our motivation.

Among recent publications describing the reconstruction of surfaces from 2D images are
many volumetric algorithms (Faugeras and Keriven 1998, Kolmogorov and Zabih 2002, Ku-
tulakos and Seitz 1999, Seitz and Dyer 1997) which apply 3D grids for representing the
geometry to simultaneously reconstruct surfaces and to obtain dense correspondences. On
the other hand, a lot of algorithms use polygon meshes or depth maps in reconstructing the
shape and the reflectance properties of an object (Fua and Leclerc 1994, Heipke 1990, Ak-
barzadeh et al. 2008). All of these approaches have potential, but they still have limitations.

For the 3D grids, (Kutulakos and Seitz 1999, Seitz and Dyer 1997) are two typical ap-
proaches that use a voxel representation for the geometry of a scene. Space carving
(Kutulakos and Seitz 1999) or voxel coloring (Seitz and Dyer 1997) work directly on vox-
els enforcing image consistency and visibility. These methods are purely local and therefore
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rely either on numerous viewpoints or on well textured surfaces to achieve satisfying results.
In addition, they mostly ignore the noise of real images. Even more important is that they
don’t have a way to impose spatial coherence which is problematic, because image data are
often ambiguous.

Level-set methods also apply 3D grids for scene representation. E.g., the approach of
Faugeras (1998) intrinsically embodies multiple views and naturally handles topological
changes and occlusions. However, it is not clear under what conditions their method con-
verges as the proposed functional is non-convex.

The general limitation of the class of methods making use of 3D grids lies in the initial
discretization, because the degree of precision is limited by the resolution of the grid. To
increase the quality, higher resolutions are necessary. This, however, results in a time-
consuming computation particularly for spatially extended scenes.

For the depth map representation, Kolmogorov and Zabih (2002), Roy (1999), and
Ishikawa and Geiger (1998) propose direct discrete minimization formulations that are
solved by graph-cuts. These approaches achieve disparity maps with accurate contours, but
with limited depth precision. The improvement for graph cuts proposed by Boykov and
Kolmogorov (2003) overcomes some of the above limitations. Paris et al. (2003) propose a
continuous functional, but restricted to open surfaces.

Methods based on polygon meshes represent surfaces by connected planar facets or trian-
gulated meshes. Fua and Leclerc (1994) and Heipke (1990) among others use this type of
scene representation. Fua and Leclerc (1994) represent surfaces by triangulated grids. They
do not only combine different sources of information (image-based and geometry-based) in
the reconstruction, but they also control the influence of each information source in the re-
construction at each step of the iteration. Owing to this property, they can recover both the
shape and the reflectance properties of complicated surfaces. This is difficult for methods
in which only one source of information is explicitly considered. The method of Fua and
Leclerc (1994) also allows to take into account self-occlusion and shading. Even though
it has big advantages over other methods as it can reconstruct complicated surfaces, it still
has some limitations. First, it has the strong assumption that the data used to initialize sur-
faces can easily be separated into separate groups which correspond to specific objects, i.e.,
surfaces. However, real scenes often consist of several objects with the topology unknown
in advance. Thus, this method is not suitable for a highly complex topology. Second, it is
possibly time-consuming, because it makes use of hand-collected geometric information as
input if high quality surfaces are to be obtained.

Heipke (1990) also uses triangulated meshes, but in a different way than Fua and Leclerc
(1994). The main idea of his method is to use least squares optimization to adjust the geom-
etry of the object surface in order to minimize the differences between the brightness of the
projected images and a derived average image. On one hand, Heipke’s method comprises
the advantages of triangulated meshes as in Fua and Leclerc (1994). On the other hand,
the method partly overcomes limitations of Fua and Leclerc (1994) as it relaxes their strong
assumptions. However, its disadvantages are that it ignores occlusions and non-Lambertian
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reflection. Additionally, Heipke’s method is proved to be successful only for 2.5D recon-
struction, i.e., one z-value for each x-y position, and has not been applied for full 3D recon-
struction.

The discussed limitations and strengths of all above methods imply that it seems promising
to extend Heipke’s method to full 3D surface reconstruction while applying the 3D trian-
gulated mesh representation of Fua and Leclerc (1994) and taking care of occlusions and
non-Lambertian reflection. We summarize our proposed approach in the next section.

1.2 Summary of Proposed Approach

The objective of our research is to set up a system for surface reconstruction from images
from different view points. Our approach which was first introduced in Ton and Mayer
(2007) has the following properties:

• The surface shape is recovered together with the corresponding texture image from
multiple images by means of least squares adjustment.

• The surface can be constructed from many images, even when the images are taken
from possibly widely differing viewpoints.

• The system deals with viewpoint dependent effects such as non-Lambertian reflection
of the surface and occlusions by means of robust estimation.

We employ the 3D triangular facets mentioned in the previous section proposed by Fua and
Leclerc (1994) and extend the classical least squares matching approaches of (Wrobel 1987,
Ebner and Heipke 1988, Heipke 1990) in the direction of full 3D reconstruction from wide-
baseline image sequences. Our way to deal with occlusions is inspired by Schlüter (1998).

Given sparse 3D points are used as input for the reconstruction. To extract these 3D points
from the scene, we use the approach of Bartelsen and Mayer (2010) resulting in reliable,
precise, and accurate points. Bartelsen and Mayer (2010) apply robust bundle adjustment
and least squares matching to extract 3D points. They assume that the camera calibration is
known and also provide the information which cameras view which extracted points as well
as the order of all cameras.

On the projections of the given sparse 3D points in the images we apply 2D Delaunay tri-
angulation to connect the 3D points and obtain a triangulated mesh. Because the Delaunay
algorithm is designed for individual images, we adjust it so that it can be applied for mul-
tiple images. This is based on knowledge about which points, i.e., surface parts, are seen
through which images. We only obtain a limited number of 3D points from the technique
of Bartelsen and Mayer (2010). Thus, if we would only use such given points for surface
reconstruction, we would not make use of all information available from the images. In ad-
dition, because of the limited number of extracted 3D points, we cannot get highly precisely
reconstructed surfaces and texture properties, especially for strongly curved areas.
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Therefore, based on these extracted 3D points, we determine the positions of other points
from the images, which become the unknowns of our adjusment. The main step of our
technique is then to estimate the position of the unknowns: The more precise and reliable
the unknowns are determined, the better will be the fit of the reconstructed surface.

We define the unknowns as points which lie on a side of the triangles derived from the given
sparse 3D points. An unknown implies the generation of a new 3D point. From this new 3D
point, new triangles are created. Every time a new unknown is positioned, the triangulated
mesh is split. By splitting triangles by means of unknowns and projecting a number of points
inside the triangles into the images, the image observations are obtained. To take into account
occlusions when positioning unknowns, we start from the first camera and end the iterative
procedure at the last camera. Thus, we first consider triangles that can be observed by the
first camera. We define unknowns for this group of triangles, i.e., part of the mesh. The
unknowns of the first camera then become the given 3D points when applying the procedure
to obtain unknowns for the second camera, etc. In addition, we employ a coarse to fine
procedure with a hierarchy of resolutions for the triangulation linked to adequate levels of
image pyramids to expand the range of convergence of the adjustment.

To define an unknown, we need to answer three questions: The first question is whether an
unknown is needed in an existing triangle of the mesh, i.e., whether a triangle should be
split. The other two questions are: (1) On which edge of the split triangle should we posi-
tion the unknown, and (2) where on this edge should the unknown be? We will discuss the
answers to these questions in Chapter 4. To precisely position the unknowns, we move the
corresponding vertices of the triangulation resulting from the densification of the triangula-
tion in the direction of their normals. To get the best estimate of the unknowns, we apply
robust M-estimators and extend the optimization procedure proposed by Heipke (1990). We
also apply a smoothing term to account for the ill-posedness of 3D surface reconstruction
due to noise and occlusions by enforcing a low curvature in the sense that the vertices of
the triangulation should be close to the average plane of their direct neighbors. An analysis
of a local neighborhood of the unknowns leads to an additional smoothness observation in
which the regularization is based on additional observations modeling the local curvature of
the surface.

1.3 Outline of the Thesis

The dissertation is made up of six chapters. The second and third chapter give the theoret-
ical background in which we discuss in detail methodologies and models that we apply in
our thesis. Specifically, in Chapter 2 we present the fundamental model and method we
use in this dissertation. As we employ robust least squares optimization to deal with non-
Lambertian reflections and occlusions, in this chapter, we will describe this technique and
discuss its strengths and weaknesses compared to other techniques.

In Chapter 3, we focus on basic stereo matching issues as the main focus of this thesis. As
foundation for our methodology, we describe a multi-view stereo taxonomy. We summa-
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rize the methodology as well as the advantages and disadvantages of several recent stereo
algorithms to make clear why we have devised the proposed algorithm the way we did. The
presented 3D surface reconstruction approaches use voxel coloring, space carving, level sets,
triangulated meshes, and particles. At the end of this chapter, we discuss the technique of
Heipke (1990) which is the basis of our approach.

The remaining part of the thesis is dedicated to our new approach, experiments conducted
with the approach and results obtained by applying the approach. More specifically, in Chap-
ter 4 we describe our novel approach for surface reconstruction which permits to reconstruct
a fully 3D surface from multiple images. Our method uses a triangulated grid, least squares
optimization, and regularization by smoothing the surface. In the first section, we describe
foundations for our approach: Camera model, formation of images, sub-pixel interpolation,
pose estimation, and 3D point determination. In the next two sections, we present the basic
idea of our approach and how we derive the partial derivatives for the least squares design
matrix. We then describe how we build the triangulated mesh from the given sparse 3D
points. In the fifth section, we present a coarse-to-fine strategy consisting of three steps to
position additional points, i.e., the unknowns of the least squares estimation in the trian-
gulated meshes built in the previous section. In the first step, a number of additional 3D
points in each triangle of the 3D meshes and their corresponding image observations are
constructed. This allows us to determine which triangles should have unknowns, i.e., should
be split, based on the deviation of the intensity values inside a triangle (second step). In the
third step, unknowns are initially positioned in the selected triangles. The last section of this
chapter explains how robust least squares adjustment is applied in order to obtain accurate
and precise positions for the unknowns in the 3D meshes. We describe how we achieve
robustness for occlusion and non-Lambertian reflection by controlling bias parameters and
different weights for different image observations. Finally, we show how we factorize the
design matrix to reduce calculation time.

In Chapter 5, we discuss experiments with our approach. The first section presents prepa-
rations including why and how the data set of given 3D points extracted from images by the
method of Bartelsen and Mayer (2010) is manually adjusted so that it is suitable for our
approach. Second, it is discussed which percentage of triangles in a mesh should be selected
as unknowns. Third, it is shown how different layers in a mesh are created to reduce the
time of the estimation. Fourth, the robust least squares adjustment model is specified in-
cluding initial values for bias parameters and weights, weight adjustment during estimation,
and the influence ratio between image observations and smoothness observations to control
for the smoothness of the surfaces. The main part of Chapter 5 is the second section where
we present and discuss all results, i.e., reconstruction of 3D surfaces by application of the
approach. Particularly, we demonstrate the improvement by reconstructing surfaces with
additional 3D points (unknowns) compared to the surfaces reconstructed from the given 3D
points.

Chapter 6 consists of the conclusion and our outlook for future research.
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1.4 Main Findings

To show the advantages of our approach, we apply it for the reconstruction of 3D surfaces
for four different types of scenes. The first is a corner of Trinity building consisting of
different types of structures on its surface (glass windows, stone columns, bushes), but weak
texture. The second scene shows a cylinder covered by many advertising posters. It has a
simple structure and mostly a strong texture. The third scene consists of a street corner in
Leuven, Belgium. Besides weak texture and a complicated 3D structure, the images show
both fixed and moving occlusions (people). The fourth scene is the main gate of the Cathedral
in Cologne, Germany. The scene has a sophisticated surface with many small statues.

The experimental results demonstrate that our approach can successfully reconstruct the 3D
surfaces of these objects. The creation of additional 3D points additionally to the given
sparse 3D points is the basic principle of the reconstruction. It is shown that the additional
points significantly reduce the error in the intensity values of the reconstructed meshes. As
result, we obtain more precise and accurately reconstructed surfaces.

The main findings for our approach can be summarized as follows: First, the approach is
proved to be suitable for different types of objects with from weak to strong texture as well
as from simple to complicated structure. Second, the approach robustly deals with problems
due to non-Lambertian reflection and occlusion which is a remaining issue of many current
algorithms. Third, we show that the combination of a mesh representation with least squares
adjustment allows to successfully extend Heipe’s approach for 3D reconstruction. Fourth,
the 3D given points extracted by the approach of Bartelsen and Mayer (2010) are essential
for the success of our approach. Fifth, in order to obtain a very precise 3D surface, we
apply different bias parameters for different images and different weights for different image
observations. By this means, we account for the differences in the intensity values for images
from different camera positions and reduce the effect of outliers on the estimation. Finally,
to reduce the run time, we factorize the design matrix and divide the meshes into layers.



Chapter 2

Fundamentals

In this chapter, we describe the fundamental technique which is applied in this thesis: Robust
least squares adjustment. In the first section, we present general weighted least squares ad-
justment. In order to deal with outliers which always exist in image matching, the estimation
has to be robust. Thus, in the second section, we focus on robust estimation. We summarize
techniques that are currently used in scene reconstruction and explain why we choose an
M-estimator.

2.1 Least Squares Adjustment

2.1.1 General Least Squares Adjustment

Least squares (LS) adjustment is the principal mathematical method used in this dissertation.
It is a mathematical optimization technique which attempts to find a best function, i.e., a “best
fit", for observed data for overdetermined systems. The most important application of this
method is data fitting.

Basically, the n×1 vector E(L), i.e., the expected values of n observations (l1, l2, ..., ln) is
assumed to be related to the n×1 vector ϕ(X) = (ϕ1, ϕ2, ..., ϕn)T by the following functional
model:

E(L) = ϕ(X), (2.1)

where

• X = (x1, x2, ..., xm)T is an m×1 vector of m unknown parameters and

• ϕi describes the relationship between the unknown parameters and X and an observed
value li.

As we assume that for real noisy data there is always an error between the expected value
and the observed value, we need to add residuals to correct for the error. The LS adjustment
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function can thus be written as:

E(L) = ϕ(X) = L + ε (2.2)

where

• L = (l1, l2, ..., ln)T is an n×1 vector of observed values and

• ε = (ε1, ε2, ..., εn)T is an n×1 vector of residuals for each observed value.

The general idea of the “best fit" in LS is to minimize the sum of the squared residuals (S ),
which are the differences between the observed value (li) and the expected value provided by
the model (ϕi(X)):

S =
∑

i

(li − ϕi(X))2 (2.3)

Minimizing S implies ∂S
∂ϕi(X) = 0. When the system is non-linear, as in our case, these deriva-

tives are functions of both the unknowns X and the parameters of ϕi and, therefore, one
cannot obtain a closed solution for the gradient equations. To solve the problem, one needs
to choose initial values for the unknowns X. Denoting the vector of these initial values as X0,
an n×1 vector of corrections to the unknowns ∆x can be defined as:

∆x = X − X0. (2.4)

The unknowns are iteratively refined. At each iteration, the model in equation (2.2) is lin-
earized by an approximation using a first-order Taylor series expansion of the unknowns
X j:

l + ε = A∆x, (2.5)

in which A is the n×m Jacobian matrix of the partial derivatives of the ϕi according to the
unknowns X j:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1(X)
∂X1

∂ϕ1(X)
∂X2

· · ·
∂ϕ1(X)
∂Xm

∂ϕ2(X)
∂X1

∂ϕ2(X)
∂X2

· · ·
∂ϕ2(X)
∂Xm

...
...

. . .
...

∂ϕn(X)
∂X1

∂ϕn(X)
∂X2

· · ·
∂ϕn(X)
∂Xm

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

Substituting these expressions into the condition that the partial derivatives have to be zero,
the solution for LS estimation is obtained as the following estimate:

∆̂x =
(
AT A

)−1
AT l. (2.7)

Please note that an implicit requirement for LS is that the residuals ε in each measurement are
random. In general, observed values then are assumed to be normally distributed. Following
this assumption, the residuals are also assumed to be normally distributed for all values of
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∆x. Thus, the variances of errors are assumed to be constant (σ2
0) and, therefore, in the above

calculation for LS, unit weights are used for all observations. Substituting the above value
of ∆x into equation (2.5) to obtain a value for ε = A∆x − l and then using these corrected
values, the estimated value for σ̂0 can be computed as:

σ̂0 =

√
εT ε

n − m
. (2.8)

According to the Gauss-Markov theorem estimators are efficient unbiased estimates under
these assumptions. However, in reality, these assumptions often clearly do not hold, espe-
cially in computer vision, where each point might have its different characteristic, i.e., when
observations are heteroskedastical rather than homoskedastical making the estimates biased.
Therefore, when each observation cannot be treated equally, it is appropriate to apply suit-
able different weights. Next, we describe how Weighted LS solves the heteroskedasticity
problem.

2.1.2 Weighted Least Squares Adjustment

Weighted Least Squares (WLS) makes it possible to incorporate weights associated with each
observations into the fitting function. This solves the heteroskedasticity by downweighting
the squared residuals for observations with larger variances. The size of the weight represents
the precision of the information contained in the associated observation. WLS minimizes the
weighted squared error when fitting the criterion to find estimates for unknowns by allowing
for the introduction of weights, i.e., the appropriate level of influence of each observation
in the estimation. Particularly, the weight for an observation is determined relatively to the
weights of other observations.

Denoting by P an n × n matrix of weights that are applied for n observations of li. For the
remainder we assume that P has the off-diagonal elements equal set to zero and the sum of
diagonal elements is 1. For WLS estimates for unknowns are obtained by minimizing the
weighted sum of squared errors ε:

S =

n∑
i

Pii(li − ϕi(X))2 (2.9)

According to Aitken (1935) ∆̂x is the efficient unbiased estimate if each weight Pii is equal
to the reciprocal of the variance of the measurement:

Pii ∝
1
σ2

i

(2.10)

Minimizing equation (2.9) by setting the partial derivatives equal to zero and solving the
systems in the same way as in the previous subsection, we get:

(AT PA)∆̂x = AT Pl (2.11)
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∆̂x = (AT PA)−1AT Pl. (2.12)

Following this model, the covariance matrix is defined as CP = σ2
0P, and an estimate σ̂0 for

the posterior RMSE of the weights is calculated by:

σ̂0 =

√
εT Pv
n − m

. (2.13)

Finally, the covariance matrix of the unknown parameters is CXX = σ̂2
0

(
AT PA

)−1
.

