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ABSTRACT
With an increasing number of new camera devices entering the
market, lifelogging has turned into a viable everyday practice.
The promise of comprehensively capturing our life’s happen-
ings has caused adoption rates to grow, but approaches to do
so greatly differ. In this paper we evaluate existing visual
lifelogging capture approaches through a user study with two
main capture dimensions: (1) comparing the body position
where a lifelogging camera is worn: head versus chest (2) com-
paring the media captures: video versus stills. We equipped
30 participants with cameras on their heads and chests. That
data was evaluated by subjective user ratings as well as by
objective image processing analysis. Our findings indicate
that (1) chest-worn devices are more stable and contain less
motion blur through which feature detection by image process-
ing algorithms works better than from head-worn cameras;
2) head-worn video cameras, however, seem to be the better
choice for lifelogging as they capture more important autobio-
graphical cues than chest-worn devices, e.g., faces that have
been shown to be most relevant for recall.

CCS Concepts
•Human-centered computing→Empirical studies in ubiq-
uitous and mobile computing;
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INTRODUCTION
To support human memory and archive information, person-
ally taken camera images have always played an important
role in people’s lifes. The most recent evolution of individuals’
life documenting technologies was the rise of wearable cam-
eras to enable continuous lifelogging [24]. Previous research
identified supporting recall and memory retrieval as one of
the major motivations for the use of wearable lifelogging cam-
eras [6, 11, 15, 21]. Devices like the SenseCam, the Narrative
Clip, the GoPro camera or camera glasses allow continuous
life capture. This development marks the switch from active to
passive recording of visual (and sometimes audio) data: image
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recording is automatically done without the need to actively
take out a camera, define its focus or release the shutter.

On the downside, capturing by default results in less control
over the image focus or quality in comparison to traditionally
explicit image capturing. Wolf et al. [26] mention the effects
of body locations for lifelogging cameras on image quality:
currently available lifelogging cameras have clips to attach the
camera to clothes (e.g. the Narrative Clip), are included in
glasses (e.g. Google Glass) or come with additional equipment
to wear the camera on the head or in front of the chest (e.g.
Gopro). The camera position thereby influences the quality
of the pictures taken. For instance, when wearing the camera
in front of the user’s chest, hands often occlude the camera
view, while rapid head movements result in blurry images of
cameras that are attached to the head or embedded into glasses.
Thus, lifelogging images often contain artifacts and noise,
which is highly dependent on the body position the camera is
attached.

In this paper, we aim to investigate the quality of images
captured with lifelogging cameras. We collected lifelogging
images during different everyday situations and evaluate their
quality depending on the camera position as well as on both
media types: static images and video. Existing tools like
iPhoto support sorting, finding, and rediscovering personal
images. Such tools apply image processing, which work better
if the quality of the image is good, e.g. the image is sharp
and showns the motive (face/object) without occlusion. More-
over, we judge images according their subjective qualitative
attributes, like whether or not the content contains the cues
that are relevant for recalling our memory.

Lifelogging image capturing produces large image data. Thus,
automated image sorting algorithms will become an essential
way to sort, navigate through, and view our personal images.
Viewing images, of cause, has to meet our expectations of
image quality that is influenced by traditional non-automated
image capturing techniques. To support personal lifelogging
image viewing, we need to better understand the character-
istics of lifelogging images, including how different camera
positions and media types influence the image quality. Hence,
in this work we analyze how camera position (head vs. chest)
and media type (video vs. still) influence the subjective quality
of lifelog images and quantifiable image artifacts. We assess
the media quality both qualitatively, in terms of user percep-
tion when recalling memory, and quantitatively by using image
processing and computer vision algorithms.
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This paper is motivated by the recent interest in body-worn
cameras, and it contributes to the existing research body by
evaluating existing lifelog capture approaches. Through both
a user study and a computed image evaluation we show that
video, if captured with a head-worn video camera, is the prefer-
able choice for lifelogging regarding the image quality.

RELATED WORK
Steve Mann proposed the use of wearable cameras as âĂŹvi-
sual memory prostheticsâĂŹ [20], which are embedded in
glass-like prototypes to enable ubiquitous real-life image cap-
turing with the aim to create a personal photo/videographic
memory prosthesis [21]. Gemmell et al. [11] developed a lifel-
ogging platform called MyLifeBits to investigate the efforts
of digitizing an entire lifetime and storing related documents.
They considered all kinds of data, including a radio and TV
capturing tool, GPS data, and to capture what analogue con-
tent people may see in their life. For data capturing they use
the time-lapse camera SenseCam [12]. SenseCam is an on-
body sensor-enhanced capture device that allows for passive
picture taking including additional data, such as GPS. Hodges
et al. [15] used a SenseCam in a 12-month clinical trial with
a patient suffering from amnesia for reviewing experiences
that had been forgotten. Chen and Jones presented within their
iCLIPS project another on-body time-lapse camera for aug-
menting the human memory [6]. Despite video being able to
capture every moment when recording, Chen and Jones argue
to use photographs as watching video streams may cause a
heavy information load.

