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ABSTRACT
In this paper, we investigate nine different visual represen-
tations of gaze in a competitive digital game setting. We
evaluate the ability of spectators to infer a player’s intentions
in the game for each visual representation. Our results show
that spectators have a remarkable ability to infer intent accu-
rately using all nine visualizations, but that visualizations with
certain characteristics were more comprehensible and more
readily revealed the player’s intent. The real-time Heatmap
visualization was the most highly preferred by participants
and the most effective in revealing intent, due to its ability to
balance real-time gaze information with a persistent summary
of recent gaze behaviour. Our findings show that eye-tracking
visualization can enable playful interactions in competitive
games based on players’ ability to interpret opponents’ atten-
tion and intention through gaze information.
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INTRODUCTION
Players’ nonverbal signals are an important element in many
competitive board and card games. By monitoring an oppo-
nent’s body language, facial expressions and gaze direction, a
player can infer their next moves or call their bluffs. Gaze is
a strong signal of a person’s area of attention and interest [9],
and can give away unintended information—what psychol-
ogy researchers call ‘nonverbal leakage’ [8]. Gaze is equally
important in collaborative settings, as a cue for collaborators
to monitor each other’s attention and coordinate their actions
[14]. Despite its importance in co-located settings, shared gaze
awareness is typically absent in remote multiplayer games. In
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Figure 1: An opponent’s gaze presented as a real-time Heatmap over
Ticket to Ride game showing interest in the east coast of the North Amer-
ica. This is an animated figure and it is best viewed in Adobe Reader.

this paper, we demonstrate an opportunity to bring shared gaze
awareness into this setting by comparing nine different ways
of visualising gaze within a digital multiplayer version of a
popular board game—Ticket to Ride1.

The advantages in observing a partner’s gaze in a collaborative
task are clear, leading researchers to build multiple systems
where users’ gaze points are streamed over a network to im-
prove coordination [3]. However, the opportunities for gaze in
competitive settings are more nuanced. Recent studies have
explored these possibilities by using visualizations of players’
gaze to open up novel gameplay experiences and increase so-
cial presence [16, 20]. Normally in remote multiplayer games,
a player’s only clues for predicting their opponents’ current
and future plans are the in-game actions they have previously
taken; players do not have access to the bodily cues (such
as gaze) that enrich the experience of games played around
a table or in a shared space. When given information about
an opponent’s gaze in a networked game, a player can build
hypotheses about what their opponent is thinking through ob-
servation of the areas or game elements that receive the most
visual attention. This creates further opportunities for a player
to deliberately manipulate their own gaze behaviour to de-
ceive an opponent about their plans and goals. This contrast
between the tendency for observed gaze to reveal intent and
the ability of a player to use their eye movements deceptively
makes shared gaze awareness a rich resource for game design.

1https://www.daysofwonder.com/online/en/t2r/
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However, studies on shared gaze visualizations for various
applications have found that the introduction of shared gaze
awareness can be disruptive, often being referred to as ‘dis-
tracting’ and ‘confusing’ [6, 16]. We hypothesise that this
is caused by two primary problems with gaze visualization
for digital interfaces. First, the way in which gaze has been
visually represented in past works may be inadequate or ill-
suited for the task and setting. This is expected, as the design
of visual representations in graphical user interfaces is highly
dependent on their context of use. This problem is exacer-
bated by an inherent problem with gaze: gaze is ‘always on’,
which makes designing gaze representations difficult as the
technology cannot distinguish between focused scrutiny and
more absent-minded looking.

Second, humans are not accustomed to interpreting visual
representations of gaze, as the focal point of gaze is ‘invisible’
in normal interpersonal interaction. Gaze information can be
‘noisy’ due to the jittery movements and the way the eyes
work (fixation-saccade-fixation cycle), and this is reflected
in the representations. Gaze data is difficult to interpret and
often misunderstood [6], as even trained professionals in eye-
tracking evaluations make use of a range of gaze visualizations
to make sense of the same collected data. Further, as gaze is
fast-moving and never entirely still, any real-time visualization
overlaid on a user interface adds a highly distracting element
that may interfere with the viewer’s own thought process.