Advantages/Disadvantges of WLS

As other least squares methods, WLS has advantages and disadvantages. The first and main
advantage of WLS over other methods in 3D reconstruction is its ability to handle regression
when data points are of different quality. In these cases, it provides the most precise estimates
for the unknowns compared to other methods. This is also the main reason why we chose
WLS in our study. Second, like all other least squares methods, WLS estimates are also effi-
cient and unbiased and the method also has the ability to provide different types of statistical
intervals for estimation, prediction, calibration, and optimization which are essential issues
in scene reconstruction.

The biggest disadvantage of the method lies in the the assumption that the weights are known
exactly, because in real applications one must use estimated weights instead. We know that
when estimated weights are used, the optimality that we get for known weights can not
strictly be achieved. Yet, if we can precisely estimate weights, we still can obtain a significant
improvement for the unknown estimates compared to those obtained from general LS when
equally weights are applied to all data points. Thus, a basic problem in applying this method
is to obtain highly precise estimates for weights. Like for other LS methods, the second
disadvantage of WLS is its sensitiveness to outliers. When an outlier is not detected and
dealt with appropriately, it may have a possibly devastating negative impact on the unknown
estimates as WLS can put more influence on an outlier in the estimation. We therefore will
discuss how weights are estimated in the next paragraphs and how we deal with outliers in
Section 2.2.

Estimation of weights

In general, there are three methods to estimates weights: The first method is the direct one
and is based on the assumption that there are replicates in the data. Thus, following equation
(2.10), the most obvious way is to set the weight of each observation equal to the reciprocal of
the sample variance obtained from the set of replicate measurements to which the observation
belongs:

Pi j ∝
1
σ̂2

i

=
1

[
∑ni

j=1(li j−li)2

ni−1 ]
. (2.14)



2.2 Robust Estimation 11

with Pi j the weights indexed by predictor variable levels i and replicate measurements j, σ̂i

the sample standard deviation of the response variable at the ith combination of the predictor
variable values, ni the number of replicate observations, and li the mean of the responses
at the ith combination of the predictor variable values. This method, however, rarely works
well due to usually extremely estimated weights (Nist/Sematech 2010). Thus, the estimated
weights cannot correctly control the level of influence that each observation has on the un-
known estimates. The method can only work given a large number of replicates at each
combination of predictor variables.

The second method is called Better Strategy for Estimating the Weights. Its purpose is to
find a function that relates the standard deviation of the response at each combination to the
predictor variables. If we can write:

σ̂2
i ≈ ζi(X), (2.15)

then we can set weights as:

Pi j =
1

ζi(X)
. (2.16)

This approach usually provides more precise estimates than the first method, because it re-
quires fewer estimated quantities and there is more data for the estimation.

Finally, when there are only few or no replicate measurements for each combination of pre-
dictor variable values, the third approach named Estimating Weights Without Replicates is
applied. With this approach, approximate replicate groups are formed so that we can estimate
weights. To form replicate groups, there are three approaches: (1) Formation of groups based
on plots of the response against the predictor variables; (2) Division of data into equal-sized
groups of observations after sorting by the values of the response variable, and (3) selection
of replicate groups based on the range of predictor variable values. By this approach, esti-
mated weights depend on the way we form replicate groups. However, the resulting fitted
values of the estimation are typically sensitive to even small changes in the definition of
the weights when weights are based on a simple, smooth function. For the experiments in
Chapter 5 we will explain in detail (i) our smooth function used to estimate weights, (ii) the
way that we choose initial values for unknowns, and (iii) the convergence condition for our
regression.

2.2 Robust Estimation

For the common computational problem in computer vision to estimate the parameters of
a model from image data there are some key difficulties among which are: (i) The data
typically contains outliers, i.e., observations that do not belong to the model being fitted. (ii)
Initial guesses for the models must be generated automatically. (iii) Multiple occurrences of
the models can be represented in the data. Because of these difficulties, robust techniques
need to be applied in computer vision to solve these problems.
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Robust estimation is defined as a technique which is insensitive to differences from the ide-
alized assumptions of the algorithm. In computer vision, an algorithm is considered robust
if it can tolerate outliers, i.e., data which does not obey the assumed model. This definition
is similar to the one used in statistics for robustness (Hampel et al. 1986). Robust techniques
have been used in computer vision for at least thirty years. The best known and popular
methods which are used today originated from older methods which tried to solve specific
image understanding or pattern recognition problems. The earliest method that has been
applied to deal with outliers and multiple solutions in parameter estimation problems is the
Hough Transform which received a US Patent in 1962 (Hough 1962). However, today the
most popular regression methods in computer vision are the family of random sample con-
sensus (RANSAC) invented by Fischler and Bolles (1981) to solve the perspective n-point
problem.

In statistics, robust techniques haven been investigated since the early 1960s with the intro-
duction of M-estimators by Huber in 1964 who followed maximum likelihood considera-
tions. Other classes of robust techniques include L-Estimates which are linear combinations
of order statistics and R-Estimates which are based on statistical rank tests (cf. Huber (1996)
for the relevant references). At the beginning, M-estimators were introduced to estimate the
‘location’ or ‘center’ of a distribution, only later they were generalized to regressions. In
1984 another popular family of robust estimators named least median of squares (LMedS)
was proposed by Rousseeuw (1984). These robust techniques in statistics have been applied
in computer vision since the end of the 1980s.

By definition, M-estimators consists of a wide class of estimators, which are obtained by
minimizing sums of functions of the data. Least squares estimators and many maximum-
likelihood estimators belong to the class of M-estimators. As in this thesis our fundamental
technique are the WLS, we will use M-estimators for robust estimation. Therefore, this
section is structured as follow: (i) In the first part we describe M-estimators and explain
how M-estimators help us to solve problems listed above. (ii) We then briefly discuss other
robust techniques like the Hough Transform, RANSAC, and LMedS and compare them with
M-estimators to show why we choose M-estimators.

2.2.1 M-estimators

In this part, we will only focus on the class of M-estimators that have mostly been sug-
gested in computer vision. According to the M-estimators proposed by Huber, the robust
formulation of our objective function in Equation (2.9) is generalized as follows:

[∆̂x] = ∆xargmin
n∑
i

ρ(
1
s

g (li)) (2.17)

with g(li) = li− l̂i = li−A∆̂xi and s the scale parameter depending on σ, the standard deviation
of the unknown. For simplicity we set ei =

g(li)
s .
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In the above model, ρ is called the loss function which has the following properties: (i)
Nonnegative with ρ(0) = 0, (ii) symmetric: ρ(e) = ρ(−e), and (iii) nondecreasing with |e|.
Thus, when ρ(e) = e2, this model corresponds to the least squares objective function in
Equation (2.9). When ρ(e) = |e|, we obtain an L1 estimator.

Given the estimator ρ(e), there are two functions that need to be considered in M-estimates:
The influence function which is defined as ψ(e) =

dρ
de (e) and the weight function: w(e) =

1
e

dρ
de (e), so w(e) =

ψ(e)
e . The influence function describes the sensitivity of the overall esti-

mates (∆x) to data with error e while the weight function provides weights for the iteratively
reweighted least squares method which is used to solve for the unknowns X. We will discuss
this iterative procedure later.

For the M-estimate, the estimated value for ∆x in Equation (2.12) is:

∆̂x = (AT PA)−1AT Pl (2.18)

with P now the n×n diagonal matrix of non-negative weights:

Pii = w(ei) =
1
ei

dρ(ei)
de

≥ 0 with ei =
ĝ(li)

s
i = 1, ....n. (2.19)

It is obvious from Equation (2.19) that for M-estimates one needs to apply an iterative pro-
cedure, because the residuals (̂g(li)) are required to calculate the weights. Given a scale s,
the Iterative Weighted Least Squares for M-estimation proceeds as follows:

1. Choose initial estimates X0 to obtain ∆x0, as least squares estimates.

2. At each iteration t, calculate residuals ε(t−1)
i = g(li)(t−1) = ei · s and the associated

weights P(t−1)
ii = w(ei) from the previous iteration.

3. Solve for updated weighted-least squares estimates:

∆̂x
(t)

= (AT P(t−1)A)−1AT P(t−1)l (2.20)

4. Check the convergence criterion for the estimates. If ‖∆̂x
(t+1)
− ∆̂x

(t)
‖ is less than the

tolerance, we stop.

5. Replace ∆̂x
(t)

with ∆̂x
(t+1)

. Return to Step (ii).

The asymptotic covariance matrix of the unknowns is then calculated as:

CXX =
E(ψ2)

[E(ψ′)]2 (AT A)−1. (2.21)

We use
∑

[ψ(ei)]2 to estimate E(ψ2) and [
∑
ψ′(ei)/n]2 to estimate [E(ψ′)]2. The resulting

estimate for the asymptotic covariance matrix ĈXX is not reliable for small samples.
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Objective functions and different types of M-estimators

There are two functions associated with M-estimators (cf. Fox (Jan 2002)): The loss (ob-
jective) function ρ associated with the corresponding influence function ψ – the derivative
of ρ – and the weight function w. Different objective functions result in different types of
M-estimators. In computer vision, in general three M-estimators are usually considered: (i)
The familiar least squares estimators, (ii) the Huber estimator, and (iii) the Turkey bisquare
(or biweight) estimator. Table 2.1 summarizes the objective and weight functions for these
three estimators.

Method Objective function Weight function

Least squares ρLS (e) = e2 wLS (e) = 1

Huber ρH(e) =

{ 1
2e2 for |e| ≤ k

k |e| − 1
2k2 for |e| > k wH(e) =

{
1 for |e| ≤ k

k/ |e| for |e| > k

Bisquare ρB(e) =

 k2

6

{
1 −

[
1 −

(
e
k

)2
]3
}

for |e| ≤ k

k2/6 for |e| > k
wH(e) =


[
1 −

(
e
k

)2
]2

for |e| ≤ k

0 for |e| > k

Table 2.1: Objective and weight functions for least squares, Huber and bisquare estimators
(Fox Jan 2002).

From Table 2.1 it is clear that both the least squares and the Huber loss function are increasing
functions without any bound as e starts from zero. However the least squares loss function
increases faster than the later. In contrast to the least squares and the Huber estimators,
the bisquare estimator employs a level-off loss function for |e| > k. In terms of the weight
functions, the ordinary least squares assigns equal weights to all observations while weights
for Huber estimator decline when |e| > k. For bisquare, its weights also drop when e departs
from zero and become zero when |e| > k.

For the Huber and bisquare estimator, k is called the tuning constant: A smaller value for k
results in more resistance to outliers but in a trade off for lower efficiency when errors are
normally distributed. To obtain a high efficiency for the normal case, it is recommended
to set k equal to 1.345σ for the Huber and 4.685σ for the bisquare estimator with σ the
standard deviation of the errors (Fox Jan 2002). In Figure 2.1, the objective and weight
functions of these three estimators are plotted with k = 1.345 for Huber and 4.685 for the
bisquare estimator. In computer vision, the bisquare function is the most popular choice.

Considering the objective function of M-estimators in equation (2.17), another factor that
needs to be considered is the scale parameter s. In statistical theory, the scale parameter is
often calculated as the product between σ̂, the robust estimate for the standard deviation of
errors ε, and a tuning constant. However, as the tuning constant k in the Huber and bisquare
estimators is derived from the asymptotic properties of the simplest location estimator which
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Figure 1: Objective, ψ, and weight functions for the least-squares (top), Huber (middle), and bisquare
(bottom) estimators. The tuning constants for these graphs are k = 1.345 for the Huber estimator and
k = 4.685 for the bisquare. (One way to think about this scaling is that the standard deviation of the errors,
σ, is taken as 1.)

Method Objective Function Weight Function

Least-Squares ρ
LS

(e) = e2 wLS (e) = 1

Huber ρ
H
(e) =




1

2
e2 for |e| ≤ k

k|e| − 1

2
k2 for |e| > k

wH (e) =


 1 for |e| ≤ k

k/|e| for |e| > k

Bisquare ρ
B
(e) =




k2

6

{
1−

[
1−

( e

k

)2
]
3
}

for |e| ≤ k

k2/6 for |e| > k

wB (e) =




[
1−

( e

k

)2
]
2

for |e| ≤ k

0 for |e| > k

Table 1: Objective function and weight function for least-squares, Huber, and bisquare estimators.

3

Figure 2.1: Objective (ρ) and weight (w) for least squares (top), Huber (middle) and bisquare
(bottom) estimator. The tuning constant for these graphs are k = 1.345 for the Huber and
k = 4.685 for the bisquare estimator (Fox Jan 2002).

is the mean of the population, its value is rarely meaningful. To avoid the problem of tuning
constant, redescending M-estimators are proposed by Meer (2004).

Redescending M-estimators

Redescending M-estimators avoid the problem of tuning by using the inlier/outlier classifi-
cation threshold as the scale parameter s. The loss function of redescending M-estimators
are bounded:
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ρ(e) =

{
1 − (1 − e2)d for |e| ≤ 1
1 for |e| > 1

where d = 1, 2, 3. They are based on the assumption that they have continuous derivatives
up to (d − 1)-th order. As for the general loss function of M-estimators, also ρ(0) = 0 holds
for other redescending loss function. When d = 3, the redescending M-estimator becomes
the bisquare estimator.

The redescending M-estimates only take into account data points with a distance less than
s. This solves the tuning issue and yields better outlier rejection properties than any M-
estimator with non-redescending loss functions (Martin et al. 1989, Zamar 1989). In ad-
dition, this property means that the redescending M-estimators have a very low breakdown
point and their loss functions can be chosen to redescend smoothly to zero. As a result, they
do not completely ignore moderately large outliers while completely rejecting gross outliers,
thus improving the efficiency. I.e., the redescending M-estimations downweight the influ-
ence of data points with a large error. This makes redescending M-estimators slightly more
efficient than the Huber estimator. Because of these advantages we choose this model in our
study.

Considering equations (2.18) and (2.19) it is obvious that for M-estimators, s plays an es-
sential role in obtaining a better efficiency and less bias compared to the classical estimates
in the presence of outliers. The scale s is a strictly monotonically increasing function of the
standard deviation (σ) of the errors ε. We can estimate σ together with the unknowns at ev-
ery iteration of the M-estimation process. However, according to Meer (2004), this strategy
is less robust than applying a fixed scale value for the main estimation process. The fixed
scale strategy mostly applied in computer vision is the M-estimator with auxiliary scale in
which the scale is either (i) arbitrarily set by the user, or (ii) derived from the data following a
pilot estimation procedure. The most frequently used auxiliary scale is the median absolute
deviation (MAD):

ŝmad = c × imed|̂g(li) − jmed ĝ(l j)|. (2.22)

with c a constant set by the user. If a normal distribution can be assumed for the residuals, c
is to be set equal to 1.4826 to obtain consistent estimates for σ. However, in computer vision
this assumption is not met as the percentage of outliers is usually high. Therefore, each
application needs to have its own way to set the scale parameter to fit its data characteristics.
We will discuss our strategy in setting the scale parameter in Chapter 5.

2.2.2 Other Robust Techniques

In this part, we will briefly describe other robust techniques that help us to solve the outlier
problem and compare them with M-estimators to show that these techniques are indeed all
related to M-estimators with auxiliary scale.
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The Least Median of Squares (LMedS)

According to the LMeds method, the objective function in Equation (2.17) is replaced by the
following function to solve for the unknowns ∆x in our model:[

∆̂x
]

= ∆xargmin imed g(li)2 (2.23)

The LMedS estimator yields the solution with the smallest value for the median of squared
residuals computed from all data points. Thus, it finds in the space of the data the narrowest
band that contains at least half of the observations (see Figure 2.2(a)). It is therefore very
robust to both false matches and outliers due to bad localization. Unlike M-estimators, this
estimator cannot be reduced to a weighted least squares problem. I.e., we cannot write a
straightforward equation for the estimation of the unknowns. Instead, the whole space of
possible estimates that can be generated from the data has to be generated. Due to the often
large spaces, one usually only analyzes a randomly chosen subset of the data.

The scale parameter s does not appear in the objective function of LMedS. Particularly,
instead of setting up a threshold as in the redescending M-estimators, LMedS imposes a
lower bound on the percentage of inliers, namely fifty percent. This elimination of the need
to guess the amount of measurement noise results in a somewhat better robustness.

The condition that at least fifty percent of data points must be inside of the band can be
related to the scale parameter:

n∑
1

ρzo(
1
s

g(li)) =
1
2

(2.24)

with ρzo the zero-one loss function corresponding to d = 0 in the above equation for ρe and s
a function of the residuals s[g(l1), ..., g(ln)]. Defining s = imed|g(li)|, one obtains the LMedS
estimator as:

[∆̂x] = ∆xargmin s[g(li), ..., g(ln)] subject to (2.24). (2.25)

Denoting the minimum of s in Equation (2.25) as ŝ, one gets:

[∆̂x] = ∆xargmin
n∑
1

ρzo(
1
ŝ

g(li)) (2.26)

Thus, the LMedS estimator becomes the M-estimator with auxiliary scale. An important
shortcoming of the LMedS estimator in computer vision is that when the inliers are no longer
the absolute majority in the data, the LMedS fit is incorrect and the residuals used to compute
ŝ are not reliable.

Random Sample Consensus – RANSAC

RANSAC was invented before LMedS. Similar to LMedS estimation, it also follows a pro-
cedure based on subsets. However, contrary to LMedS in which the scale is calculated from
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Figure 2.2: The difference between LMedS and RANSAC. (a) LMedS: finds the location
of the narrowest band which contains half the data. (b) RANSAC: finds the location of the
densest band with width specified by the user (Meer 2004).

a set which is conditioned by fifty percent of inliers (Equation (2.24)), RANSAC uses a scale
which is defined beforehand by the user:

[∆̂x] = ∆xargmin
n∑
1

ρzo(
1
ŝ

g(li)) given s (2.27)

RANSAC is prefered to LMedS in most vision applications as it can handle situations with
much more than fifty percent of outliers in which LMedS will necessarily fail as shown
in Figure 2.2(b). There are two main problems when applying RANSAC and LMedS in
vision applications. First, the use of zero-one loss function in both LMedS and RANSAC
yields very poor local robustness properties. The second issue lies on the general problem of
handling multistructured data, i.e., data with multiple occurrences of an object.

Hough transform

The Hough transform is not only the earliest robust estimation, but also the only method
designed to handle multistructured data. The basic idea is to replace problems in the input
domain of the regression with location problems in the space of parameters. The purpose
is to find possibly imperfect instances of objects of a certain class of shapes by a voting
procedure.