Tasks like watching or scanning lifelog images are challenged
by the information overload resulting from passive and long-
term image capturing. Image processing and computer vision
techniques enable us to browse through large ego-centric (and
thus very noisy) image material. Gurrin et al. [14] use date,
time, and GPS location for the organization of personal collec-
tions in order to enable users to efficiently search their photo
archives. In other works supervised learning is used to sum-
marize videos by identifying and recognizing activities [10, 9,
22]. Others use unsupervised approaches including scene dis-
covery [16], story-driven summarization [19], and key frame
selection [7]. Techniques include automatically detecting nov-
elty in an image sequence [1], by appearance and geometric
cues based on alignment of the captured frame sequences of
the daily activities, combined with background deviation for
identifying novel activity. Identifying activity classes with ego-
centric vision included the segmentation of hands with active
objects based on foreground extraction from the first-person
view and appearance model to detect objects with weakly su-
pervised technique [10, 18]. Fathi et.al linked objects, hands,
and actions to understand activities [9]. Another approach for
representing activities includes the usage of Markov models
with atomic events considering object-object and object-wrist
interaction with prior learning phase to identify activities [4].
Lee et.al proposed people/object-driven summaries based on
regional importance cues for egocentric video browsing [13].
Doherty et al. [8] built automatic classifiers for visual lifelogs
to infer personal lifetraits, such as people’s characteristics and
behavior. They were able to extract 22 distinct activities, such
as meeting friends or having lunch.

In summary, cameras are increasingly used as wearable life-
logging devices on various body positions, and thus, the vi-
sion of augmenting the memory starts to become reality. The
position of lifelogging cameras influence the image content
and quality, and video may - compared to stills - produces
an amount of data that makes it hard to watch all captured
material. However, image processing algorithms are used to
pre-categorize the images for easier and time-efficient lifelog-
ging information retrieval. To our best knowledge no work has
been carried out to comprehensively investigate the effect of
the body position where the camera is mounted (head or chest)
and of the captured media type (video and stills) on image
quality, neither on quality perceived by users nor on quality
evaluated through automated image processing.

METHOD
For comparing the effect of lifelogging camera characteristics
(camera position and media type) we designed an experiment
where participants were wearing cameras in three different
situations at the two most common body positions: head and
chest. The video data was afterwards used to generate to
different media types: video and stills.

The goal was to have typical lifelogging images (still and
video) evaluated by the people that had worn the cameras as
well as by computers through automated image analysis. For
the human evaluation we measured image quality ratings, such
as the value of the image to recall the captured situation as
well as perspective, camera motion, and occlusion. For the
computer evaluation we compared quantitative aspects of im-
age processing and computer vision techniques between both,
the head- and the chest-worn camera data. These aspects are
further classified into 1. image quality such as video sharp-
ness, 2. feature extraction including hand and face detection
and 3. scene classification i.e. foreground and background
segmentation.

Participants
We recruited 30 participants (25 males, 5 females) comprising
university employees and participants of a one week lasting
research seminar with different academic backgrounds, such
as computer science, psychology, and digital media design.
Their age ranged between 23 and 50 years (M=30.7, SD=7.4).

Apparatus
For image capturing we used camera glasses (OctaCam HDC-
700) that record video with 30fps. During the study partici-
pants were wearing two camera glasses at the same time, one
on the nose and the other one mounted at the chest using a
chest-band, see figure 1. We used the same cameras on both
body positions to ensure equal image quality of the two camera
positions.

As video encoding often introduces additional compression ar-
tifacts, we aimed to reduce quality loss. Thus, for the video (of
which also the stills were extracted) we chose a very high qual-
ity video codec, a high resolution, and a high bit rate (video
codec: H264 - MPEG - 4 AVC (part 10) (avc1), resolution:
1280px x 720px, frame rate: 30fps, bit rate: 8 Mbps).
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Figure 1. Participant equipped with cameras on head and chest.

For the video and video still evaluation, we developed a soft-
ware tool that trimmed the two videos of each participant to
an equal number of chunks of 30 seconds. To create the video
stills, the first frame of each 30 second clip was exported as a
snapshot.

That procedure served as preparation to present the two differ-
ent media types (video, still) taken from two camera positions
(head, chest) in smaller pieces to the participants one day after
they had captured the material. To focus on the effects of
the camera position on image quality no video clip contained
audio. This step also helped to avoid privacy concerns of the
participants.

During the image evaluation, the tool presented the 30sec
video clips and the stills from both, the head- and the chest-
worn camera in random order to the participants. The video
clips were shown in twice the speed to reduce the overall
session time. Underneath each video clip and still four Likert-
Scale structured questions were presented. In addition, before
finishing the session, an open questionnaire was presented to
the participants.

Tasks
The study was split in two tasks: (1) a video/still capture and
(2) a video/still review task. During the first task, participants
were asked to wear the two cameras in three different situations
that were chosen to cover situations that challenge lifelogging
capturing in various ways:

1. Attending a meeting

2. Walking over university campus

3. Having lunch or dinner with a group of colleagues

Thus, we had (1.) a situation where the chest most probably
would be stable while the head may move a lot (2.) a mobile
scenario (3.) a situation that contained manual activities with
potential camera occlusions. We divided the participants into
three groups of 10 each, where each participant was exposed
to one of the three situations.

Measurements
In summary, we recorded 60 videos, 30 videos with a head-
and 30 with a chest-worn camera with 30fps and a resolution
of 1280x720px. In total we collected 545 minutes (272.5 per
camera), 18.2 minutes per participant. The evaluation tool

recorded 7 item Likert-scale ratings answering the following
statements that were presented after each still image and video
clip:

• The perspective was perfect: Totally - Not at all

• Camera motion decreased the image quality: Totally - Not
at all

• Occlusion decreased the image quality: Totally - Not at all

• The captured material shows information that helps me
remembering the situation: Totally - Not at all

Furthermore, the tool recorded qualitative comments accord-
ing to the following question presented at the end of the session
and after all still images and video clips have been evaluated:

• What content shown in the images/video helped most to
recall the situation?

In summary, we collected 1744 ratings, 872 per camera posi-
tion for each media type (video, still). Further, 30 qualitative
comments were collected (one per participant).

Procedure
The experiment consisted of two sessions: during the first
session and after filling the consent form, we equipped partici-
pants with the camera glasses for wearing them in one of the
three situations described. For the second session, we invited
participants to come back to our lab one day after the first
session as then the events of the previous day were already
committed to long-term memory [2]. In this session we asked
participants to watch the captured material from the previous
day, which had been prepared as video and as still by the
evaluation tool. The image type (video or still) as well as the
camera position (head, chest) was randomized. After watching
each still image or 30-second video clip, participants answered
the four Likert-scale structured questions regarding perceived
image quality. When all material was presented and evaluated,
participants were asked the open question on content that sup-
ports memory recall. Demographic questions were presented
by the evaluation tool before the session started.

Design
Our study had a 3x2x2 mixed design with the between-groups
variable task (attending a meeting (1), walking across univer-
sity campus (2), having a meal with colleagues (3)) and the
within-subject variables camera position (head, chest) and me-
dia type (video, still). Each participant group consisted of 10
people, and each group solved one of the three tasks. The de-
pendent variables were perceived image quality (measured as
property ratings and qualitative opinions) and objective image
quality (measured in an image and feature evaluation through
image processing and computer vision).

The image features and properties were chosen in respect
to how they generally support lifelogging video sorting and
finding. From autobiographical memory research we know,
that persons, activities, and places are important information
to recall past live events [23]. Feature recognition techniques,
such as face and hand detection, are already used to analyze
life-logging videos and to identify activities and events [9,

MUM 2015 Wearable and Mobile Interaction

236



Figure 2. Boxplots for perceived video quality reduction through occlu-
sion or perspective (min=1: quality was totally reduced through occlu-
sion or perspective, max=7: quality was not at all influenced) per task.

13]. Aiming to explore which camera position works best
for lifelogging, we used standard feature detection and image
analysis techniques to compare their success for lifelogging
material captured with head- versus chest-worn camera. To
investigate whether video or stills provide better lifelogging
data, we also compared the outcome of image processing
algorithms using the video as well as the still data.

PERCEIVED IMAGE QUALITIES
Using structured Likert-scale as well as open questions, we col-
lected data to investigate the perceived image qualities (camera
perspective, camera motion-based noise, and occlusion) and
the type of content that supports recalling the captured situa-
tion.

Results
For analyzing the quantitative results, we conducted Kruskal-
Wallis Tests to indicate significant differences between the
within-subjects variable task, and Post-hoc analysis with
Mann-Whitney U tests were conducted with a Bonferroni
correction applied, resulting in a significance level set at
.017. Wilcoxon Signed-Rank Tests were used to analyze the
between-subjects variables camera position and media type.
For the qualitative results we used a bottom-up analysis and
aggregated the comments into memory recall cue categories.