Here, it is only shown how the Hough transform can be linked to M-estimators. For this
purpose, we will focus on the randomized Hough transform (RHT). Under RHT, the feature
space is established by elemental subsets.



2.2 Robust Estimation 19

The traditional RHT quantizes the parameter space into bins, i.e., it is an accumulator. The
bins with the largest number of votes give the parameters of the significant structures in the
input domain. The RHT can be formally written as:

[∆̂x]h = ∆xargmaxh

n∑
1

κzo(sα, sβ1 , ..., sβp−1 ; g(li)) (2.28)

with κzo(u) = 1 − ρzo(u) and sα, sβ1 , ..., sβp−1 the size (scale) of a bin along each parameter
coordinate and h indicating the different local maxima. The RHT defined in equation (2.28)
is a type of redescending M-estimator with auxiliary scale with the criterion maximization
rather than minimization.

Even though the Hough transform is widely used in computer vision especially to detect
planes and cylinders of 3D objects, it has some limitations in application. First, it is only
efficient when a larger number of votes is generated for each object. This requires that the
bins must not be too small. Otherwise, some votes will fall in neighboring bins and thus
reduce the visibility of the main bin. Second, when there are more parameters (e.g., > 3), on
average a low number of votes will fall in a single bin. Finally, the efficiency of the Hough
transform depends on the quality of the input data which in most cases is difficult to control
in computer vision.

To conclude, following the above analysis of the advantages/disadvantages of different esti-
mation techniques together with our purpose of a full reconstruction of the 3D surface and
the texture of a scene, we decided to apply M-estimators with least squares. We will describe
our data characteristic in Chapter 4.





Chapter 3

Former Work on Surface Reconstruction

The main issue of this thesis namely surface reconstruction by means of multiview stereo
matching has been a topic of intensive research over the last few years and a number of po-
tential algorithms has been developed. To show how our algorithm differs from others, we
describe in the first section of this chapter six properties of stereo reconstruction algorithms.
In the next section, we discuss the advantages and disadvantages of recent algorithms in 3D
reconstruction to motivate our algorithm and to explain our algorithm’s properties. In the
third section, we describe the approach of Heipke (1990) on which we have based the devel-
opment of our reconstruction technique, but extended towards fully 3D surfaces. We explain
the strengths and weaknesses of Heipe’s approach and briefly discuss how we overcome the
weaknesses in our algorithm.

3.1 A Multi-view Stereo Taxonomy

In this section, we follow Seitz et al. (2006) to classify current multi-view stereo recon-
struction algorithms according to six main properties: (1) Scene representation, (2) photo-
consistency measurement, (3) visibility model, (4) shape prior, (5) reconstruction algorithm,
and (6) initialization requirements. These six properties will help us to discuss different
stereo algorithms.

3.1.1 Scene Representation

A scene representation is defined here in terms of the geometry of an object or a scene.
Choosing an appropriate representation is very important for scene reconstruction. Partic-
ularly, there are some criteria that a representation should meet (Fua and Leclerc 1995):
First, it should be possible to represent any continuous surface, closed or open and of arbi-
trary genus. Second, the representation should allow to generate a surface from a standard
data set such as a set of points. Third, it should be possible to integrate information from
multiple images.
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A lot of multi-view algorithms use voxels, level-sets, polygon meshes, or depth maps to
present the geometry of a scene. While some algorithms use a single representation, others
employ different representations for various steps in the reconstruction.

Voxels and level-sets (Seitz and Dyer 1997, Faugeras and Keriven 1998) are both based
on a discretization of 3D space, i.e., 3D grid representations. They are different in term of
the definition of the grid function. This function tells whether a grid cell is a valid point of
the scene or not. In the voxel representation, the scene is represented by a discrete function
defined for every grid cell. The function is positive when a grid cell is a valid point of the
scene (colored gray in the left image of Figure 3.1), otherwise it is negative (colored white).

For level-sets, the grid function is based on the distance to the closest surface. The function
imposes a negative value for all grid cells which lie inside the object (indicated by the light
gray colored cells in the right part of Figure 3.1), a positive value for grid cells which are
outside the object (darker colored cells), and zero for the scene points (medium gray colored
cells).

The third representation are polygon meshes, e.g., Fua and Leclerc (1994). Surfaces are
represented as sets of connected planar facets or triangular meshes (see Figure 3.2). Because
polygon meshes are efficient in storage and rendering, they are a popular representation in
multi-view algorithms. They are also very suitable for visibility computations.

Multi-depth map representation has been applied by several methods, among them by
Strecha (2007), Kolmogorov and Zabih (2002), as well as Gargallo and Sturm (2005).
The depth maps are defined as depth values attached to each pixel of the images. This type
of representation avoids resampling the geometry in a 3D domain (see Figure 3.3).

3.1.2 Photo-consistency Measure

To evaluate the visual compatibility of a part of the scene when projected into different
images, one needs to define a measure. The type of measure can be changed and does not
depend on a specific algorithm for scene reconstruction. I.e., one can take a measure from
one strategy and apply it in another strategy. Most of the current reconstruction algorithms
use photo-consistency measures which compare pixel intensities in one image to those in
another image to check how well they correlate. According to Seitz et al. (2006), there
are two main types of photo-consistency measures: Scene space and image space measures.
This classification is related to the scene representation, because it is based on the integration
method.

For the scene space measures, points, but mostly patches or volumes are projected into the
input images and then the similarity (agreement) between those projections is evaluated. Dif-
ferent functions have been applied to measure the agreement. While Seitz and Dyer (1997)
use the variance of the projected pixels in the input images, Faugeras and Keriven (1998)
exploit the sum of squared differences or normalized cross correlation. These measures are
usually integrated over a surface, thus are more suitable for smaller surfaces.
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Figure 3.1: Scene representation by voxels (left) and level-sets (right) (Strecha 2007).

For image space measures, the estimated scene geometry is used to warp the input image and
thus to compute forecasted images eliminating projective distortion. The prediction error,
i.e., the difference between the predicted and measured images, is the image space measure
in Pons et al. (2005). While this is very similar to the scene space measures, the difference
lies in the domain of integration. Unlike scene space measures, image space measures are
integrated over the set of images and thus more weight is attached to scene areas that are
frequently observed.

Lambertian reflection is the common assumption of almost all traditional stereo algorithms.
Under this assumption, there is a constant brightness of conjugate pixels in different images.
The use of cross correlation weakens this assumption, because it allows for linear brightness
and constrast changes and it is robust in the presence of highlights. Currently, there are some
algorithms that relax this assumption. Some methods also consider silhouettes or shadows.

3.1.3 Visibility Model

To evaluate the photo-consistency, algorithms also need to specify the views that need to be
considered, i.e., the visibility. The visibility model is introduced as there may be occlusions
and often only very few scene elements or even none are visible from all cameras. The
visibility model helps to obtain a high-quality reconstructed shape which is close to the
real shape. According to Seitz et al. (2006), there are three different techniques to handle
visibility: (i) Geometric, (ii) quasi-geometric, and (iii) outlier-based methods.

For the geometric approach, the authors try to determine the visibility of scene structures,
i.e., sets of images where they can be seen. The simplest way is to use the current estimate of
the geometry of a surface to predict the visibility for each point on this surface. Faugeras and
Keriven (1998) among others apply this. According to Seitz and Dyer (1997), the visibil-
ity can also be simply computed by setting constraints on the positions of cameras. The
geometric approach includes two step estimations: Geometry and visibility estimation.

The quasi-geometric method differs from the geometric approach by using approximate geo-
metric reasoning instead of the estimated geometry. One popular technique is to limit photo-
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Figure 3.2: Wire-frame representation of a mesh (black lines) connected from predefined 3D
points (black points).

consistency analysis to a group of nearby cameras (Kutulakos and Seitz 1999). This not
only reduces occlusion effects, but also excludes oblique views and improves the calculation
speed. Another popular quasi-geometric technique is to use the visual hull which is a rough
estimate of the surfaces to predict the visibility. Again, this method is iterative with a two
step estimation.
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Figure 3.3: Scene representation by depth map (Strecha 2007) (left) and a 3D point render-
ing of the set of all depth maps (Gargallo and Sturm 2005) (right).

The third method considers occlusions as outliers (Kutulakos and Seitz 1999) and ignores
geometric reasoning. This is useful when points are visible in more images than they are
occluded. Thus, rejection of outliers provides the views where points are visible.

3.1.4 Shape Prior

In an un-textured or weakly textured region, the image data usually convey insufficient in-
formation. Thus, it is very difficult to obtain correct matches across images. Therefore, to
recover the scene geometry in such regions, it is important to use a shape prior imposing a
desired shape characteristic on the reconstructed scenes, biasing it towards a plausible so-
lution. Priors are less important in multi-view stereo where multi-view constraints can be
employed.

There are several different types of shape priors. For techniques that employ a scene space
consistency measure, their priors are minimal surfaces with small overall surface regions.
Such priors normally result in a smoothing particularly for points of high curvature. For
mesh representation algorithms, the minimal surface priors try to shrink triangles or prefer
spheres or planar shapes (Fua and Leclerc 1994).

In contrast, methods that apply voxel representations mostly use maximum surface priors:
Voxels are removed only when they are not photo-consistent (Seitz and Dyer 1997). There-
fore, they produce the largest possible photo-consistent scene reconstruction. Maximum sur-
face priors are helpful for high curvatures or thin structures, because there is no assumption
on the smoothness of the surfaces.

Instead of having a global prior for the whole surface, some methods impose local smooth-
ness priors. E.g., approaches give neighboring image pixels the same or a similar depth by
applying a smoothness term additionally to the image space consistency measure. This type
of prior has the disadvantage that it often has a bias toward fronto-parallel surfaces. However,
this bias can be eliminated by imposing surface based priors (Fua and Leclerc 1994).
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3.1.5 Reconstruction Algorithm

According to Seitz et al. (2006), reconstruction algorithms are grouped into four categories.
Seitz and Dyer (1997) follow the first category in which a cost function on a 3D volume
is computed and then surfaces are extracted from that volume. In this category algorithms
differ in terms of the applied cost function and the way surfaces are extracted.

In the second class of reconstruction algorithms, surfaces are iteratively extracted through
minimizing a cost function. This is employed for all types of representation: Voxels,
level-sets, and polygon meshes. Following the voxel representation, e.g., space carving
(Kutulakos and Seitz 1999) eliminates inconsistent voxels from an initial volume while
other techniques such as Yang et al. (2003) not only remove but also add voxels to minimize
cost functions. Level-set methods (Faugeras and Keriven 1998), on the other hand, try to
minimize their cost function based on a set of partial differential equations on a volume.
They often start from a large initial volume and then shrink inward. When needed, they can
also expand the initial volume to minimize the cost function. Under the mesh representation
(Fua and Leclerc 1994) the scene is described as an evolving mesh, which can move and
deform as a function of internal and external parameters.

The third class consists of methods that employ image space consistency measures to cal-
culate a set of depth maps. In order to obtain a single consistent 3D scene representa-
tion, these techniques impose consistency constraints between depth maps (Kolmogorov and
Zabih 2002), or fuse the set of depth maps into a 3D scene.

For the fourth category of algorithms, first a set of feature points is extracted and matched,
and then a surface is fitted to the reconstructed points.

3.1.6 Initialization Requirements

In general, images and the internal as well as external calibration parameters, i.e., projection
matrices, are the input for a multi-view stereo algorithm. For most algorithms, additional
information is required to initialize the reconstruction or to narrow the geometric extent
of the scene to be recovered. When and which additional information is required depends
on the specific algorithm. Most algorithms require a rough bounding box of the object.
For voxel and level-set representations one needs to define the voxel grid while for mesh
representation, the initial set up of the mesh is required. To reconstruct the visual hull based
on silhouettes, several algorithms require foreground/background information. Depth map
based representations, on the other hand, require information about the depth range, which
can be calculated by projecting the bounding box into the images. For methods that follow
partial differential equations, a set of initial 3D points is required. We will discuss the input
information for our algorithm in Chapter 4.

Of the six properties, the scene representation is the most important, while other properties
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can be changed and do not depend on a specific representation. I.e., choosing an appropriate
representation is the main task. Because of this, we discuss in the next section several current
algorithms which are typical examples of the three representations voxels, level-sets, and
meshes.

3.2 Current Algorithms with Different Scene Representa-
tion

3.2.1 Reconstruction with Voxel Representation

The algorithms of Seitz and Dyer (1997) and Kutulakos and Seitz (1999) both apply a
voxel representation. While Seitz and Dyer (1997) use the color of the voxels in their recon-
struction, Kutulakos and Seitz (1999) apply space carving. In this subsection, we describe
these two strategies including their advantages and disadvantages.

Voxel Coloring

Seitz and Dyer (1997) propose to use voxels in conjunction with their color to reconstruct a
photorealistic scene with the goal that it is indistinguishable from what one can observe from
the same view point. To preserve the photorealistic characteristic, a reconstruction algorithm
needs to meet two criteria: (i) Color, texture, and pixel resolution need to be preserved,
and (ii) it should be possible to integrate numerous and widely-distributed input images.
In terms of these criteria, the method takes into account occlusions to obtain a consistent
reconstruction. This could not be guaranteed by earlier algorithms.

The method avoids the image correspondence problem owing to its discretized scene space
with voxels (points) traversed in a fixed order according to visibility. The 3D surfaces are
defined implicitly as finite sets of voxels and the 3D space is partitioned into a series of voxel
layers which increase with the distance from the camera. All voxels in a layer have the same
volume and each voxel is assigned a unique color (radiance). The algorithm assumes that
both scene and lighting are stationary and surfaces are (approximately) Lambertian. Under
these assumptions, the radiance at each point is isotropic and can be described by a scalar
value (color).

The reconstruction starts with a dense map, which is built by assigning colors to voxels in a
3D volume to achieve consistency with a set of basis images, as shown in Figure 3.4. It is
the input information for calculating voxels belonging to the surface. To obtain a consistent
reconstruction, first the color invariance constraint is enforced according to which voxels are
colored by a unique color obtained from all images where a voxel is visible. The second
key element to solve the correspondence problem is the ordinal visibility constraint which is
a constraint on the configuration of camera viewpoints. It means that occluding voxels are
processed before those they occlude. Thus, the algorithm turns from the determination of
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Figure 3.4: Given a set of basis images and a grid of voxels, voxel coloring aims to assign
color values to voxels in a way that is consistent with all of the images (Seitz and Dyer 1997).

the surface to checking whether a voxel of the surface has an invariant color in all images
in which the voxel can be observed. As a result, the strategy of voxel coloring is to assign
colors to sets of voxels until no voxel with an invariant color is found. Owing to the above
two elements, the strategy is suitable for reconstructing a consistent dense correspondence
map from a set of input images under the presence of occlusions.

On one hand, this method has several advantages: First, occlusions are explicitly modeled
and accounted for. Second, the cameras can be positioned far apart without degradation of
accuracy or runtime. Third, the method can integrate numerous images to yield dense recon-
structions that are accurate over a wide range of target viewpoints. On the other hand, the
method also has some disadvantages: First, a major weakness is the lack of means to im-
pose spatial coherence. This is problematic, because image data are almost always ambigu-
ous. Second, the method requires a precise camera calibration, thus, it is sensitive to high-
frequency regions such as image edges. In addition, to be able to represent high-frequency
image content, one needs a higher voxel sampling rate increasing the runtime. Third, differ-
ent voxel resolutions can lead to a varying reconstruction quality. By increasing the sampling
rate, the reconstruction quality can be improved to the limit given by image quantization and
calibration accuracy at the cost of an increased runtime. Fourth, the assumed Lambertian
reflection model is not well suited to reconstruct practical specular surfaces. Finally, this
method only reconstructs one of the possibly numerous scenes that are consistent with the
input images. I.e., it is sensitive to the aperture problem which occurs in regions of near-
uniform color.

Space Carving

Like Seitz and Dyer (1997), also Kutulakos and Seitz (1999) apply a voxel representation,
but in a different way. Their purpose is again to reconstruct photorealistic shapes from mul-
tiple photographs (n input photographs) taken from known, but arbitrarily-distributed view
points. The method takes into account the complex interactions between occlusion, parallax,
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shading, and view-dependent effects on the appearance of scenes. Specifically, the goal is to
reconstruct from n-views scenes without any constraint on a scene’s shape or the viewpoints
of the input photographs.

The main idea of the method is to make use of the assumption that the scene radiance be-
longs to a general class of radiance functions called locally computable. I.e., the radiance
at any point is assumed to be independent of the radiance at all other points in the scene.
Owing to this, the scenes which can be analyzed can be narrowed to those where shadows,
transparency, and inter-reflection effects can be neglected. Once a local computable radiance
function is known, it can be determined easily whether a specific shape is photo-consistent
with a set of photographs.

By applying the locally computable function, a maximum shape called the photo hull can
be computed from n photographs of an unknown scene. The photo hull contains by defini-
tion the set of all photo-consistent reconstructions and subsumes all other members of this
photo hull. For the photo hull computation, besides the assumption of a locally computable
radiance function, viewpoints of each photograph have to be known in a 3D world reference
frame. The main idea is that by carving space in a well-defined manner, one can compute
the photo hull.

The algorithm has two constraints: The first is the visual hull constraint which requires
that no point of the scene can project to a background pixel, i.e., the scene is restricted to
the visual hull. The visual hull concept comes from Laurentini (1994). It is defined as
the volume of intersection of the cones corresponding to n photographs. The second is the
radiance constraint. It states that a non-transparent and a non-mirror-like surface reflects
light in a coherent manner. According to the visual hull constraint, the visual hull constrains
the shape in the input photographs when no prior information about the scene’s radiance is
available. The visual hull constraint is only useful to separate scene from background pixels.
For the non-background pixels, the second constraint is needed providing a special class of
functions for the scene radiance.

Given an initial volume which contains the scene, the method iteratively removes (carves)
parts (voxels) until the volume converges to the photo hull or until no non-photo consistent
voxel can be found on the carved surface any more. The algorithm also takes into account
visibility updating it for all input cameras. Like Seitz and Dyer (1997), Kutulakos and Seitz
(1999) evaluate voxels in order of visibility: The occluders are visited before the occluded
voxel. The algorithm also considers the multi-view visibility order for cases when the convex
hull constraint is violated by evaluating voxels in the order of increasing distance to the
camera hull.