Perspective
For perspective ratings, we found significant differences be-
tween the three tasks regarding the video captured with the
chest-worn camera (chest_video: H(2)=6.543, p=.038, see
Figure 2, left), while perspective got no significantly different
ratings in the other three conditions (head_still: H(2)=1.661,
p=.436; chest_still: H(2)=3.814, p=.149; head_video:
H(2)=1.667, p=.435). Post-hoc tests showed for the video cap-
tured with the chest-worn camera that the perspective while
walking was significantly worse rated than during meeting
situations (U=15.5, p=.009, see figure 2, left), but no signifi-
cant differences regarding the perspective ratings were found

Figure 3. Boxplots for camera motion based media quality reduction
during meetings (left), occlusion based media quality reduction during
meals (center), and media quality based recall reduction during meals
(min=1: totally reduced quality, max=7: quality was not effected).

between the other tasks (meeting vs. meal: U=30.5, p=.140;
walk vs. meal: U=39.0, p=.405). Furthermore, video was
rated better than still regarding the perspective when using
the head-worn camera while walking (Z=-2.040, p=.041, see
figure 3, right). The other comparisons of the within variables
did not show significant effects on perspective (p>.05).

Camera motion-based noise
No significant difference was found in the camera motion
based ratings between the three tasks, neither for stills captured
with a head-worn camera (head_still: H(2)=1.454, p=.483)
nor for stills captured with the chest-worn camera (chest_still:
H(2)=0.314, p=.855).

For the meeting task, we found that wearing the camera on the
chest reduces the motion-caused image quality significantly in
comparison to wearing the camera on the head for both media
types (still: Z=-2.293, p=.022; video: Z=-2.497, p=.013, see
figure 3, left). Moreover, camera motion was perceived worse
for stills compared to video when the camera was worn on
the head during meetings (Z=-2.803, p=.005). Furthermore,
the rating of camera motion for stills while walking show
that the image quality was disturbed more using the chest-
than using head-worn camera (Z=-2.091, p=.037). The other
within-variable comparisons did not yield significant differ-
ences for the walking task (p>.05). During the meals, the
camera motion reduced the perceived image as well as the
video quality less when the camera was worn on the head (still:
Z=-1.988, p=.047; video: Z=-2.499, p=.012).

Occlusion
Regarding the image quality reduction through occlusion rat-
ings, we found significant differences between the tasks for
the data captured with the chest-worn camera (chest_still:
H(2)=6.289, p=.043; chest_video: H(2)=12.126, p=.002),
while occlusion was not significantly different rated if the cam-
era was worn on the head (head_still: H(2)=0.886, p=.642;
head_video: H(2)=1.957, p=.376). Although, the omnibus
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Table 1. Beneficial memory cues represented in video and still content to recall the captured tasks (meeting, walk, meal).
Meeting Walking Having a meal

Persons (11) Persons (12) Persons (9)
- persons (6) - persons (4) - faces (2)
- faces (2) - faces (3) - gestures (2)
- emotions (1) - passing people (2) - passing people (2)
- persons speaking (1) - persons speaking (2) - persons (2)
- gestures (1) - myself (own hands) (1) - persons speaking (1)

Place (3) Place (6) Place (5)
- environmental overview (3) - landmarks, e.g. restaurant name, buildings (6) - environmental details, e.g. furniture (2)

- overview over the scene (2)
Objects (11) Objects (2) - menu with restaurant name (1)
- objects (4) - objects (1)
- PC / phone content (4) - objects in my hand (1) Objects (3)
- objects handed by persons (3) - food (3)

Actions (2)
Actions (1) - specific situations (1) Actions (1)
- situation change (1) - weather (1) - specific situations, e.g. people entering the scene (1)

Time (5)
- states refering to time, half eaten meal, half-full glass of juice (3)
- time on the phone (1)
- recording time of the video (1)

test for the still data captured with chest was significant for
the tasks, the post-hoc test could not confirm significant differ-
ences in occlusion ratings for the stills captured using a chest
camera (meeting vs. walk: U=42.0, p=.041; meeting vs. meal:
U=21.0, p=.028; walk vs. meal: U=23.0, p=.041; using a Bon-
ferroni correction significance level set of .017). In contrast to
the between-group test, within-factor test indicated significant
differences, namely the video captured with the chest caused
occlusion-based quality reduction during meals more than
during walks (U=5.0, p=.001, see figure 2, right), while no
difference was found between the other task pairs (meeting vs.
walk: U=28.4, p=.096; meeting vs. meal: U=25.0, p=.059).
During the meals, the chest camera was affected by occlusion
significantly more for still and video than the head camera
(still: Z=-2.310 p=.021, video: Z=-2.599 p=.009, as shown in
figure 3, center).