Because of the updating of the visibility, the method is time-consuming and memory-
intensive. Therefore, multi-sweep space carving is used which ensures that all cameras are
considered. Multi-sweep carving performs six sweeps through the volume, corresponding
to increasing and decreasing directions for three dimensions. To make sure that all cameras
which are visible for a voxel are considered, voxel consistency checks are employed which
combine the voxel visibility information obtained from individual sweeps.
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Space carving has four advantages: First, it can reconstruct all possible shapes of a scene
without requiring any constraints on the geometry, topology, or camera configuration which
is a limitation of the voxel coloring method. Second, the method allows the reconstruction
of non-smooth, free-form shapes from arbitrarily positioned and oriented cameras. Third,
the usage of photo-consistency criteria guarantees faithful image projections and helps to
solve the complex interactions between occlusions and parallax as well as shading effects.
However, the method also has some weaknesses: First, while it is proven to be effective
under low image noise conditions, in reality there are image noise and quantization as well
as calibration errors which can severely affect the photo hull. Second, the method is restricted
to locally computable radiance functions and ignores non-locally computable functions. As
a result, it cannot handle shadows and (inter-)reflections. Third, it has a high runtime and
is complex to implement. Fourth, like voxel coloring, it also doesn’t have a way to impose
spatial coherence.

3.2.2 Reconstruction with Level-set Representation

Faugeras and Keriven (1998) employ the level-set representation to solve the stereo problem
for an arbitrary number of images. Their strategy is based on the variational principle. This
makes it possible to incorporate hypotheses about objects in the scene.

The main idea is that Euler-Lagrange equations are deducted by means of the variational
principle resulting in a set of partial differential equations (PDEs). The PDEs are used to
deform an initial set of surfaces so that they move toward the objects in the scene. The
approach has two main assumptions: First, objects imaged by a binocular stereo system
are modeled as an unknown smooth function z = f (x, y). Second, as in the voxel coloring
technique, perfect Lambertian refection is assumed.

According to Faugeras and Keriven (1998), the reconstruction is solved as follows: (i) Basi-
cally, they tackle the problem of surface reconstruction from multiple images by minimizing
functions that describe the geometry of the scene. (ii) They then compute the Euler-Lagrange
equations of these functions to obtain a set of conditions which lead to PDEs. (iii) Finally,
they solve the PDEs via time evolution by a level-set method.

The function considered in this approach is expressed as a weighted minimal surface evolv-
ing over time and is given by

∫ ∫
w(S (t))ds. The time-evolving surface S (t) is represented at

time t by the zero level-set of an implicit function φ(S (t), t) = 0. The function has a negative
value for every grid cell inside the object (indicated by light gray cells in the top/right image
of Figure 3.1), positive values for outside cells (dark cells), and is zero for grid cells which
are scene points. Faugeras and Keriven (1998) employ a measure of correlation under the
hypothesis, that the scene consists of fronto parallel planes. By considering the orientation
of the tangent plane to the surface of the object they can relax the above constraint.

The main advantages of this approach are that it provides an efficient and robust way for
reconstruction and it can deal with multiple objects. Like the voxel coloring method it also
works in the presence of occlusions. The main limitations are that it is time-consuming
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and difficult to control the topology. In addition, the Lambertian assumption is unrealistic
practice.

Many techniques have applied 3D grids to represent geometry. The voxel and level-set rep-
resentation are popular owing to their simplicity, uniformity, and ability to approximate any
surface using a large number of images which are taken from arbitrary viewpoints. However,
the initial discretization determines their resolution and the precision is limited by the resolu-
tion of the volume grid. The only way to achieve a better resolution is to increase its size. By
this way, the resolution can be adapted to a detailed shape, leading to the best reconstruction.
However, besides the inherent time-complexity this can also lead to problems when dealing
with self-intersections and topological changes.

3.2.3 Reconstruction with Triangulated Meshes

Figure 3.5: A wire-frame representation of the mesh (bold white lines) (Fua and Leclerc
1994).

In this section, two typical methods that apply triangulated meshes are discussed. One of
the most interesting approaches using a triangulated mesh representation for 3D shape re-
construction is (Fua and Leclerc 1994). The surface is created in the form of a triangulated
grid, in which each vertex corresponds to a Cartesian coordinate point (see Figure 3.5). Each
vertex except those at the edges has six neighbors. The strategy combines both image-based
and geometry-based information. The geometry-based information takes into account 3D
points as attractors, 3D linear features, and 2D silhouettes. The image-based information
considers stereo and shape-from-shading cues. Owing to the possibility to make use of dif-
ferent sources of information, the strategy allows to reconstruct complicated surfaces for
which strategies that consider only one source cannot provide a unique solution. The em-
ployed image and geometric information can stem from many images possibly taken from
very different viewpoints allowing to deal with self-occlusion and self-shadowing issues.

The main idea of the approach is to recover at the same time both the shape and the re-
flectance properties of a surface by deforming a generic object-centered 3D representation
of the surface and then minimizing an objective function. Particularly, the objective function
is a weighted sum of the contributions of the image-based and geometry-based information.
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Variables of the objective function are the coordinates of the vertices of the mesh which rep-
resent the surface. The surface is first initially estimated and then optimized by changing the
position of the vertices in the grid. The iteration stops when a local minimum is reached,
i.e., the triangle grid best fits the real surface. At each iteration, the weights in the objective
function are changed according to the current geometry of the surface and the degree of tex-
turing within the area of the triangles. Because the magnitudes of the image and geometry
information are not commensurate, the weights attached to each type of information need to
be normalized.

To minimize the objective function, Fua and Leclerc (1994) add a regularization term and
progressively reduce the influence of this term. The regularization is defined as a quadratic
function of the vertex coordinates. This smoothes the energy landscape when its weight is
large, improves the convergence of the optimization procedure and avoids overfitting and
wrinkling. To speed up the computation and to avoid getting stuck in undesirable local
minima, a coarse to fine scheme is employed using different triangle sizes. The scheme
starts with large triangles and refines them by splitting them into four smaller triangles each.

The energy function which describes the geometry of the surface is calculated in the form
of the curvature from the deviation of each vertex from the neighboring vertices. Thus,
the obtained surface retains its smoothness and the approach can deal better with noise.
Concerning the image information, the energy function employs both stereo and shape from
shading. In each triangle, observations are created by sampling. They have a 3D position and
are projected into each visible image. Each projection creates an image value used to build
the energy function. The latter is calculated as the sum of the variances of the grey values
of the observations. For shape from shading, the energy function minimizes the variation in
albedo across the surface.

The approach has advantages not only over the approaches discussed above in Sections 3.2.1
and 3.2.2, but also over other 3D object-centered approaches. First, it avoids the need to
rely on previously computed 3D data such as the coordinates of points derived from laser
range finders. Second, the mesh representation allows to easily incorporate image-based
and geometry-based sources of information in the reconstruction process. Therefore, all
available information is made use of and helps to recover complicated surfaces. This kind
of reconstruction is difficult with other approaches in which only one source of information
is considered. Additionally, not only the surface of the object is recovered, but also the
reflectance properties. Finally, it allows to select the sources of information to be used and
to change their relative importance.

The approach, however, still has some disadvantages. First, like approaches which employ
3D object-centered representations, it assumes that the range data which is used to initialize
the surfaces can be easily classified into separate groups that define specific objects. As a
result, a separate 3D model can be fitted to each object. Obviously, this is a strong assump-
tion for complex scenes because real scenes often contain several objects with the topology
unknown in advance. Second, the approach requires manual collection of geometric infor-
mation for difficult scenes and thus the process is time-consuming and not suitable for highly
complex topologies. Third, according to Fua and Leclerc (1994), the recovered surface de-
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pends on: (i) How the influence of different terms in the objective function is set, (ii) how
they are relatively weighted, (iii) how the smoothing function is modeled, and (iv) on the
initial guess (convergence).

In the next paragraph, we describe the approach of Fua (1997) which solves the first and
main problem of the approach of Fua and Leclerc (1994).

3.2.4 Reconstruction of Local Surfaces with Particle System

Figure 3.6: Left: A particle is a disk. Right: The distance between two particles is primarily
a function of the distance of the center of gravity of one particle from the tangent plane of
another (Fua 1997).

To solve the first problem in the approach of Fua and Leclerc (1994) namely the classi-
fication of the surface in separate groups, Fua (1997) proposes to replace the triangulated
meshes by a particle system. A particle is defined by Fua (1997) as a small planar disk de-
scribed by the position of its center, the normal vector of the disk, and the radius (see Figure
3.6). The approach employs a metric which helps to effectively cluster local surface patches
into global ones. I.e., the approach tries to recover complex surfaces by modeling them as
sets of local surface elements who interact with one another. The approach thus does not
require a priori knowledge of the surface’s topology. It is assumed that the camera models
are known in advance. To minimize the objective function of the image-based constraint and
the regularization term, the particles are adjusted.

Following this approach, the reconstruction consists of three steps: Initialization, connec-
tion, and refinement. The initialization uses a given disparity map as input and computes 3D
points. The volume covering the 3D points is split into voxels. For each voxel containing
at least one 3D point, an average surface, i.e., particle, is created. The center position of
the particle is derived as the center of the voxel projected on the average surface. In the
connection step, the particles are linked and surfaces are created. The condition for the con-
nection of two particles is that the distance between their centers is smaller than a threshold.
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The result are local surfaces represented by lists of particles. The refinement step adjusts
particles based on their projection into images resulting in ellipses. The objective function
consists of the difference between the gray levels of pixels in different images compared to
the average image. Before optimization outliers are eliminated and only then the positions
and orientations of the particles are refined. Finally, a global surface is created.

Even though the approach can reconstruct surfaces of previously unknown topology, it still
has some weaknesses: First, it is only based on image information and not on geometrical
information when recovering the surfaces. Thus, there is a trade-off between the benefits and
costs when following this approach. Second, the technique applied to cluster particles for
both optimizing the set and rejecting outliers is too simple for complex configurations.

3.2.5 Semiglobal Matching

Hirschmüller (2008) uses an image-based pixelwise representation together with Semi-
global Matching (SGM) to create a very dense reconstruction. The approach applies a Mu-
tual Information (MI)-based matching cost to take care of possibly non-linear radiometric
differences of the input images. The approach consists of five steps of which the last two are
optional. The steps are: (1) Pixelwise matching cost calculation, (2) cost aggregation, (3)
disparity computation, (4) multibaseline matching, and (5) disparity refinement.

For the first step it is assumed that the epipolar geometry is known. It is argued that the
assumption of a constant disparity in the vicinity of an image pixel which is commonly, but
often implicitly made, e.g., by approaches based on cross correlation, does often not hold in
reality. As a result, the approach calculates the matching cost for individual pixels from their
intensity Ibp and the correspondence Imq in the matching image. By applying MI, the match-
ing becomes insensitive to recording and illumination changes making use of the information
in each image and their joint entropy. Matching cost calculation proceeds as follows: First,
the match image Im is warped according to an initial disparity image D. Second, the proba-
bility distribution of corresponding intensities is calculated by counting the number of pixels
of all combinations of intensities, divided by the number of all correspondence. The prob-
ability distribution is calculated only for corresponding intensities to consider occlusions.
Third, Gaussian smoothing is applied to account for noise. Fourth, based on the probability
distribution, entropies of the two images are calculated analogous to the joint entropy. Fifth,
the iteration is started with a random disparity image, matching costs for both images are
calculated, and a new improved disparity image is derived. This new disparity image then
serves as the base for the next iteration.

To deal with noise, cost aggregation is supplemented by a constraint for smoothness. Thus,
the employed energy function E(D) consists of the pixelwise cost and the smoothness con-
straint and the objective is to minimize E(D). To avoid the streaking problem when combin-
ing the 1D optimizations of individual image rows obtained based on dynamic programing
to the 2D disparity map, 1D matching costs in all directions are aggregated. Particularly, the
approach sums the cost of all 1D minimum cost paths Lr(p, d) in all directions r that end
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in pixel p at disparity d to obtain the aggregated cost S (p, d). To obtain a good coverage,
between 8 and 16 directions are used.

The disparity image Db corresponding to the base image Ib is calculated by minimizing the
aggregated cost S (p, d). Quadratic interpolation is applied for subpixel estimation. Simi-
larly, the disparity image Dm for the match image Im can be determined by minimizing the
aggregated cost traversing the epipolar line corresponding to the pixel q of Im. By computing
also Dm the consistency can be checked and thus care of occlusions and false matches can be
taken in the calculations of Db and Dm. Particularly, each disparity of Db is compared to its
corresponding disparity of Dm imposing uniqueness by allowing only one to one mappings.

For multibaseline matching, in the fourth step matching costs between a base image and
several match images are calculated. To account for occlusions, multibaseline matching is
performed pairwise consecutively between the base image and each match image. The con-
sistency check is applied only after pairwise matching to avoid wrong matches at occlusions.
The resulting disparity images are combined taking into account the individual scale. The
scales are linearly proportional to the length of the baseline between the base image and the
match image if all images are projected onto a common plane that has the same distance
to all optical centers. Finally, the disparity values are fused as the weighted means of the
disparities with the scales used as weights. This helps to discard outliers as only disparities
that lie within certain bounds are considered.

Finally, the disparity image is post processed to recover invalid or erroneous values. First,
there may be outliers or small patches deviating severely from the surrounding disparity due
to low texture, reflections, or noise. To remove these patches, the disparity image is seg-
mented allowing neighboring disparities within one group to vary by one pixel. Disparities
of all segments below a certain size are set invalid. Second, in the case of a structured indoor
environment, foreground objects can be in front of a low or untextured background. In this
case, there is no difference in the energy function if a disparity step is placed correctly next
to the foreground object or a bit further away within the untextured background. To account
for this problem, the matching cost is adjusted according to the intensity gradient. However,
only a meaningful result can be obtained if untextured areas can be identified. For the latter,
three assumptions are made, of which the third is rather weak. The approach taken is simi-
lar to others which apply image segmentation and plane fitting to polish an initial disparity.
However, as the approach only modifies untextured areas above a certain size, the disparity
image becomes more accurate and the approach less time consuming. In some cases, the
above steps can introduce errors into the disparity image. These are particularly holes which
need to be filled by interpolation for a dense result. Holes resulting from occlusions and
mismatches must be interpolated differently. While for occlusions the background is extrap-
olated into the occluded regions, for mismatches holes are smoothly interpolated from all
neighboring pixels.

For huge images, memory and time consumption are reduced by dividing the base images
into tiles. The disparities for each tile are first computed separately, and then all tiles are
merged together into the full disparity image before the multibaseline fusion. The tiles are
divided overlappingly, to produce correct results in the cost aggregation step near the tile
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borders. When merging the tiles, a weighted mean of the disparities from all tiles in the
overlapping areas is computed. Weights are determined in terms of the distance between a
pixel and the tile border. I.e., pixels near the tile border are practically ignored while those
further away are blended linearly. The tile size is chosen based on the memory capacity. Be-
sides huge images, fusion is also used when several disparity images are taken from different
viewpoints for a 2.5D reconstruction. In this case, the information of all disparity images
is fused into one consistent representation of the scene by orthographic projection onto a
common plane.

SGM is one of the top-ranked stereo matching algorithms by the Middlebury Stereo Vision
Page owing to it capabilities concerning occlusions, outliers, mismatches, and huge images
(Scharstein and Blasiak 2011). The interpolation method for solving occlusions is advanta-
geous compared to other methods as it is independent of the applied stereo matching method.
In addition, for huge images, the tiling allows to deal with very large images as every tile can
be computed on a different core or computer which saves a lot of time in comparison to other
approaches. However, the approach is limited to 2.5D models at the moment. Moreover,
in order to obtain a precise and dense result, it needs to be determined whether holes in the
disparity image are from occlusions or mismatches. For this, the disparity images for the
base and match image need to be known which both again may contain errors.

3.2.6 Discussion of Current Algorithms

The above discussion about the advantages and disadvantages of recent algorithms shows
that there is no dominant solution. For each algorithm, there are benefits as well as draw-
backs and costs that need to be taken into account. However, the analysis shows that the
triangulated mesh representation seems to have advantages compared to other representa-
tions for complex scenes, because it allows to combine different sources of information for
the reconstruction. Moreover, the usage of a regularization term and the smoothing proce-
dure help to gradually adjust the initially reconstructed surface to the real surface. This does
not hold for the voxel representation methods. Additionally, the triangulated mesh represen-
tation is also more suitable for the objects we aim at and which will be described in the next
section. Therefore, in this thesis we use the triangulated meshes of Fua and Leclerc (1994)
as the basis of our algorithm. Our stereo matching algorithm which will be described in
detail in Chapter 4 uses an image-based measure to evaluate the compatibility of the recon-
struction. Our reconstruction algorithm is based on the minimization of partial differential
equations with a minimal shape prior.

We apply a least squares estimator (cf. Section 2.1). Particularly, we use the technique of
Heipke (1990) which is a successful stereo matching approach using least squares matching
in 2.5D as another basis for our algorithm for full 3D reconstruction. Therefore, in the next
section we briefly discuss (Heipke 1990).
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3.3 2.5D Least Squares Matching

Heipke (1990) uses least squares optimization to adjust the geometry of the object surface in
order to minimize the differences between the brightnesses of the individual images projected
on the surface and their average. It is proven to be successful for 2.5D surface reconstruction.
In the next paragraphs, we summarize Heipke’s technique for 2.5D reconstruction using
stereo.

Heipke (1990) defines the object surface as a 2.5D square grid. Every point is defined by
its 2D coordinates X and Y on the grid and its height Z. The value Z of points inside a grid
mesh is computed by bilinear interpolation from the four Z values of the grid points of the
respective mesh. To deal with weak approximate values in conjunction with rough surfaces,
a coarse to fine scheme is used employing image pyramids. It can be described as follows:
(i) The grid meshes are split recursively into four smaller squares in X- and Y-direction if
the surface is considered to be rough. (ii) A smoothness weighting defined as the inverse
proportion of the difference between the Z value of a grid point and the Z values of the
neighboring grid points is applied to smoothen a rough surface.

The method assumes that camera calibration and orientation are known. Following this
assumption, one can calculate the projection of a grid point into the images, and thus its
brightness and the average brightness for all images. The optimization is based on that the
Z value of an adjusted observation can be bilinearly interpolated from the Z values of the
neighboring grid points. By means of least squares optimization, the Z values of the grid
points are changed so that the difference between the projected intensities is minimized. The
adjusted values z for the improvement of Z, which can be positive or negative, are calculated
by:

z = N−1n, (3.1)

with N = AT PA, the normal equation matrix and n = AT Pl, the absolute vector. The intensity
values of the points projected into the different images are the observations (l vector). While
the rows of the design matrix A represent the observations, i.e., the image grid points which
are projected into different cameras, the columns are for the unknowns, i.e., height grid
points. The design matrix is different from zero only for those four points of the height grid
that make up the mesh where an image point resides.

The values for the design matrix are constructed from the gradient of the intensity in x and y
direction, the derivative of the projection from the 3D point into the image, and the bilinear
transformation for the height of the grid point. It basically gives the differential of intensity
when the height of a grid point is changed. In addition, the weight matrix P is used to deal
with weakly texture areas and image noise.

An advantage of Heipke’s approach is that the Z values of the grid points are calculated
by highly accurate least squares adjustment. Therefore, the reconstructed surface is often
close to the real one. Additionally, also an estimate of the accuracy can be computed. The
second advantage of the approach is that owing to the smoothing by the weight matrix,
it can handle complex surfaces with weak texture or with strong image noise. There are
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problems with this for some of the approaches in Section 3.2. Third, as this approach applies
both mesh representation and least squares, it takes full advantage of both. As a result, it
can integrate different sources of information (image and geometry) in the reconstruction to
obtain a reconstructed surface only minimally different from the real surface. Because of all
these advantages, we apply this technique as a basis for our thesis.

Heipke’s technique effectively works for 2.5D surfaces. So the main purpose of our algo-
rithm is to extend it to full 3D reconstruction. Additionally, Heipke’s technique handles
occlusions and non Lambertion reflections only partly. Thus, the second purpose of our
novel algorithm is to take these issues into account by exploiting the advantages of mesh
representation and by using robust estimation.



Chapter 4

A Novel 3D Least Squares Matching
Approach

In this chapter, we present our method for the reconstruction of fully 3D surfaces which was
first introduced in a preliminary version in Ton and Mayer (2007). It focuses on the matching
algorithm and uses given initial sparse highly precise 3D points extracted from images during
pose-estimation as input for our method. An important contribution of our algorithm is our
method for positioning additional unknown points on top of the given sparse 3D points.

This chapter includes six sections corresponding to different steps of our algorithm. In the
first section, we describe foundations of our algorithm including the camera model, the
model for image formation including sub-pixel interpolation, and finally pose estimation
generating highly precise though sparse initial 3D points for the reconstruction. The second
section presents the basic idea and the properties of our algorithm. We then discuss in detail
how we derive the partial derivatives for the design matrix in the third section. In the fourth
section, we describe the way we build triangulation meshes from given sparse 3D points.
Based on these initial meshes, we position new unknown 3D points (cf. fifth section). In the
last section, we show how we produce image observations from the obtained 3D unknown
points. Also the robust least squares adjustment applied to obtain a precise and accurate
reconstruction are also discussed in this section.

4.1 Foundations of the Proposed Algorithm

4.1.1 Camera Model

A basic task for 3D reconstruction is to transform an object in 3D space into the 2D image
space of an observing camera. This implies that we also need to determine the parameters
for the transformation from the 3D world to the 2D image. Parameters that need to be
determined are: (i) Extrinsic or external parameters comprising the orientation (rotation) and
the location (translation) of the camera; (ii) intrinsic or internal parameters which describe
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characteristics of the camera like the coordinates of the principal point (the projection of the
image center to the image plane), the principal distance (camera constant), and the skew and
scales of the two image axes.

Following the common practice in the field, we use a pinhole camera model. The transfer
from the 3D world to a 2D image by means of a pinhole camera is a projection process in
which one dimension is lost (Hartley and Zisserman 2003). We denote the 3D point as
Li = (X,Y,Z)T . C is the center of the camera or the focal point and the distance from the
focal point C to the image is the principal distance often also termed the focal length f
even though this is not strictly correct from the point of view of optics. In Figures 4.1 and
4.2 we visualize the perspective projection model of a pinhole camera and the Euclidean
transformation between the world and the camera coordinate system.

C
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L2L3
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1

Figure 4.1: Perspective projection: Image points li are the intersections of the image plane
with straight lines from the 3D points Li through the pinhole camera center C (Hartley and
Zisserman 2003).

The projection can then be mathematically modeled by the central projection in which the
2D point li = (u, v)T is the intersection of the straight line connecting the 3D point Li with
the the camera center C with the image plane. Thus, the three points: Li, li and C are
collinear. The projection of (homogeneous) 3D points Li to image points li may be expressed
in terms of a linear mapping of homogeneous coordinates (see Figure 4.2). To transform 3D
Euclidean points into homogeneous coordinates, it suffices to add a 1 as the last element of
each coordinate. Thus, we can express the 3D points by L = (X,Y,Z, 1)T , the 2D image
points by l = (u, v, 1)T , and the homogeneous coordinate for the pinhole camera at the origin
as (0, 0, 0, 1)T . The general relationship between a 3D point L and its image l in the image
plane can be expressed by:

λl = KRT [I| − T ]︸        ︷︷        ︸
P

L = PL (4.1)

with λ a scale factor proportional to the depth Z. K is the 3×3 camera intrinsic (calibration)
matrix (see Figure 4.3) describing the characteristics of the camera:
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K =


γ f s f u0

0 f v0

0 0 1

 (4.2)

where (u0, v0) are the coordinates of the principal point, f is the focal length, γ the aspect
ratio which captures non-quadratic pixels, and s is the skew of the two coordinate axes used
to model non-rectangular pixels. According to this definition, there are 5 parameters in the
intrinsic matrix. For most practical cameras s ≈ 0, γ ≈ 1, and the principal point is close to
the center of the image.
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Figure 4.2: Euclidean transformation between the world and the camera coordinate frame.

The 3×4 P matrix in Equation (4.1), is called the (camera) projection matrix: P = KRT [I|−T ].
R is a 3×3 orthogonal matrix, i.e., a rotation matrix, which represents the orientation of the
camera coordinate frame in the Euclidean object coordinate system. Finally, T is a 1×3
Euclidean vector describing the translation (or location) of the camera coordinate frame (see
Figure 4.2). The three parameters in the rotation matrix P and the three parameters in the
translation vector T compose the six extrinsic parameters of the camera. In total, we need to
calculate eleven parameters in the pose estimation step (five intrinsic and six extrinsic).

γ

1 arctan(1/s)

Figure 4.3: The intrinsic parameters γ and s according to (Meer 2004).

4.1.2 Image Formation and Sub-pixel Interpolation

An important part of our approach consists in the derivation of brightness values from dig-
ital images given 3D points. A digital image consists of a two-dimensional matrix G with
elements gi j called pixels (cf. Figure 4.4).
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Figure 4.4: 2D pixels gi j of a digital image.

The value of a pixel depends on the type of sensor, sensor or camera parameters (sensi-
tivity to electromagnetic radiation, etc.), atmospheric parameters, object surface parameters
(reflection), and illumination parameters (number, direction. and brightness of illumination
sources).

For deriving brightness values for arbitrary image positions, a crucial step is image interpo-
lation. It is necessary when the position is not exactly the center of a pixel, i.e., no integer
value, but at a sub-pixel position. Usually, the value is derived by an interpolation function.

Several interpolation functions have been investigated for resampling images such as higher-
order polynomial functions and bi-linear interpolation. In this thesis, we apply the bi-linear
interpolation function as it has a low computational complexity, acceptable aliasing effects,
and doesn’t smooth the image function too strongly. We thus assume that the brightness
function varies bi-linearly in a local neighborhood.
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Figure 4.5: Bilinear interpolation.

Bi-linear interpolation (see Figure 4.5) determines the value at a sub-pixel position based on
a weighted average of the four pixels in its 2×2 neighborhood. The new image pixel value is
calculated as follows:

g = (1 − a)(1 − b)g(l,k) + a(1 − b)g(l+1,k) + (1 − a)bg(l,k+1) + abg(l+1,k+1) (4.3)

with a, b the fractional parts of the neighborhood (see Figure 4.5).
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4.1.3 Pose Estimation and 3D Point Reconstruction

Our dense 3D reconstruction is based on given sparse, but highly precise and reliable points
obtained by applying an automatic orientation procedure. Particularly, we apply the approach
of Bartelsen and Mayer (2010) which assumes that all images are taken knowing at least
approximately their calibration (intrinsic) parameters. According to Bartelsen and Mayer
(2010), 3D points can be reconstructed by a procedure with five steps: (1) Point extraction
and matching, (2) robust 3D reconstruction for pairs and triplets based on essential matrix
and (calibrated) trifocal tensor estimation, (3) robust bundle adjustment, (4) linking of image
triplets into a sequence, and finally (5) refinement by hierarchical processing.

Bartelsen and Mayer (2010) follow Mikhail et al. (2001) by focusing on least squares ad-
justment, particularly robust bundle adjustment, and least squares matching (LSM). With this
they obtain highly precise conjugate points. In addition, the combination of LSM and bundle
adjustment results in reliable, precise, and accurate 3D points. Because of this, we use their
sparse 3D points as input for our dense reconstruction. In the remainder of this section, we
will explain each step more in detail.

Point Extraction and Matching

The objective of the first step is to obtain precise (relative) coordinates for conjugate points.
This includes extracting interest points in each image, searching for conjugate points, and
determining the exact subpixel matching position. The method can deal with images rotated
around the optical axis of the camera by making use of orientation information derived by
point extraction. The first stage is to extract Förstner points (Förstner and Gülch 1987). For
a homogeneous point distribution, regional non-maximum suppression is used to remove
weak points if their position is close (two to five pixels).

In the second stage, points are matched using LSM resulting in highly precise conjugate
points. For large baseline scenarios, the full image size is used as search space. To reduce
the number of candidates, unlikely candidates for conjugate points are sorted out by means
of normalized cross correlation. Most of the correct points are retained by employing a
relatively low threshold. By using all three color layers, the sensitivity of the test is improved.
For the least squares matching, six affine geometric parameters are used together with two
radiometric parameters in the form of bias and contrast. For two images, the second is
matched to the first. For more than two images, the average image in the geometry of the
reference image is employed for matching. For usual image sizes, image pyramids are used
to reduce the complexity of the matching.

At the end of this step, highly precise image coordinates for the conjugate points are avail-
able. The next step aims at robust 3D reconstruction.

Robust 3D Reconstruction

Due to problems such as image noise, similar or repeating structures in the image, and occlu-
sions leading to less than 20% correct matches in some of the more difficult scenes, a robust
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Even though RANSAC together with other measures more or less guarantees,
that the solution is valid, there is still a larger number of blunders in the data. To
get rid of them, we eliminate observations with the largest residuals as long they
are n times larger than the average standard deviation of the observations σ0 =
vTv/redundancy, with v the residuals and all observations weighted equally. We
have found that a factor n of 5 to 8 times σ0 leads to reasonable results. This is
in accordance with values derived from robust statistics.

The approach was implemented in C++ based on the commercial image
processing package HALCON and the public domain linear algebra package LA-
PACK interfaced by the template numerical toolkit (TNT). The left three images
of Figure 1 show the orientation of a triplet, which we have named Cathedral.
The dataset is given in [4] as an example for a wider baseline triplet which can-
not be oriented by the usual image sequence programs. We are not only able
to orient this triplet, but as we use the full image as initial search space, it is
possible to do this with one and the same parameter set for a wider range of
imagery.

Fig. 1. Left: Wide baseline triplet Cathedral from [4] with matched points and epipolar
lines from first to second and third image after calibration. σ0 was 0.051 pixels before
and 0.51 pixels after calibration; Right: First image of triplet Desk.

3 Robust Calibration

We have implemented standard procedures for auto-calibration, particularly,
based on the absolute dual quadric, also including the constraint, that the skew
is zero, and stratified auto-calibration [5]. Unfortunately, we found our imple-
mentation to be unstable for image triplets. Therefore, we have developed a
simple, but robust means for the calibration of image triplets.

Start point is the projective, robustly optimized image orientation. From the
trifocal tensor the fundamental matrix F12 from image one to two can be com-
puted and from it the essential matrix and the calibrated projection matrix for
the second camera. After defining the metric coordinate frame by this means,
three-dimensional (3D) Euclidean points are calculated and the third projection
matrix is determined linearly from the 3D points via the direct linear transform.

Figure 4.6: Wide baseline triplet with conjugate matched points and epipolar lines.

approach is necessary. According to Bartelsen and Mayer (2010), triplets are suggested as
basic building block for this purpose. For triplets, one can use matching points in two images
and project them into the third image. Thus, one can check if the matching points comply
with the projected points. This helps to sort out wrong matches and obtain highly reliable
matches through the intersection of three image rays. Even though triplets are employed as
basic, the reconstruction starts with image pairs to narrow the search space via epipolar lines
and thus avoids the bad combinatorics for three images.

To derive the (calibrated) relations between pairs or triples, the essential matrix E and the
(calibrated) trifocal tensor T is employed. For a robust estimation, RANSAC (cf. Section
2.2.2) is used. Triplets are reconstructed sequentially and are linked by projecting points of
the preceding triplet via the newly calculated T into the new last image. Thus, new points
which have not been seen are added to the calculated 3D points.

RANSAC provides reliable results. However, it can be computationally demanding espe-
cially when the number of outliers is high and also its precision is often limited. To al-
leviate these problems, Bartelsen and Mayer (2010) suggest to combine RANSAC with
robust bundle adjustment in a way similar to the Expectation Maximization (EM) algorithm
(Dempster et al. 1977) .

Robust Bundle Adjustment

Bundle adjustment is a core asset of the approach of Bartelsen and Mayer (2010) for ex-
tracting reliable and precise 3D points from images while reducing the runtime compared to
the standard RANSAC algorithm. The idea is to adjust all promising reconstructions. Owing
to the enforcement of highly precise results for a large number of points, one can be rather
certain that the solution is not random.

When combining RANSAC with robust bundle adjustment, first E and T are estimated by
RANSAC for junks of a couple of hundred iterations. On the computed optimum a robust
bundle adjustment is run. By iterating this several times, several outcomes are obtained from
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which the best solution is retained. For a more stable solution in the presence of outliers,
outliers are reweighted and then possibly eliminated in the bundle adjustment.

Hierarchical Processing via Pyramids

When the image size is large, image pyramids are employed. As the percentage or direction
of overlap between images is not known, the hierarchical scheme helps to guarantee a high
probability for a correct result under mild, very realistic assumptions. Bartelsen and Mayer
(2010) suggest to compute image pyramids with a reduction factor of 2. They found that a
stable and precise solution can be obtained on higher levels of the pyramid (e.g., with 120
pixels in one dimension). To make use of the information from the original resolution, the
points are tracked via LSM down to the original solution, but only after the sequence has
been completely oriented the higher levels. By this means, an efficient solution even for
large images of many Mega pixels is obtained. After the tracking, a final bundle adjustment
is applied considering also radial distortion.

The final result of the approach of Bartelsen and Mayer (2010) are sparse 3D points which
are the basis of our algorithm for dense 3D reconstruction. In the next sections, we describe
the proposed algorithm in detail.

4.2 Basic Ideas and Outline of the Algorithm

The purpose of our approach is to reconstruct a dense fully 3D surface via a formulation in
terms of least squares adjustment. To be able to work in full 3D, we triangulate the surface
and move the vertices of the triangulation along a path independent from the definition of
the coordinate system, namely the direction of the normals at the vertices of the triangulated
surface.

In this thesis, the direction of the normal at the vertex Nu for the unknown u is estimated as
the weighted average of the normal vectors of the planes (triangles) attached to the vertex.
The weight bi applied for each triangle is the number of observations obtained in the triangle
which will be discussed in Section 4.5.1. E.g., for Figure 4.7 this means:

Nu =
b1N1 + b2N2 + b3N3 + b4N4 + b5N5∑5

i=1 bi
.

It is then normalized by Nnorm
u = Nu

‖Nu‖
.

The basic ideas of our algorithm can be summarized as follows:

• The reconstruction is based on a triangulated 3D surface.

• Points inside the 3D triangles are projected in the images resulting in the observations.
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Figure 4.7: Relation of normal Nu at vertex 0 to normals of neighboring planes and unknown
size of movement nu.

• The vertices of the triangles move along their respective normals with the goal to
obtain a summed squared gray value difference as small as possible. The differences
are calculated between the observations and their average value supposed to be the
reflectance value of the surface in a least squares sense. The sizes of movement are
determined by the unknowns nu. (cf. Figure 4.7).

• Additionally to the image observations representing the data term, the surface is regu-
larized by observations enforcing its local smoothness in terms of curvature.

• To deal with outliers, e.g., in the form of local occlusions, and non-Lambertian reflec-
tion, robust estimation is used.

• To expand the range of convergence, we employ a hierarchy of resolutions for the
triangulation linked to the adequate level of image pyramids. We apply Gaussian filters
as smoothing kernels when generating image pyramids.

Our reconstruction procedure is as follows (cf. the flowchart of our algorithm in Figure 4.8):
After the first step of constructing a mesh of triangles from given sparse 3D points, the
algorithm solves the reconstruction problem with an iterative procedure starting at the first
and ending at the last pyramid level.

For each pyramid level, the algorithm consists of two steps: First, unknowns are built split-
ting the triangles to adapt the density of triangulation to the different resolution levels. Sec-
ond, we extract the triangles of the split mesh which are visible by each camera and then
run least squares to adjust the positions of the unknowns by minimizing the variance of the
difference in intensity. This step is done from the first camera until the last camera on each
pyramid level. This is possible owing to the fact that we employ given sparse 3D points (cf.
the preceding section) for which it is also known in which image they have been measured.
We do not run least squares adjustment for the whole mesh. We instead apply the estima-
tion for each part of the mesh that can be seen by each camera from the first until the last
camera separately. We particularly start by running least squares adjustment for all meshes
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Figure 4.8: Flowchart of the reconstruction procedure.

which can be seen from the first camera. For the second and further cameras, least squares
adjustment is run only for those meshes which can be seen from them and have not been
adjusted before. With this, we limit the runtime to an acceptable size. Thus, global estima-
tion with a large runtime is replaced by only regionally consistent estimations with a lower
runtime. At the end of this step, we obtain additional precise and accurate 3D points. For
a reliable estimation, we account for outliers by using robust estimation. The result of the
whole procedure is a densely reconstructed 3D surface from all defined 3D points.

The next sections are organized as follows: First, we present the content of our design matrix
for the least squares estimation which is constructed in the course of the algorithm. Second,
we describe how we create triangulation meshes from the given 3D points, i.e., the first
step in the flow chart. Third, in Section 4.5 it is discussed how unknowns are positioned.
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The next step in the flow chart is the estimation with robust least squares adjustment which
is presented in Section 4.6. In this section, we also present how we factorize the normal
equation matrix and how we weight down outliers.