Recall of still/video
No significant difference was found regarding the memory
recall value between the three tasks. Neither for stills ex-
tracted from video and recorded with a head-worn cam-
era(head_still: H(2)=1.518, p=.468) nor for the camera worn
on the chest (chest_still: H(2)=2.381, p=.304). Moreover,
we found neither significant differences regarding the recall
value ratings for the video recorded with a camera worn on
the head (head_video: H(2)=1.053, p=.591) nor on the chest
(chest_video: H(2)=4.494, p=.106). During the meals, the
still images were rated to reduce the situation recall value of
the lifelogging data when wearing a chest camera (Z=-2.100
p=.036, figure 3, right), while neither the media type was in-
fluencing the recall value of data captured with a head-worn
camera nor did the camera position comparing same media
types (p>.05).

Content to support memory recall
We collected qualitative comments on still and video content
that supports memory recall. That data was analyzed by group-

ing the participants’ comments per task (meeting, walk, meal)
into semantic categories that refer to memory cues, which are
known from cognitive psychology to retrieve information of
autobiographical memory: objects, actions, place, time, and
(attitudes towards) persons, [23], see table 1.

Content-wise, capturing persons was rated to be most appreci-
ated for video lifelogging, which includes faces, persons one
talks to, passing people, the gestures of persons, and their own
hands. Hands were also named in order to recall activities, for
instance when they were holding objects. Objects in general
were mentioned with a strong dependency on the situation, e.g.
food during the meals and phones during meetings. Finally,
places were named to help to remember the situation, where
restaurant names as well as specific furniture or buildings are
examples to recall a place.

Summary
The perceived image quality of both, head- and chest-worn
camera, depends highly on the task. For instance, the chest-
worn camera stills are rated extraordinarily bad while having a
meal because of occlusion, while the chest-camera perspective
was rated worst while walking. Moreover, video led to bet-
ter recall results than still images using a head-worn camera
during meals, while the movements of the head-worn cam-
era caused less image quality reduction than motions of the
chest-worn camera. Thus, the quality perception is over all
image properties mainly rated better for the head-worn cam-
era captured lifelogging data regarding perspective, occlusion,
camera motion, and situation recall value.

From the qualitative comments about naming content that
helps to recall a situation, we found that (1) the categories for
autobiographical memory cues can also be used to classify
the lifelogging memory recall cues that we aggregated out
of our participants’ comments. (2) Most comments relate to
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Figure 4. Mean & SE of sharpness, foreground change, and hand as well
as face detection rate per task (T), camera position (C), and media type
(M). The values represent percentage with min=0, max=1.

the category persons, including faces and hands, followed by
objects and places.

The quality of both media types, video and still, was perceived
much higher when the lifelogging camera was worn on the
head. Finally, from considering the subjective ratings of the
lifelogging images, participants rated the memory recall value
of videos higher than of stills.

OBJECTIVE IMAGE QUALITY
As known from autobiographical memory theories and as
shown in the previous section for lifelogging data, faces and
actions are highly important cues to recall personal memory.
Going through lifelogging data, such as watching personal
photos or videos, is incredibly time consuming, and thus,
image processing is an adequate approach to categorize such
data to quickly find specific photographical stills or videos.

In general when applying image processing and computer
vision we need a certain quality of sharpness. Otherwise
useful feature detection algorithms, such as face and hand
detection algorithms as well as for those extracting foreground
and background, would fail. Moreover, foreground extraction
can improve face and hand detection, which we found are
relevant cues to recall situations out of lifelogging data. Thus,
in the following section, we use standard image processing
algorithms to investigate whether lifelogging images captured
with head- or with chest-worn cameras as well as video or
still material gain better results in image analyses and feature
detection. Therefore, we conducted quantitative analyses of
image property and feature extractions using our captured data.
We utilized common image processing and computer vision
techniques with the aid of openCV library. The property of
interest includes image sharpness, while the features cover
foreground changes as well as face and hand detection. Since
we lack a reference image for evaluating the image property
(sharpness), the evaluation for the values was done relative to
the camera position.

Results
The descriptive statistics (means and standard deviation) for
the analyzed features and property are shown in table 2. The
average values and standard errors of the sharpness property

Figure 5. Mean & SE of detected hand as well as detected face per frame
for task (T), camera position (C), and media type (M). The values repre-
sent absolute numbers.

as well as of the features foreground change, face detection
rate and hand detection rate are presented in figure 4. The
average values of the absolute amount of detected faces and
hands per frame including the standard error are shown in
figure 5. We tested with mixed ANOVAs the influence of task
as between-subjects factor and camera position and media
type as within-subjects factors on image property and features.
In case of a significant effect of task, we used Bonferroni
corrected post-hoc tests to indicated significant differences
between the three tasks.