4.3 Partial Derivatives for the Design Matrix

The image observations are devised to describe how well the intensities in all images showing
a point on the 3D surface fit to an average intensity computed from all these images by taking
the difference between the individual intensities and the average. To minimize the squared
summed of these observations, the vertices of a triangulation are moved along their local
normals (cf. Figure 4.9).
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Figure 4.9: Basic principle of least squares 3D reconstruction from multiple images. The
intensity at the 3D point P is computed as the (weighted) average G of the intensities in the
individual images. The goal is to minimize the squared differences of the observations, i.e,
the difference of the intensities in the individual image gi to G by moving the vertices Vu of
the triangulation along their normals (unknown size of movement nu).

For this non-linear problem the design matrix consists of the partial derivatives of the inten-
sity value Ii of observation i in an image according to the movement nu of an unknown u.
They can first be factorized according to the x- and y- direction of the image:

∂Ii

∂nu
=

∂I
∂x

∂x
∂nu

+
∂I
∂y

∂y
∂nu

with
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• ∂I
∂x ,

∂I
∂y the image gradients in x and y direction which can, e.g., be estimated by the

Sobel operator.

The derivatives of the image coordinate concerning the unknowns can further be factorized
according to the movements in the X-, Y-, and Z- direction of the 3D point corresponding to
the observation i:

∂Ii

∂nu
=

∂I
∂x

(
∂x
∂X

∂X
∂nu

+
∂x
∂Y

∂Y
∂nu

+
∂x
∂Z

∂Z
∂nu

)
+
∂I
∂y

(
∂y
∂X

∂X
∂nu

+
∂y
∂Y

∂Y
∂nu

+
∂y
∂Z

∂Z
∂nu

)
with

• ∂x|∂y
∂X|∂Y |∂Z describing how the position in the x- or y-direction in the image is affected by
changing the 3D point coordinates X, Y , or Z, and

• ∂X|∂Y |∂Z
∂nu

the derivatives of the 3D point coordinates X, Y , and Z according to the un-
known. The vertices move in the direction of Nu. The derivatives in X-, Y- and Z-
direction depend on the distance of the 3D point from the line connecting the other
two vertices of the triangle where the point is lying in.

We model the projection of (homogeneous) 3D points L to image points l by λl’ = PL (cf.
Equation (4.1)). As Bartelsen and Mayer (2010) we additionally employ a quadratic and a
quartic term to model the radial distortion:

ds = k2(r2 − r2
0) + k4(r4 − r4

0), (4.4)

with r the distance to the principal point and r0 the distance where ds equals zero.

As the basic way of operation of Bartelsen and Mayer (2010) is using only images, all
calculations are conducted in a relative coordinate system. The projection center of the first
camera is used as its origin (see Figure 4.10). The rotation of the first camera is fixed and
supposed to point to the negative z-direction. Finally, the distance of the first and the second
camera is set to one.

4.4 Triangulation of Given Sparse 3D Points

As we use given sparse accurate 3D points (cf. Section 4.1), the first step for a full 3D
approach is the linking of the points to form triangles. This step is not trivial as it is at least
difficult, often even impossible to link points in 3D just based on proximity. E.g., consider
a thin surface, where points on both sides of the surface should not be linked, but might be
much closer than points on the same side of the surface. To avoid this problem, we split
the set of images into overlapping triplets. For them we assume that the topology of the 3D
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Figure 4.10: The position and orientation of the first camera C0 supposed to define the origin
and to point in the negative Z-direction together with the distance from C0 to C1 (scale)
which is set to 1 are used to define the coordinate system.

points can be modeled in 2D in the images. We therefore can triangulate the points for the
triplets in one of the images. To obtain compact triangles, we employ Delaunay triangulation.
This reduces problems with elongated thin triangles.

We first project via equation (4.1) and the known camera parameters the given 3D points
into the central image of the triplet. There they are triangulated. Triangulations for different
triplets are manually stitched together which leads to full 3D triangulations. The following
steps work on this basic global triangulation in as many images as available. We consider
the given 3D points as control points and denote the obtained mesh as M.

Second, based on the input information from Section 4.1 about which points have been
observed by which camera, we decide which part of mesh M, i.e., which triangles, are related
to the first camera C0, the second camera and so on until the last camera. This is the basis for
our procedure which cycles through the parts of the mesh seen by each camera. We denote
the part of mesh M that can be seen by camera C0 as mesh M0 consisting of q triangles (cf.
Figure 4.11(a)).

Because there are not many given sparse 3D points, the surface cannot be precisely recon-
structed based only on them. Thus, we need to position additional points, i.e., the unknowns.
Particularly, we split the observed triangles into smaller ones to account for the possibly big
differences of texture and thus intensity of the observations in a triangle. This is discussed in
the next section.
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Figure 4.11: Part of the triangulation mesh that can be seen by the first camera C0 marked
by numbers 0 to 5 (a). The first level of generated observations are the points a, b, and c (a
to c) and the second level are the points d, e and f (d).

4.5 Creation of Unknowns and Coarse-To-Fine Strategy

To account for big differences in texture and thus intensity, we split triangles by additional
points (unknowns). However, this is usefully only if a triangle is in a sufficiently textured
area, i.e., not an area of homogeneous intensity. For homogeneous areas, we do not need to
split the triangle, because the image information is too weak. To determine the positions for
unknowns, we first construct internal 3D points in each triangle (cf. Section 4.5.1). Based
on these internal points we select which triangles are to be split by considering the average
absolute deviation of the intensity values in each triangle in the mesh. This deviation is the
sum of the average absolute differences of the grey value between the projected points in
the images and their average value which is assumed to be the intensity value at the surface
(cf. Section 4.5.2). Finally, for each selected triangle, we decide about the position of the
unknowns. This includes the stages detailed in the following sections and is done for all
triangles in the whole mesh M of each pyramid level.
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4.5.1 Construction of Internal Points in Each Triangle

The construction of internal points is done consecutively for each triangle in the mesh from
the first to the last triangle. To construct the internal points in each triangle, we first determine
which camera is the main camera Cm,T1 of the triangle. From the input information we know
which set of cameras has been used to determine the specific vertices of the triangle. For
example, the three vertices of the first triangle T1 in the mesh M (cf. Figure 4.12) have been
seen by the four cameras C0, C1, C2, and C3. We define the set of k camera positions that
see the triangle as C = C0 ∩ C1 ∩ C2 ∩ C3. The main camera of a triangle within these k
cameras is defined as the camera in which the angle between the direction from the center
of the triangle to the projection center of the camera and the normal vector of the triangle is
smallest (see Figure 4.12). The normal vector of the triangle is the vector perpendicular to
the plane on which the triangle resides.

3
0

C C
1

C

2

C

N

Figure 4.12: Determination of the main camera of a triangle (yellow edges). The triangle
with normal vector N has been determined from four cameras (C0, C1,.., C3). Camera C1 is
the main camera of this triangle because the angle between N and the line connecting the
projection center of the camera and the triangle center is smallest.

Projecting the 3D triangle T1 to its main camera Cm,T1 via Equation (4.1), we obtain a 2D
triangle (triangle 021 in Figure 4.11). Observations which are the projected points of the
internal points to the camera are generated by splitting the sides of the projected triangle
at the center if the length of a side is beyond a given threshold which is set to 1.4 pixels
(the length of the diagonal of a right angle triangle with a side length of 1 pixel for the
other two sides). The 3D positions of the generated observations, i.e., the 3D internal points,
are obtained by linear interpolation. This leads to the first level of observations (points a,
b, and c) in Figure 4.11(a to c). If the length of the sides should still be above the given
threshold, i.e., the triangle is rather big, we split the triangle again and obtain the second
level of observations (points d, e, and f) in Figure 4.11(d). This is done recursively until the
lengths of all sides are below the threshold. After this step, we have a number of observations
in each triangle. We denote the 3D internal points obtained in triangle T1 after this step as L1
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to LnT1
(excluding the three vertices of the triangle).

4.5.2 Selection of Triangles For Unknowns

The decision on which triangles should be selected as unknowns is based on the average
absolute differences in intensity values (called the average deviation) of the internal points
of the triangles. When the average deviation is small, the intensity values are quite homo-
geneous in the triangle and thus it is not useful to position additional points in this triangle.
Therefore, our rule is that only the α % of the triangles in mesh M with the highest average
deviation are considered for the insertion of unknowns. How many percent of triangles are
selected depends on the characteristic of the texture of the mesh. We will explain how we set
this parameter in Chapter 5. In the next paragraph, we describe how we calculate the average
deviation.

As the lighting might vary between images, the camera might use a different gain. Also
surfaces might have a non-Lambertian bidirectional reflection distribution function (BRDF).
Even though it is difficult or even impossible to account for all these issues, we found empir-
ically, that using a bias parameter per image is sufficient for many scenes.

To determine the bias parameter for each image, we calculate the intensity deviation for each
observation in the mesh. Denote the number of cameras that can see the whole triangulated
mesh M as K and the number of camera images that can extract triangle T1 as k. As there are
k cameras that see triangle T1, the projection of each 3D internal point Li on the k cameras’
images via Equation (4.1) provides us with a vector of k intensity values Ii, j = g(x, y) for
each projected point (observation) li, j with j = 1 to k. For g, we use the bilinear interpolation
function (cf. equation (4.3) in Section 4.1.1). Denote the bias parameter for each image j that
can see the global mesh as β j. The mean intensity value for an internal point Li in triangle

T1 is Ii,M =
k∑

j=1
Ii, j/k. Denote by εi, j the deviation of an intensity value Ii, j from its mean Ii,M.

Thus, for each image we can determine the median value of all εi, j with i = 1 to N j which
is the total number of 3D internal points in the mesh that can be seen by camera j. Denote
these K median values for K cameras that can see mesh M as Med0, Med1 ... MedK−1. The
bias parameter of an image is then defined as follows:

β j =


0 for j=0,

Med j − Med0 for j , 0.

After the bias parameter is defined for each image, we recalculate the mean intensity value
for an internal point Li taking into account the bias parameters as follows:

Ii,M =

k∑
j=1

(Ii, j − β j)

k
(4.5)
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Considering the bias parameter, the deviation of an intensity value is then calculated as εi, j =

Ii, j − β j − Ii,M. The average absolute deviation of intensity values of internal points Li in
triangle T1 from k cameras becomes then:

S i =

k∑
j=1
|εi, j|

k
. (4.6)

The average absolute deviation of nT1 internal points in triangle T1 which measures the ho-
mogeneity of the intensity in a triangle is finally:

S T1 =

nT1∑
i=1

S i

nT1

. (4.7)

We calculate it for all triangles in mesh M to obtain S T1 , S T2 ,.., S TQ with Q the number of
triangles in the whole mesh. We then sort the values. From the descending list, we select the
top α% triangles with the highest average deviation for the insertion of the unknowns. We
position unknowns starting with the triangle that has the highest average deviation. In the
next section, we describe how unknowns are positioned in the selected triangles.

4.5.3 Positioning of Unknowns in the Selected Triangles

The purpose of inserting unknowns in triangles with a high average deviation is to split these
triangles to obtain lower deviations in the split triangles by adjusting the new unknowns.
Thus, they create meshes which reflect the surface more precisely.

To define unknowns in the selected triangles, we split the sides of the triangle at the center
of each side in the same way we generate internal points (cf. Section 4.5.1). However, there
is an important difference: How many sides and which sides are split depends on the shape
and the size of each triangle. We classify triangles into four types: (i) Triangles with all sides
less than (empirically determined) 14 pixels, (ii) triangles with two sides less than 14 pixels,
(iii) triangles with at least two sides longer than 14 pixels and the angle between these two
sides less than a threshold, and (iv) triangles which do not belong to the first three types. We
will describe how the threshold for the angle is set in Chapter 5.

We do not split triangles belonging to the first type because such triangles are small enough.
For the second type, we split the triangle at the center of its longest side, i.e., only one
unknown is positioned for this type of triangle and thus we obtain two new triangles (see
Figure 4.13(a)). For the third type of triangle, two unknowns are inserted at the center of the
two longest sides of the triangle which leads to three triangles after the split (Figure 4.13(b)).
For the last category, we split the triangle at the centers of all three sides resulting in four new
triangles. However, there are two ways of splitting this triangle into four triangles depending
on which distance is the shortest (Figure 4.13(c), (d)).
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For the newly created 3D points and triangles we apply the previous step to calculate the
average deviation of intensity values. Based on these average deviations, we insert the new
triangles into the descending list to check whether the new triangles still need to be split.
A completed split triangle is presented in Figure 4.14. In this figure, the red points are
unknowns, the blue points are internal points and the brown points are given (control) points.
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Figure 4.13: Generation of unknowns in a selected triangle. For a triangle which has only
one side longer than 14 pixels, one unknown is inserted at the center of its longest side (a).
For a triangle with at least two sides longer than 14 pixels and the angle between these two
sides smaller than a threshold, two unknowns at the center of the first and the second longest
sides are generated (b). For triangles which do not belong to the former three types, three
unknowns at the center of each side are inserted depending on distances the unknowns are
linked differently (c), (d).

As almost always outliers due to noise and occlusions exist, we regularize the ill-posed
problem by enforcing the smoothness of the surface via additional observations relating the
unknowns. Thus, before applying robust least squares adjustment to get precise positions for
unknowns, we smooth unknowns. We discuss this in the next section.

4.5.4 Regularization of Unknowns by Smoothing

For each unknown, smoothness is described in terms of the deviation hsmooth of a vertex from
an average plane in the direction of its normal N derived from the neighboring vertices. We
denote 0 as one unknown in mesh M and five points adjacent to 0 as vertices 1, 2, 3, 4 and 5
(see Figure 4.15).
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Figure 4.14: The completed splitting of triangles. The red points are the unknowns, the blue
points the internal points, and the brown points the control points.

The average plane at 0 is computed as weighted average of the heights of the vertices hi above
the plane through 0 and perpendicular to its normal N. The adjacent vertices are projected
along the normal N, resulting in the primed (red) numbers in Figure 4.15. hi has a positive
sign if the projection has the same direction as the normal vector N and a negative sign,
otherwise. We denote the distances from 0 to the projected vertices as di. Weighting is done
according to the inverse distance 1/di of the points. The average height of the vertices from
1 to 5 in Figure 4.15 is calculated by:

hsmooth =

5∑
i=1

hi

di
/

5∑
i=1

1
di
. (4.8)

To position 0 (smoothly) on the plane h0 = −hsmooth has to hold. I.e., the weighted average
height of the adjacent vertices should be equal to the height of the unknown 0 above or below
the plane. This means that by smoothing we expect lower average differences between hi and
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Figure 4.15: Smoothness – The (black) numbers denote the original vertices. The (red)
primed numbers show their projection on the plane perpendicular to the normal N through
the given point 0 with height hi. hsmooth corresponds to the height of the given vertex above
or below the (weighted) average plane.

h0.

By the creation of unknowns, the mesh M is split to Q′ (Q′ > Q) triangles instead of Q
triangles of the original mesh. However, it is possible that not all Q′ triangles in the mesh
have at least one unknown.

The purpose of the next step is to apply robust least squares adjustment to obtain precise and
accurate positions for the unknowns by minimizing the variance of the intensity values in
the mesh. To limit the runtime to an acceptable size, we restrict ourselves to a suboptimal
solution and do not run least squares adjustment for the whole mesh (more detail in Section
5). We instead iteratively apply least squares for each part of the mesh that can be seen by
each camera from the first camera until the last camera.

As a well-known feature of least squares matching is its rather restricted radius of conver-
gence, we employ a coarse-to-fine strategy. It consists of using image resolutions adapted
to the sizes of the triangles by selecting a corresponding level of the image pyramid (cf.
Section 4.2). Different levels of densification of the triangles are considered by positioning
unknowns according to the shapes of the triangles.

4.6 Robust Least Squares Adjustment

4.6.1 Determination of Observations

The purpose of this part is to determine the observations for the least squares estimation.
Denote the number of triangles in mesh Mi that can be seen by camera C j as q. Following
the way described in Section 4.5.1 to obtain internal points and then observations in the
images, we split a triangle that contains unknowns at the center of each side of the projected
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triangle to generate observations in this triangle. The splitting only stops when the length of
each side is below the threshold of 1.4 pixels. We apply this splitting procedure to generate
observations for all V triangles in mesh Mi that contain at least one unknown. At the end of
this step, we obtain nT internal points in V triangles corresponding to m unknowns in mesh
Mi. Each internal point Li is projected to k cameras that can see the triangle to obtain k image
observations and thus k intensity values Ii, j with j = 1 to k. The next issue is to estimate
the adjusted positions ∆x for the m unknowns based on the obtained image observations to
minimize the variance of intensity values in the mesh.

4.6.2 Factorization of the Design Matrix

To solve the least squares problem for the unknowns ∆x, we must factorize the normal equa-
tion matrix AT PA, with the design matrix A and the weight matrix P. As there might be
thousands or even tens (”or hundredth”) of thousands of unknowns, the factorization requires
special attention. We apply the following procedure:

In the design matrix A an unknown is affected only by the observations belonging to neigh-
boring triangles leading to a very sparse matrix. We make use of this by only computing
those parts which are non-zero.

This implies that (only) unknowns are correlated which have common triangles. To obtain
a banded normal equation matrix with a band-width as small as possible, for which efficient
solutions are available, we traverse the triangles along the shorter side of the given area.
For the example in Figure 4.16 this leads to the banded normal equation matrix sketched in
Figure 4.17. One can regard the first unknowns to belong to the triangles marked in red in the
lower left corner of the triangles in Figure 4.16, the next unknowns to the triangles marked
in green right of it, the next to the blue triangles, etc. All vertices of the triangles, i.e.,
the unknowns, are linked only to two layers of triangles. This procedure leads to a normal
equation matrix with just one band parallel to the main diagonal with the width of the band
depending on the length of the layer. Thus, triangulation is traversed along the shorter side.
We will present this procedure in detail in Chapter 5.

We thus obtain a positive definite band matrix. Using Cholesky factorization for banded
symmetric matrices we solve for ∆x.

To stabilize the solution, the Levenberg-Marquardt algorithm is employed. I.e., we multiply
the elements on the main diagonal with a factor ranging from 1.0001 to 1.1 and take the result
with the smallest average standard deviation σ0. The non-linear optimization is iterated until
the ratio between the σ0 determined for two consecutive iterations falls below 1.01. We will
specify our robust least squares model in detail in Chapter 5.