Image Sharpness
One of the common ways of estimating image sharpness is
using edge detection to define sharp intensity changes in an
image. We applied Laplace filters to estimate the sharpness of
the image as it computes the second spatial derivative of an
image which results in zero values for the smooth i.e. blurred
part of the image and peek values for edges. Picking the
maximum value of the image reflects how sharp the image
is which could be used for comparison purposes. To test
and validate this approach we blurred the same image and
compared the maximum values, which complied with our
assumption (i.e. the sharper the image the higher the maximum
value of the image data is). We computed the average frame
sharpness for the captured videos from both cameras, and
assigned binary values for each camera position, one for the
position with higher average sharpness and zero for the one
with less average sharpness.

A mixed ANOVA showed that pictures taken with a head-
worn camera were significantly sharper than pictures taken
with a chest-worn camera (F1,27 = 24.324, p<.001), but there
were no sharpness differences between the three different tasks
(F2,27 = 0.895, p=.413). There was a statistically significant
interaction between the position of the camera and media type
on sharpness, (F1,27 = 14.738, p<.001).

Foreground Extraction and Change Detection
The foreground is extracted by modeling and subtracting
the background of an image. To accurately extract the fore-
ground, a background model is computed using an accumu-
lated weighted model for each pixel [27]. It is chosen to allow
a dynamic adaptation of the background. The dynamic update
is dependent on the learning rate parameter (α) that controls
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Table 2. Mean values and SD per image property (sharpness) and image features (foreground change, hands detected per frame, hand detection rate,
faces detected per frame, face detection rate) for each task (T), camera position (C), and media type (M).

Sharpness Foreground Hands
pFrame

Hand dRate Faces
pFrame

Face dRate

(min=0/max=1) (min=0/max=1) (abs. values) (min=0/max=1) (abs. values) (min=0/max=1)

Task_meet 0.25 (0.44) 0.04 (0.06) 0.17 (0.27) 0.36 (0.29) 0.30 (0.26) 0.27 (0.30)
Task_walk 0.25 (0.44) 0.12 (0.16) 0.10 (0.10) 0.14 (0.17) 0.10 (0.16) 0.15 (0.23)
Task_meal 0.25 (0.44) 0.09 (0.12) 0.34 (0.31) 0.64 (0.33) 0.22 (0.23) 0.45 (0.37)
CamPos_head 0.42 (0.50) 0.08 (0.13) 0.22 (0.21) 0.32 (0.29) 0.21 (0.25) 0.38 (0.34)
CamPos_chest 0.08 (0.28) 0.08 (0.12) 0.28 (0.30) 0.44 (0.37) 0.11 (0.19) 0.21 (0.30)
Media_still 0.00 (0.00) 0.14 (0.15) 0.17 (0.17) 0.39 (0.35) 0.03 (0.06) 0.17 (0.32)
Media_video 0.50 (0.50) 0.02 (0.04) 0.33 (0.31) 0.37 (0.32) 0.29 (0.26) 0.42 (0.30)

how fast the background model is updated. The α value lies
between zero and one and can be adjusted to either maintain a
static or dynamic background model. The higher α , the more
sensitive the background model becomes to changes in the
image sequence. Since the cameras are in a rapidly chang-
ing environment, we systematically tested the background
modeling algorithm with different values. The α value of 0.1
showed best results in terms of capability of rapidly updating
the background to adapt to the changing background yet ex-
tracting reasonable foreground. The extracted foreground is
compared to previously extracted foregrounds to define the
total difference resulting in values between 0 and 1 where 0 is
identical and 1 is a totally different foreground.

The foreground change did neither significantly differ between
the tasks (F2,27 = 2.589, p=.094) nor between the camera po-
sitions (F1,27 = 1.345, p=.256), but the media type influenced
the foreground change significantly (F1,27 = 29.124, p<.001).

Face detection
Using common face detection algorithm based on the openCV
cascade classifier namely "haarcascade_frontalface_alt". We
computed both the detection rate (as the percentage of true
positives of all detected faces) and the amount of correctly
detected faces per frame to reflect the influence of different
tasks, of different camera positions and different media types
on the ability to detect faces. Examples for correctly as well
as for incorrectly detected faces per camera position including
all tasks are presented in figure 6.

The face detection rate was significantly higher for lifelogging
data captured with the head-worn camera versus one worn
at the chest (F1,27 = 16.579, p<.001). Moreover, the video
media type led to detect significantly more faces correctly
than the stills (F1,27 = 36.366, p<.001). The detection rate for
faces differed significantly between the tasks (F2,27 = 4.490,
p=.021): the face detection rate was significantly lower during
the walking task versus the meal situation (p=.020), while
meeting and walking (p=.968) as well as meeting and meal
was not different (p=.188).

The amount of correctly detected faces did not differ signifi-
cantly between the tasks (F2,27 = 2.810, p=.078). The actual
amount of correctly detected faces per frame was significantly
higher for material captured with a head-worn camera versus

one worn at the chest (F1,27 = 16.677, p<.001). Moreover, the
video media type leads to detect significantly more faces per
frame than the stills (F1,27 = 59.178, p<.001).

Hand detection
Based on the same evaluation approach used in detecting faces,
a hand cascade classifier has been used to detect hands. We
were only interested in detecting the user wearing the cam-
era hands, thus further filtering was applied on the detected
hands to define the detection rate of the hands. This filtering
is realized by computing orientation of the hands, where the
convex hull of the detected hands are computed and then finger
positions are extracted based on the local maximum distance
from the hands center. Based on the finger positions and hand
center we estimate the orientation of the hands. For instance,
conditions included the hand center should not exceed the
finger tips. Both the recognition rate and the number of hands
per frame were computed for the two camera positions. Exam-
ples for correctly as well as for incorrectly detected hands of
the participants while capturing egocentric video per camera
position and for all tasks are presented in figure 6.

The hand detection rate (true positives) out of the entire
amount of detected hands (see below) was significantly higher
for material captured with the chest-worn camera versus one
worn at the head (F1,27 = 6.757, p=.015), while the media
type had no significant influence on the hand detection rate
(F1,27 = 0.282, p=.600). The percentage of correctly detected
hands differed significantly between the tasks (F2,27 = 20.707,
p<.001) and a Bonferroni corrected post-hoc test yielded that
the percentage of true positives in the detected hands was sig-
nificantly different for each task. Walking results in worst
hand detection, and most hands were correctly detected during
a meal (meeting vs. walk: p=.030, meeting vs. meal: p=.003,
and walk vs. meal: p<.001).

The actual amount of correctly detected hands per frame
was not significantly different for material captured with a
chest-worn camera versus one worn at the head (F1,27 = 3.966,
p=.057). Moreover, the video media type leads to detect sig-
nificantly more hands per frame than the stills (F1,27 = 20.099,
p<.001). The number of detected hands differed significantly
between the tasks (F2,27 = 7.236, p=.003), while significantly
less hands were detected during a walk compared with both,
meetings (p=.018) and meals situation (p=.004). The amount
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Figure 6. Examples of correctly (true positives: marked with green frame) and incorrectly (true negative: marked with red frame) detected faces and
hands per task (meeting, walk, meal), arranged in pairs: one is recorded with a head- & one with a chest-worn camera, both in the same moment.
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of detected hands did not differ between a meeting versus
while having a meal (p=1.000) as shown with a Bonferroni
corrected post-hoc test.

Summary
During our video and still analyses, we gained camera position
based and media type dependent insights into image charac-
teristics of lifelogging camera data. Hence, we documented
our experience applying image processing on still as well as
on video data that was driven by the aim to analyze effects on
lifelogging image quality. In the following paragraphs, we pro-
vide a discussion of the limitations and benefits of wearing a
lifelogging camera on the chest or on the head, and we discuss
what media type may result in better feature analysis applying
basic image processing algorithms. Finally, we suggest more
advanced image processing approaches that in future works
may improve the analysis’ results by being more appropriate
for lifelogging image processing than the basic algorithms we
had applied.

Head- versus chest-worn cameras
In general, sharpness is indirectly related to face, hand, and
activity detection as it can reduce the images quality to an
extent that impairs image processing algorithms. We found
that images from the head-worn cameras on average depicted
higher sharpness than the chest-worn. That may be unexpected
as the head most probably moves more than the chest, and
motions reduce sharpness in image capturing. However, the
chest-camera is often blurred with hand motions, e.g. while
eating or handling with objects, which is a possible explana-
tions for the sharpness lack of chest-worn cameras. Hence,
the image processing analyses confirm what we have found
when asking participants to rate the sharpness as they rated
the head-worn camera images to be sharper than whose of the
chest-worn device.

The camera positions also influenced the face detection rate
as the head position camera captured more faces compared
with the chest. An explaination of that result is that the head
perspective often focuses on faces while the chest view might
not include faces due to either occlusion by focussing lower
positioned other objects (table or hands, see figure 6, row 3, 4,
collumn 3, 4). Furthermore, different tasks influenced the face
detection rate, which was due to the static position and the
typical sitting situation highest during the meal and meeting,
while it is lowest when walking. However, the different camera
positions did not influence the hands per frame, more hands
were detected correctly with the chest-worn camera.