After the above procedure is applied for all meshes seen by all cameras, we obtain precise
and accurate positions for additional 3D points (unknowns). From these new 3D points
together with the given 3D points, we obtain a densely reconstructed 3D surface. In the next
chapter, we present experiments and results for densely reconstructed 3D surfaces conducted
with and obtained by the presented approach.
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Figure 4.16: Traversal of triangles along the shorter side. The different colors correspond to
different layers of the traversal. The traversal starts in the lower left corner (red triangles) –
image Trinity from web-page Criminisi and Torr.

symmetric

Figure 4.17: Banded structure of normal equation matrix resulting from traversal of the
triangulation in Figure 4.16 along the shorter side.





Chapter 5

Experiments

This Chapter presents experiments with our approach. As discussed in Chapter 4, our ap-
proach consists of three steps: (i) Construction of the initial triangulated meshes using given
sparse 3D points extracted from images, (ii) determination of the initial positions for addi-
tional 3D points (unknowns) in the grids, and (iii) application of robust least squares ad-
justment to adjust the positions of the unknowns to obtain precise, accurate, and dense 3D
points.

In the first section we particularly discuss all practical issues of the approach. We describe
how we solve problems related to the given 3D points, the selection of triangles for un-
knowns, the initial positions for unknowns, the creation of layers in the triangle meshes to
speed up the calculation, and parameters for least squares adjustment. In the second section,
we describe the images and scenes that we used and discuss the results that we have obtained
by applying the approach.

5.1 Preparations

5.1.1 Generation of the 3D Input Data

We use given sparse 3D points extracted from images as input (cf. Section 4.1). Although
these points are mostly precise and accurate, there are two issues that can affect our approach
and thus need to be dealt with:

First, it can happen that points are matched incorrectly even in three or more images partic-
ularly due to repeating structures. This leads to incorrect 3D points which we delete from
our input data set. Particularly, we first apply Delaunay triangulation to construct the tri-
angle meshes from the 3D given points and then apply a VRML (Virtual Reality Modeling
Language) viewer to find out which points are wrong and need to be deleted from the data
set.

Second, particularly due to noise and occlusions 3D points might not be matched in all
images where they are actually visible. This definitely affects our approach as we use the
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information which camera can see which triangle when calculating the variances of the in-
tensity values of the 3D points. To account for this, we manually change in which cameras
the 3D points are visible in the data set to reflect the reality.

5.1.2 Selection of Triangles for and Positioning of Unknowns

The purpose of our approach is to determine additional precise and accurate 3D points (un-
knowns) on top of the given sparse 3D points in the triangulated meshes to obtain a more
precisely reconstructed surface. The first task towards this goal is to derive the initial posi-
tions for these unknown points. For this, we need to select the triangles for which unknowns
are to be added. We have found empirically that the selected triangles should be in the top
15% concerning the average deviation in intensity, because usually only 10 to 15% of the
triangles have high average deviations. The remaining 85% of the triangles have quite low
average deviations. We will show the distribution of average deviations of triangles for each
reconstructed object in the result section to prove our choice.

After selecting triangles for adding unknowns, we need to determine the initial positions for
the unknowns in those triangles. In Section 4.5.3 it was explained how unknowns are inserted
in a triangle, i.e., how a triangle is split, depends on the shape and size of the triangle. Our
rule is that we only add unknowns to triangles that have at least one side longer than 14
pixels. This rule is also empirically derived from our experiments which show that smaller
triangles don’t have enough observations in them to reliably determine the positions of the
unknowns. More importantly, we usually also have quite a small average intensity variance
in such triangles. I.e., these triangles are quite homogeneous and thus it is useless to split
them. Besides putting a threshold on the side length, we also control the shape of the triangle:
If the angle between two sides which are longer than 14 pixels is smaller than 60 degrees,
the side opposite to this angle will not be split (cf. Figure 4.13(b)). This rule avoids to obtain
triangles with very small angles.

5.1.3 Creation of Layers to Reduce Runtime

To determine precise and accurate positions from the initial positions of the unknowns, we
apply robust least squares adjustment. However, it would be very time consuming if we
would run the estimation for the whole mesh seen by all cameras. To reduce the calculation
time, we conduct the estimation for each part of the mesh that can be seen by each camera
from camera C0 until camera CK separately. Particularly, while we adjust all meshes which
can be seen from C0, for C1 to Ck we adjust only those meshes which can be seen from the
respective camera and have not been adjusted before. Thus, we replace global estimation
with a large runtime against only regionally consistent estimations with a lower runtime. In
addition, we also divide each sub-mesh into layers (cf. Section 4.6.2).

Particularly, we divide a sub-mesh (e.g., Mi) into layers from left to right. We chose this
direction, because our images are wider than high. By projecting the 3D mesh Mi to the
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camera, we obtain a 2D mesh. For the first layer, the left most vertex of the 2D mesh is
selected as the first point. This point is connected with its adjacent vertices on the border of
the mesh. However, only vertices with angles between the connecting line and the horizontal
axis of larger than 60 degrees are selected for the first layer. After all adjacent vertices to the
first point have been checked and selected, the first layer is obtained to the left of (cf. red part
in Figure 4.16). The second layer includes all vertices that are adjacent to vertices in the first
layer. This procedure continues until the whole mesh is divided into layers. Least squares
estimation is then conducted on the layer basis.

5.1.4 Specifications for Robust Least Squares Adjustment

In this section, we describe in detail specifications for the robust least squares adjustment.
We also present how we obtain the bias parameters β and weights P for the estimation.

Model Specifications

We perform the estimation on a layer and triangle basis. A triangle in the first layer is selected
and internal points and unknowns in this triangle are projected to the cameras that can see
this triangle to calculate the intensity values for the projected image observations. After this,
the second triangle in the mesh is selected and so on. We choose the triangle to be handled in
each layer at each time at random and the internal points lying on the border of two triangles
or also unknowns which are vertices of more than one triangle are handled together with the
triangle that is selected first.

Denote the number of internal points and unknowns that are calculated in a triangle v as nv

and mv with v = 1 to V , i.e., the number of triangles in the mesh that contain unknowns.
The total number of all internal points

∑
nv and all unknowns

∑
mv equal the total number

of internal points nT and unknowns m obtained for mesh Mi (cf. Section 4.6.1). Denote the
number of cameras that can see triangle v as kv. By this specification, we have a total of
V∑

v=1
nv × kv elements of intensity values Iv,i, j in the observation vector L with v = 1 to V , i = 1

to nv, and j = 1 to kv.

Following the general least squares model (cf. equation (2.5)), our model is l + ε = A∆x. l
consists of the intensity values of image observation Iv,i, j with i representing a 3D internal
point Li in triangle v and j representing a camera that can see triangle v. In our model, the
initial values for the unknown parameters X0 (cf. ∆x = X − X0) are the initial values of the
3D unknown points, determined by interpolation in the triangle.

Concerning the observations we have to take into account that the images have different
average intensities to obtain an unbiased result for the estimation. In addition, we also need
to account for possible occlusions. Thus, we insert a bias parameter β for each image and a
weight P for each image observation into the general least squares model and apply robust
least squares adjustment. This leads to vector β consisting of kv elements β j and vector P of
V∑

v=1
nv × kv elements (pv,i, j).
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With the effect of bias parameters and weights, the residual value εv,i, j for each observed
value Iv,i, j is then calculated as:

εv,i, j = Iv,i, j − β j − Iv,i,M, (5.1)

with Iv,i,M the mean intensity value for 3D point i in triangle v seen by kv cameras:

Iv,i,M =

kv∑
j=1

(Iv,i, j − β j)pv,i, j

kv∑
j=1

pv,i, j

. (5.2)

The objective of the robust least squares adjustment is to minimize the variance of the resid-
uals:

σ =

√√√√√ εT Pε
V∑

v=1
kv · nv − mv

. (5.3)

In the next paragraph, we present how we set the values for β and P.

Bias Parameters and Weights for Robust Optimization

For the bias parameters, we use the values calculated in Section 4.5.2. P is a diagonal matrix
and is always normalized to unity before being multiplied with the design matrix or the vector
of the internal points L. Initially all weights are set to one. This means that all observations
have the same weight regardless of whether there is occlusion or non-Lambertian reflection.

To account for this, we use robust estimation. We particularly base robust estimation on
standardized residuals ¯εi = εi/σεi involving the standard deviations σεi of the residuals ε̄i. As
the computation of σεi for the individual observation is computationally costly, we substitute
it by an estimate of the average standard deviation of the intensity value due to noise, partic-
ularly 3 gray values. We then follow (McGlone et al. 2004) to reweight the elements of P

with pv,i, j = 1/
√

2 + ε2
v,i, j.

We stop least squares estimation either when there is no error reduction, i.e., the error in the
current estimation is equal or higher than the error in the last estimation, or after the 10th
iteration. The latter condition is based on our experiments.

5.2 Results

In this section, we present experiments for four different scenes: (i) A scene with different
surface structures, but with weak texture, (ii) a scene with a single surface structure type
(cylinder) with strong texture, (iii) a scene with different structures, occlusions, and weak
texture, and (iv) a scene with a complex surface structure taken by cameras from larger
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distances. The first scene is a corner of the Trinity college building in Dublin, Ireland taken
from the Trinity web site. The building has glass windows and stone columns. In addition,
the building is occluded by some bushes in front of its facade and the texture of the building
is mostly weak. The 3D reconstruction of this scene is difficult also due to the big contrast
between the glass windows and the walls. The slender stone columns in front of the surface
also make the reconstruction more challenging in terms of the small width of the columns.
The purpose of this scene is to show that our approach works well for a scene with different
surface structures and weak texture.

The second scene consists of a cylinder covered by advertisement posters. This advertise-
ment cylinder is situated close to a metro station in Munich, Germany. There is only one
surface structure for this scene and the texture of the object is mostly very strong. The main
problem in the 3D reconstruction of this scene is that parts are rather homogeneous, i.e., are
weakly textured areas, where the image does not give a clear hint about the surface geome-
try. Thus, with this scene, we want to demonstrate that our approach can reconstruct highly
homogeneous areas based on the regularization of the surface.

The third scene is a street corner named Schappenstraat in Leuven, Belgium. Besides some
jutting walls, there are static and moving occlusions in the images. In some areas the texture
of this object is also very weak. With this sample, we want to show the robustness of our
approach concerning occlusions.

The final scene is the main gate of the Cathedral in Cologne, Germany. Besides the fact that
the images are taken by cameras from larger distances, the scene has a complicated surface
structure with many sophisticated small statues. By means of this scene we want to present
the capability of our approach for the 3D reconstruction of sophisticated surface structures.

In the next subsections, we present the result of our experiments for each scene. In the
first part of each subsection we give: (1) The source images of the scene, (2) the sparse 3D
points extracted from the images by applying the approach of Bartelsen and Mayer (2010),
(3) the triangle mesh created from the given 3D points, (4) the graph of (average) intensity
deviations for the triangles in the mesh to show how triangles are selected for the insertion of
unknowns, (5) the positions of unknowns and their directions, and finally (6) the final result
after application of robust least squares adjustment. In the second part, we will compare
our finally reconstructed surfaces with the input surface created from the given 3D points
to demonstrate to which extent our approach improves the accuracy of the reconstructed
surface. Particularly, we compare and discuss the result for different camera view points.

5.2.1 Trinity Corner

Experiment

The building images are taken from three different positions as shown in Figure 5.1. By
applying the approach of Bartelsen and Mayer (2010), we obtain 279 sparse 3D points and
the information about which camera can see which point (cf. Figure 5.2). We only use 223
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points to create a triangulated mesh consisting of 421 triangles via Delaunay triangulation
(cf. Figure 5.3).

(a) (b) (c)

Figure 5.1: Three images of Trinity corner.

Figure 5.2: The three camera positions (green pyramids) and the 279 sparse 3D points.

To position additional 3D points (unknowns) in this mesh, we first determined in which
triangles in the mesh unknowns should be inserted. According to Section 5.1, we base this
on the (average) deviations of the intensity values in the triangles. For this scene, we use
four pyramid levels (from 0 to 3). As the difference for the intermediate levels are minors,
we will show only how we choose unknowns for pyramid levels 0 and 3.

Unknowns for pyramid level 3

Projecting the mesh into pyramid level 3, we obtained an ordered list of the (average) inten-
sity value deviations calculated by equation (4.6) for the 21 triangles in the mesh. Figure
5.4 clearly shows that the deviations of the intensity values decrease significantly for the
first 15% of triangles and then are mostly constant. We thus select the corresponding 15%
triangles to split and to obtain a lower deviation by means of robust adjustment. Applying
the procedure described in Section 4.5.3, we obtained only two unknowns in the mesh. The
positions and directions of unknowns are marked in yellow in Figure 5.5.
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Figure 5.3: Triangulated mesh created from 223 points.

 

0

2

4

6

8

10

12

14

16

18

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

Intensity value

Triangle error

Triangle

Figure 5.4: Plot of intensity deviations (calculated by equation (4.6)) for the triangles in the
mesh at pyramid level 3 sorted in descending order.

Figure 5.5: Positions and directions of two unknowns in the mesh marked in yellow.

After applying least squares adjustment, the (average) deviations of the intensity values for
the triangles in the new mesh with the two additional 3D points are plotted in Figure 5.6. By
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comparing Figures 5.4 and 5.6 we find that there is an improvement in the deviations of the
intensity values, i.e., the deviations are reduced. That only two unknowns are positioned is
because of: (1) on pyramid level 3 the triangles are very small, and (2) we use a constraint
on the lengths of the sides of the triangles to be split, i.e., only triangles that have at least one
side longer than 14 pixels can be split.
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Figure 5.6: Plot of intensity deviations (calculated by equation (4.6)) for the triangles in the
mesh at pyramid level 3 with two additional 3D points sorted in descending order.

Unknowns for pyramid level 0

When we changed to pyramid levels 2 and 1, the number of selected unknowns had increased
and the deviations have improved as the sizes of triangles become bigger. We present details
of the result, particularly the number of unknowns and the deviations after each pyramid
level, in the following part. After pyramid level 1, a mesh with 756 triangles with 400 vertices
was created. Figure 5.7 presents the graph of the (average) intensity value deviations of all
triangles in the initial mesh for pyramid level 0. It again clearly shows that the (average)
deviations of the intensity values decrease significantly for the first 15% of triangles.
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Figure 5.7: Plot of intensity deviations (calculated by equation (4.6)) for the triangles in the
mesh at pyramid level 0 sorted by descending order.

Splitting these 15% triangles, we obtain 385 unknowns as shown in Figure 5.8. The posi-
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tions and directions of the unknowns are marked in yellow. The (average) deviations of the
intensity values for the triangles in the new mesh after least squares adjustment process is
finally displayed in Figure 5.9. The two figures (Figures 5.7 and 5.9) show that the (average)
deviations of the intensity values have been reduced significantly after splitting and robust
estimation.

Figure 5.8: Positions and directions of 385 unknowns marked in yellow at pyramid level 0.
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Figure 5.9: Plot of intensity deviations (calculated by equation (4.6)) for triangles in the
mesh at pyramid level 0 with 385 additional 3D points sorted in descending order.

Summary of results for four pyramid levels

To show how unknowns were created and how the (average) deviations were reduced in the
process, in Table 5.1 we present a summary of the creation of unknowns and the (average)
deviations of all triangles on each pyramid level.

The table shows that the creation of unknowns helps to reduce the average deviations of the
intensity values in the mesh. After all four pyramid levels, a total of 573 unknowns has been
inserted and positioned. Using these 573 additional points together with the 223 given 3D
points we can reconstruct the 3D surface of Trinity building as shown in Figure 5.10. In the
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Table 5.1: Summary statistics of unknown creation on each pyramid level for Trinity corner.

Pyramid level No. Triangles No. Vertices No. Unknowns Avg. Deviation
Level 3
- Begin 421 223 6.7
- End 428 228 2 1.2
Level 2
- Begin 428 228 7.3
- End 496 265 33 1.5
Level 1
- Begin 496 265 8.5
- End 756 400 153 1.7
Level 0
- Begin 756 400 10.6
- End 1293 673 385 1.9

next part, we will compare our reconstructed 3D surface with the original (input) 3D surface
(from given 3D points) for different camera views.

Figure 5.10: The final reconstructed 3D surface of Trinity corner.

Discussion of results

When comparing the original 3D surface created from the given 3D points (cf. Figure 5.3)
and the surface constructed from the given 3D points together with the unknowns (cf. Figure
5.10), we find that the latter represents the structure of the building much better than the
former. Specifically, we can observe clear improvements in the depth of the stone columns,
and the bushes as well as in the much clearer structure of the roof on the right part of the
building. Moreover, we also observe that the mullions and transforms of windows as well
as the stone columns are straight in the reconstructed surface while they are bent for the
original surface. All this becomes even more clear in Figure 5.11, where we present the
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original surface (from given 3D points) on the right and the reconstructed surface (from
given 3D points and unknowns) on the left for two different views.

(a) Original view 1 (b) Reconstructed view 1

(c) Original view 2 (d) Reconstructed view 2

Figure 5.11: Comparison between the original surface (from given 3D points) and the recon-
structed surface (from 3D points and unknowns) for two different views.

Looking at the bushes in the first view (upper row), we find that the original surface does
not clearly reflect their structure. The sizes of the original triangles in this area are just
too big. On the reconstructed surface, this area is split into smaller triangles which results
into a clearer structure for the bushes. This means that the average deviations of the intensity
values, i.e, the errors in intensity values, of the triangles in this part of the mesh were initially
high, and that the additional 3D points led to have a more precise reconstruction. Moreover,
the structure of the roof on top of the right side of the building is also very clear in the
reconstructed surface while it is very vague in the original surface.

In the second view, we cannot recognize a clear straight structure for the stone columns in the
original surface and it seems that they are almost flat. However, in the reconstructed surface,
many additional points were positioned in the area of the columns bringing out the depth of
these columns. This all shows that our algorithm is suitable and works well for such type of
scene.
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5.2.2 Advertisement Cylinder

Experiment

The cylinder was acquired from 25 camera positions which gives us 25 images. Here, only
three images are given as examples in Figure 5.12. From the 25 images, we extracted 9568
sparse points (cf. Figure 5.13). However, we only used 63 points as input leading to the
triangulated mesh of 92 triangles in Figure 5.14. This was done to show that a small number
of given points is sufficient for smooth surfaces.

(a) (b) (c)

Figure 5.12: Three images of 25 for the advertisement cylinder.

Figure 5.13: The 25 camera positions (green pyramids) and the 9568 sparse 3D points.

For this scene, five pyramid levels (0 to 4) have been used. We will first show how unknowns
were chosen for pyramid levels 0 and 4 to give more insight how our algorithm works.

Unknowns for pyramid level 4

Projecting the mesh into pyramid level 4, we obtained an ordered list of the (average) inten-
sity value deviations for the 92 triangles in the mesh. Figure 5.15 again clearly shows that
the deviations of the intensity values drop significantly for the first 15% of triangles. When
trying to split these 15% triangles, we only obtained the seven unknowns marked in yellow
in Figure 5.16.

Figure 5.17 shows the average deviations of the intensity values for the triangles in the new
mesh with seven additional 3D points after least squares adjustment. Comparing Figures
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Figure 5.14: Triangulated mesh created from 63 points.
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Figure 5.15: Plot of intensity deviations for the triangles in the mesh at pyramid level 4
sorted in descending order.

Figure 5.16: Positions and directions of seven unknowns marked in yellow in the mesh.

5.15 and 5.17 we again find that there is a considerable improvement in the deviations of the
intensity values.

Unknowns for pyramid level 0
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Figure 5.17: Plot of intensity deviations for the triangles in the mesh at pyramid level 4 with
seven additional 3D points sorted in descending order.

After pyramid level 1, we had obtained a mesh with 309 triangles. No figure for the (average)
deviations of the intensity values is shown here because we observed the same situation as
for other scene and pyramid levels: 15% triangles have high deviations. On this pyramid
level, we have determined and positioned 112 unknowns marked in yellow in Figure 5.18 by
splitting the corresponding triangles and obtained a new mesh consisting of 470 triangles.

Figure 5.18: Positions and directions of 112 unknowns in the mesh marked in yellow at
pyramid level 0.

Comparing the average deviations of the intensity values for the triangles in the new mesh
after least squares adjustment process with the average deviation values before splitting we
also found that they have been significantly reduced.

Summary of results for five pyramid levels



5.2 Results 75

To show how unknowns were created and how the average deviations were reduced in the
process, we present in Table 5.2 a summary of unknown creation and the average deviations
of the triangles on each pyramid level.

Table 5.2: Summary statistics of unknown creation on each pyramid level for advertisement
cylinder.

Pyramid level No. Triangles No. Vertices No. Unknowns Avg. Deviation
Level 4
- Begin 92 63 9.3
- End 106 70 7 1.6
Level 3
- Begin 106 70 9.2
- End 149 93 22 1.5
Level 2
- Begin 149 93 9.3
- End 206 125 33 1.8
Level 1
- Begin 206 125 9.6
- End 309 182 71 1.4
Level 0
- Begin 309 182 9.7
- End 470 269 112 1.5

The table again shows that the creation of unknowns helped to reduce the average deviations
of the intensity values in the mesh. After all five pyramid levels, a total of 245 unknowns
were determined and positioned. Using these 245 additional points together with the 63
given 3D points leads to the reconstruction of the 3D surface of the cylinder shown in Figure
5.19. In the next part, we will compare our reconstructed 3D surface with the original (input)
3D surface (from given 3D points) for different camera views.

Discussion of results

First, when comparing the original 3D surface created from the given 3D points (cf. Figure
5.14) and the surface constructed from the given 3D points together with the unknowns (cf.
Figure 5.19), it is evident, that the latter represents the cylinder substantially better than the
former. For the original surface, the middle part of the cylinder seems to be flat. However,
the curvature of this part can clearly be observed for the reconstructed surface. For direct
comparison, we display in Figure 5.20 the original surface on the right and the reconstructed
surface on the left for two different views.

The surfaces in the first view indicate that there were some areas with large intensity error in
the mesh of the original surface, which have been split into smaller triangles to obtain lower
intensity errors and a better matching. Additionally, the figure shows that the additional
points also result in a more plausible curvature for the surface.
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Figure 5.19: Reconstructed 3D surface of the advertisement cylinder.

(a) Original view 1 (b) Reconstructed view 1

(c) Original view 2 (d) Reconstructed view 2

Figure 5.20: Comparison between the original surface (from given 3D points) and the recon-
structed surface (from 3D points and unknowns) for two different views (first view as wire
frame).
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In the second view of the original surface, particularly two issues are visible: First, the
middle part of the surface seems to be flat. Second, the border lines between the posters
are not straight. Yet, the view on the reconstructed surface shows that these two problems
have been solved. Thus the comparison again confirms the effectiveness of our algorithm in
reconstructing the 3D surface for such a type of scene.

5.2.3 Schappenstraat Corner

Experiment

Our third scene consists of four images of Schappenstraat corner in Leuven, Belgium (cf.
Figure 5.21). Close to or at the bottom of all images a small pillar to lock out cars from
the street is visible. This pillar creates a static occlusion in the images. In addition, there
are also people, i.e., moving occlusions in image (a). From the four images we extracted a
sparse set of 1606 points (cf. Figure 5.22). However, we only use 786 points on the corner
of the building leading to a triangulated mesh of 1505 triangles (cf. Figure 5.23).

(a) (b)

(c) (d)

Figure 5.21: Four images of Schappenstraat corner.

For this scene, four pyramid levels (0 to 3) have been used. However, at pyramid level 3,
the triangles are too small and thus no unknowns are created. Therefore, we will show how
unknowns were chosen for pyramid levels 0 and 2 to give further insight into our algorithm.

Unknowns for pyramid level 2

Projecting the mesh into pyramid level 2, we obtained an ordered list of the (average) in-
tensity value deviations for the 1505 triangles in the mesh. Figure 5.24 clearly shows that
the deviations of the intensity values drop significantly for the first 15% of triangles. When
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Figure 5.22: The four camera positions (green pyramids) and the 1606 sparse 3D points.

Figure 5.23: Triangulated mesh created from 786 points.



5.2 Results 79

 

0

5

10

15

20

25

1

9
0

1
7
9

2
6
8

3
5
7

4
4
6

5
3
5

6
2
4

7
1
3

8
0
2

8
9
1

9
8
0

1
0
6
9

1
1
5
8

1
2
4
7

1
3
3
6

1
4
2
5

Intensity value

Triangle error

Triangle

Figure 5.24: Plot of intensity deviations for the triangles in the mesh at pyramid level 2
sorted in descending order.

Figure 5.25: Positions and directions of eleven unknowns in the mesh marked in yellow.

trying to split these 15% triangles, we only obtained eleven unknowns marked in yellow in
Figure 5.25.

Figure 5.26 shows the (average) deviations of the intensity values for the triangles in the new
mesh with eleven additional 3D points after least squares adjustment. Comparing Figures
5.24 and 5.26 we again find that there is a significant improvement in the deviations of the
intensity values.

Unknowns for pyramid level 0
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Figure 5.26: Plot of intensity deviations for the triangles in the mesh at pyramid level 2 with
eleven additional 3D points sorted in descending order.

After pyramid level 1, we had obtained a mesh with 2050 triangles. The ordered list of
the (average) intensity value deviations given in Figure 5.27 clearly demonstrates that the
deviations of the intensity values are largely descending for the first 15% of the triangles. By
splitting these 15% triangles, 1117 unknowns marked in yellow in Figure 5.28 were selected
and positioned and a new mesh consisting of 3870 triangles was obtained.

 

0

5

10

15

20

25

30

1

1
3
0

2
5
9

3
8
8

5
1
7

6
4
6

7
7
5

9
0
4

1
0
3
3

1
1
6
2

1
2
9
1

1
4
2
0

1
5
4
9

1
6
7
8

1
8
0
7

1
9
3
6

Intensitive value

Triangle error

Figure 5.27: Plot of intensity deviations for the triangles in the mesh at pyramid level 0
sorted in descending order.

The (average) deviations of the intensity values for the triangles in the new mesh after least
squares adjustment is displayed in Figure 5.29. The comparison of Figures 5.27 and 5.29
clearly demonstrates that the (average) deviations of the intensity values have been reduced
significantly.

Summary of results for four pyramid levels

To show how unknowns were created and how the average deviations were reduced in the
process, we present in Table 5.3 a summary of unknown creation and the average deviations
of the triangles on each pyramid level.

The table shows again that the creation of unknowns helped to reduce the average deviations
of the intensity values in the mesh. After all four pyramid levels, a total of 1387 unknowns
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Figure 5.28: Positions and directions of 1117 unknowns in the mesh marked in yellow at
pyramid level 0.
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Figure 5.29: Plot of intensity deviations for the triangles in the mesh at pyramid level 0 with
1117 additional 3D points sorted in descending order.

are selected and positioned. Using these 1387 additional points together with the 786 given
3D points leads to the reconstruction of the 3D surface of the corner presented in Figure 5.30.
In the next part, we will compare our reconstructed 3D surface with the original (input) 3D
surface (from given 3D points) for different camera views.
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Table 5.3: Summary statistics of unknown creation on each pyramid level for Schappenstraat
corner.

Pyramid level No. Triangles No. Vertices No. Unknowns Avg. Deviation
Level 3
- Begin 1505 786 9.4
- End 1505 786 0 9.4
Level 2
- Begin 1505 786 9.4
- End 1532 802 11 1.6
Level 1
- Begin 1532 802 10.1
- End 2050 1072 259 1.5
Level 0
- Begin 2050 1072 10.5
- End 3870 1997 1117 1.6

Figure 5.30: 3D reconstructed surface of Shappenstraat corner.

Discussion of results

Comparing the original 3D surface created from the given 3D points (cf. Figure 5.23) and
the surface constructed from the given 3D points together with the unknowns (cf. Figure
5.30), we again find that the latter represents the shape of the corner much better than the
former. This is true particularly for the occlusions part. For direct comparison, we display in
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Figure 5.31 the original surface on the right and the reconstructed surface on the left for two
different views.

(a) Original view 1 (b) Reconstructed view 1

(c) Original view 2 (d) Reconstructed view 2

Figure 5.31: Comparison between the original surface (from given 3D points) and the recon-
structed surface (from 3D points and unknowns) for two different views.

The surfaces in the first view indicate that there were some areas with large intensity error in
the mesh of original surface particularly for the occlusions which have been split into smaller
triangles to obtain lower intensity errors and thus a better matching. After splitting, the mesh
becomes significantly smoother, especially in the occlusion areas. This indicates that our
algorithm has a certain robustness concerning occlusions. The second view shows that the
upper part has been split to get a smoother reconstructed surface.
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5.2.4 Main Gate of Cologne Cathedral

Experiment

Our fourth scene consists of six images of the main gate of the Cathedral of Cologne, Ger-
many. Four images are presented in Figure 5.32 as examples. From the six images we
extracted 3286 sparse 3D points (cf. Figure 5.33). We only use 878 points leading to a
triangulated mesh of 1706 triangles (cf. Figure 5.34).

(a) (b)

(c) (d)

Figure 5.32: Four images of the main gate of the Cathedral of Cologne.

For this scene, five pyramid levels (0 to 4) have been used. However, at pyramid level 4,
the triangles are too small and thus no unknowns are created. Therefore, we will show how
unknowns were chosen for pyramid levels 0 and 3 to demonstrate our algorithm.

Unknowns for pyramid level 3

Projecting the mesh into pyramid level 3, we obtained an ordered list of the (average) de-
viations of the intensity value for the 1706 triangles in the mesh. Figure 5.35 again clearly
shows that the deviations of the intensity values drop significantly for the first 15% of trian-
gles. When trying to split these 15% triangles, we obtained only nineteen unknowns marked
in yellow in Figure 5.36. Figure 5.37 shows the (average) deviations of the intensity values
for the triangles in the new mesh with the nineteen additional 3D points after least squares
adjustment. Comparing Figures 5.35 and 5.37 we again notice that there is a significant
improvement in the deviations of the intensity values.

Unknowns for pyramid level 0

After pyramid level 1, we had obtained a mesh with 3137 triangles. We observed the same
situation as for pyramid level 3: The (average) deviations of the intensity values for the
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Figure 5.33: The six camera positions (green pyramids) and the 3286 sparse 3D points.

Figure 5.34: Triangulated mesh created from 878 points.

triangles in the new mesh after least squares adjustment have been reduced significantly. By
splitting the 15% corresponding triangles, 1442 unknowns marked in yellow in Figure 5.38
were selected and positioned. From these 3D points, we obtained a new mesh consisting of
5007 triangles.

Summary of results for four pyramid levels

To show how unknowns were created and how the average deviations were reduced in the
process, we present in Table 5.4 a summary of unknown creation and the average deviations
of the triangles on each pyramid level.

The table shows that the creation of unknowns helped to reduce the average deviations of
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Figure 5.35: Plot of intensity deviations for the triangles in the mesh at pyramid level 3
sorted in descending order.

Figure 5.36: Positions and directions of nineteen unknowns in the mesh marked in yellow.
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Figure 5.37: Plot of intensity deviations for the triangles in the mesh at pyramid level 3 with
nineteen additional 3D points sorted in descending order.
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Figure 5.38: Positions and directions of 1442 unknowns in the mesh marked in yellow at
pyramid level 0.

Table 5.4: Summary statistics of unknown creation on each pyramid level for Cologne Cathe-
dral.

Pyramid level No. Triangles No. Vertices No. Unknowns Avg. Deviation
Level 4
- Begin 1706 878 5.4
- End 1706 878 0 5.4
Level 3
- Begin 1706 878 5.8
- End 1752 905 19 3.0
Level 2
- Begin 1752 905 6.6
- End 2078 1076 174 2.6
Level 1
- Begin 2078 1076 7.7
- End 3137 1611 678 2.8
Level 0
- Begin 3137 1611 9.0
- End 5007 2549 1442 3.2

the intensity values in the mesh. After all four pyramid levels, a total of 2313 unknowns are
selected and positioned. Using these 2313 additional points together with the 878 given 3D
points leads to the reconstruction of the 3D surface of the gate presented in Figure 5.39. In
the next part, we compare our reconstructed 3D surface with the original (input) 3D surface
(from given 3D points) for different camera views.
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Figure 5.39: 3D reconstructed surface of the main gate of Cologne Cathedral.

Discussion of results

Comparing the original 3D surface created from the given 3D points (cf. Figure 5.34) and the
surface constructed from the given 3D points together with the unknowns (cf. Figure 5.39),
we find that the latter represents the complicated surface of the gate much better than the
former. For direct comparison, we display in Figure 5.40 the original surface on the right
and the reconstructed surface on the left for two different views.

The surfaces in the first view indicate that there were some areas with large intensity error
in the mesh of the original surface particularly for the areas of the statues which have been
split into smaller triangles to obtain lower intensity errors and thus a better matching. After
splitting, the mesh becomes significantly more detailed, especially in areas with statues.
This indicates that our algorithm can deal also with complicated surfaces. To make it even
clearer, in the second view we show the wireframes which highlight the much more detailed
triangulation around the statues for the reconstructed grid.

In summary, we have demonstrated that our algorithm is suitable for different types of scenes
and can deal with problems due to non-Lambertian reflection and occlusions. To conclude
this Chapter, in Table 5.5 we present the runtime when applying our algorithm to reconstruct
these four scenes.
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(a) Original view 1 (b) Reconstructed view 1

(c) Original view 2 (d) Reconstructed view 2

Figure 5.40: Comparison between the original surface (from given 3D points) and the recon-
structed surface (from 3D points and unknowns) for two different views.

Table 5.5: Summary of the runtime to reconstruct the four scenes.

Scene No. images Size per image (pixels) Runtime (minutes)

Trinity Corner 3 640 x 512 25

Advertisement Cylinder 12 2592 x 1944 1560

Schappenstraat Corner 4 2144 x 1424 780

Cologne Cathedral 6 2592 x 1944 1080





Chapter 6

Conclusions and Outlook

This thesis deals with the reconstruction of fully 3D surfaces. The research result is a 3D ex-
tension of the classical least-squares matching approach of Heipke (1990) which is confined
to 2.5D surfaces by employing the normals of a triangulation similarly to Schlüter (1998).
Opposed to the latter, our approach focuses on wide-baseline settings and we employ robust
estimation to deal with occlusions and non-Lambertian reflection.

The thesis makes two contributions to the field of research: First, advantages of current inter-
esting algorithms are combined and successfully extended to full 3D reconstructions. A mesh
representation is the core characteristic of the algorithm. We link triangulations for image
triplets to obtain triangulations for a larger number of images. Based on the mesh represen-
tation the method can combine different information sources (image- and geometry-based)
for the reconstruction, to obtain both the shape and the reflectance properties of complicated
surfaces. Second, by making use of robust least squares adjustment, the approach overcomes
limitations of other algorithms concerning reflectance properties and the topology of the
reconstructed surfaces, particularly non-Lambertian reflection and occlusion.

Our approach first introduces a novel algorithm to select and position additional 3D points in
the triangle mesh constructed from given sparse 3D points extracted from different images.
Additional 3D points are selected in the mesh, to split it so that the (average) variance of the
intensity values in the triangles is reduced. By this way, triangles become more homoge-
neous and thus the reconstructed surfaces reflect the real shape and texture more precisely.
Second, as occlusion and non-Lambertian reflection are two main issues negatively affect-
ing the reconstruction result and the reliability of the algorithm, we insert bias parameters
and use robust weights. Finally, we found that we can reduce runtime significantly by ap-
plying an image pyramid hierarchy and by approximating the global solution by a regional
optimization by dividing the mesh into layers for robust least squares estimation.

Applying the method, we can highly accurately reconstruct full 3D surfaces and their texture.
The method was proven to work for a wide range of scene types from a simple to complicated
structures, from strong to weak texture, and from static to moving occlusions.

Our approach, however, still has several limitations which need to be improved in future
work. The first limitation is that it only works with one surface. I.e., it has a problem with
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non-connected or discontinuous surfaces. First of all, a way to move vertices towards edges
in the image should be devised, as the latter tend to give hints on break-lines of the surface.
However, this problem is usually not too pronounced, as the initial points correspond to
corners by definition. Additionally, the current model treats parts of the main surface which
are occluded by other parts of the surface as occlusions. It cannot reconstruct the surfaces of
two or more objects. Extending our model for a full 3D reconstruction of multiple surfaces
is a future research topic.

Second, the model has a limitation in reconstructing surfaces with mirror reflections, e.g.,
glass windows. To overcome this, one needs to find a way to detect the glass areas in the
images and then apply a special algorithm which can deal with mirror reflections.

Finally, even though the approach does not require too much runtime, there is still room for
improvement concerning the speed of the overall surface generation: First, at the moment
the triangle meshes are manually constructed from the given 3D points. Thus, the overall
time for surface generation could be substantially reduced by a technique which would auto-
matically create the triangle meshes. Second, recently (Pons et al. 2005) have presented an
approach which is similar to ours, though they link surface reconstruction with scene flow
estimation. They employ graphics hardware to speed up processing. This idea could also
help to speed up our algorithm, because the determination of the observations entails large
numbers of projections from 3D space into the images, which could very well be solved by
graphics hardware.
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