Video versus still
The videos showed higher values for detected faces per frame
than stills, which does not seem to be straight forward as the
still is representing the same content but with less frames.
Two reasons may cause the better face detection for video
compared to stills: Firstly, the fewer faces per frame may be a
results of more random content selection if only images taken
twice a minute are considered to represent a scene. Secondly,
the better images quality from the videos in terms of sharpness
and foreground stability reflects a higher number of faces
per frame and higher detection rate, where more face were
detected correctly from video in comparison with the still.

Suggestions for algorithm improvement
In our approach we utilized basic computer vision algorithms
for image features and properties extraction, however deploy-
ing more advanced techniques might lead to better results. For
example, Kopf et al. [17] developed Hyperlapse, a method
for converting video captured with a wearable camera with
too many movements into a video that appears as if it would
have been taken with a smoothly moving camera through re-
constructing the 3D input camera path and then optimizing a
novel camera path and cropping the output video accordingly.

However in this work we aimed to evaluate how well feature
detection on lifelogging images works already when using
basic algorithms, more advanced approaches are suggested for
future work, including:

• Applying intensive image preprocessing before the analyses
phase by applying:

– Noise reduction filters (e.g. median filters).
– Image stabilization and rectification

• Adding further constraints on the face detection like skin
color and eye detection to reduce the false positive detection
rate.

Furthermore, advanced capturing devices would significantly
affect the results. For instance, wide angle cameras could
be used to extend the filed of view enriching the amount of
information in each frame, as well as, covering the blind spots
experienced by each camera position. Also, the usage of
additional sensors to detect camera motion may be useful to
reduce motion blur.

LIMITATIONS
We are aware that video stills are not a true representation
of picture based lifelogging images, such as time lapse, as
the shutter time of the stills differs from those of most photo
cameras. In pre-study tests we made intensive use of the
lifelogging photo camera Narrative Clip, and we experienced
that the image quality of this state-of-the-art device is worse
than images of traditional cameras and rather comparable with
video stills. We accepted that the shutter time of the stills
differs from those of most photo cameras in order to keep
other image characteristics equal for both media types, such as
camera position and perspective, resolution, and compression
algorithm. Consequently, with our setup, the only main differ-
ence of our video stills - compared to common photo camera
images - is the shutter time, which may add blur to the images.
This can affect some of our analysis, e.g. face detection and
perceived image quality. However, we had decided to not use
two different camera types as we were particularly interested
in comparing media that showed the same content captured
at the same time, with exactly the same camera position, and
with an equal perspective.

DISCUSSION & CONCLUSION
Different image capturing devices have been proposed for
lifelogging. They mainly differ regarding the wearing position
and the media they capture. Our work shows that the choice
of recorded media type as well as the camera position impact
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the value of the material captured. We analyzed the quality of
video and stills for two camera positions and when the device
was attached to the head or chest, through both objective
ratings as well as image processing. We moreover gained
some qualitative feedback about content that was important in
such video to recall the situation.

Our analysis shows that video captured by head-worn cameras
gives better memory hints about the situation recorded: the
captured features were perceived more useful by participants,
which is in line with previous research suggesting people,
places, and time to be appropriate autobiographical memory
cues (e.g., [3], [5], [25]).

The quality of both media types, video and still, was subjec-
tively preferred when the camera was head-worn. This position
was further favored for video recordings over images/stills,
especially with regard to support memory recall. Since faces
and the resulting ability to recognize people are a key memory
cue, the perception of footage containing faces was favored
by participants. Because manual review of lifelogging footage
is highly time consuming, the ability to automatically extract
faces is vital. Head-worn cameras produce images of higher
objective quality than chest-worn devices. Moreover, more
relevant content is captures, primary faces. Consequently,
automated video analyses can better detect the relevant infor-
mation, for example, using face detection algorithms. Hence,
the head-worn position facilitates both recall and automated
video indexing. However, due to limited battery life there is
no wearable camera currently on the market that allows for
24h video recording, although this issue may be solved in the
near future.

Thus, our conclusions are: (1) Faces are the most important
content in people-centric situations in lifelogging video. (2)
Head-worn video cameras are preferred for capturing lifelog-
ging video as they provide video footage that contain faces
of the people we interact with in life. Further, they produce
material showing recall relevant content. (3) Finally, video
better supports memory recall as it contains continuous life in-
formation while still/images miss some information and show,
for example, less faces per frame than video.

However, there is a trade-off between information richness
(video) and time required to watch the material (still). Hence,
a more holistic view on lifelogging video representation is
needed which is worth investigating in future works.

In summary, this work contributes to the domain of lifelogging
image capture by showing that video provides more beneficial
information than stills, while head-worn cameras capture more
subjectively valuable content, e.g. faces. Hence, we conclude
that a head-worn video camera works best as lifelogging cam-
era device. Our study provides a comprehensive overview of
lifelog camera images, thereby providing pointers as to when
to select certain camera devices, positions, and media types.
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