To effectively use gaze awareness in a game, the designer must
understand how the choice of gaze visualization will affect
players’ understanding and enjoyment. Inspired by how play-
ers observe the gaze of one another in tabletop boardgames, we
selected a popular board game—Ticket to Ride—for the pur-
poses of our research. Using recorded clips from eye-tracked
gameplay, we assessed nine gaze representations in three dif-
ferent stages of the game (early, mid, late). This paper serves
as an initial novel groundwork for determining the characteris-
tics of gaze representations that allow human players to make
inferences about other players’ intentions and into derivation
of potential insights into their strategies (goals and plans).

RELATED WORK
In this section, we summarise related works that require a
user to interpret gaze representations of another, which falls
into two key areas: research on shared gaze, and works that
compare and interpret the use of gaze representations. We have
chosen to exclude works related to eye-tracking evaluations in
which gaze data is interpreted by trained professionals, as our
interest is specifically on the ability of non-specialist users to
interpret visual gaze representations.

Shared Gaze
Shared gaze systems are those that give users the ability to
see the gaze of a partner, typically to improve communica-
tion and coordination between pairs in collaborative problem-
solving tasks. Here, the eyes are typically not directly visible,
and the addition of a gaze visualization provides a comple-
mentary layer of nonverbal communication. Knowing where
someone is looking can provide rich information, from infer-
ence about their intentions to clues about their current cogni-
tive activity (based on behaviours such as scanning, focused

interest in an object, and repeated comparison of different
objects) [24]. With this knowledge, much research in HCI
(Human-Computer Interaction) has used gaze in collabora-
tive settings to foster coordination. For instance, Stein and
Brennan [24] found an improvement in problem-solving task
performance when another person’s gaze was used as a cue.
Gaze has been shown to be effective in co-located settings,
e.g. when multiple users perform a visual search task on a
large display [29]. A common approach is to present a user’s
gaze as a cursor overlaid on the shared visual display space,
to create an awareness of that user’s focus area [5, 24].

Gaze has shown promise when used implicitly with other
modalities in remote communication. Qvarfordt and Zhai ap-
plied gaze in a dialogue system, where a remote assistant is
able to detect the interest of a remote user through their gaze
patterns while conversing with them (remote user is unaware
that their gaze is being tracked) [22]. Tracking gaze behaviour
can serve as a natural deictic pointer and thus reveal inter-
est in a natural way. Brennan et al. have demonstrated that
shared gaze can be more efficient than speech for the rapid
communication of spatial information (spatial referencing) [3].

Despite the numerous benefits mentioned, gaze as an input
suffers from inherent problems is that gaze is ‘always on’,
related to the ‘Midas Touch’ problem that leads to accidental
triggering of gaze-enabled interface widgets [12]. To com-
bat this, gaze is often paired with another modality, such as
voice interaction; however, this can also lead to confusion
when there is a mismatch between gaze and voice inputs [6].
However, in competitive settings, this ambiguity can work as
a resource for game design, revealing a glimpse into players’
intentions without giving it away entirely.

Gaze Representation
How gaze information is represented strongly influences gaze
interaction [4]. We reviewed two recent works in HCI that
compare and contrast gaze representations to gather design
implications for our study. Zhang et al. evaluate gaze repre-
sentations for use in co-located collaboration, where two users
share a screen and two gaze points are represented [29]. From
a review of prior works, the authors selected four different gaze
visualization formats for testing—Cursor, Trajectory, High-
light and Spotlight—of which participants preferred highlight
and spotlight. The authors determined that attaining a bal-
ance between visibility and distraction was one of the biggest
challenges when designing and selecting gaze visualizations.

In another work, Li et al. designed and evaluated two gaze
representations aimed at improving the coordination between
pairs of users [17]: zoom focus and gaze trail. Both repre-
sentations used fixations processed from the gaze stream; the
former aimed to show the precise location of a fixation, while
the latter aimed to show the most recent gaze locations. Zoom
focus was found to be cognitively demanding and gaze trail
was found to have excessive information. The authors con-
clude that when designing gaze representation, one should
consider distraction and visual information.

Games Context and Summary
Gaze is an emerging input in computer games, with a focus on
using a player’s own gaze as a direct control mechanism to en-
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Figure 2: Top: The nine real-time gaze representations selected. Bottom: How each representation appears over the game Ticket to Ride. L-R: (a) Dot,
(b) Cursor, (c) Spotlight, (d) Fixation, (e) Scanpath, (f) Fixation Trail, (g) Heatmap, (h) Convex Hull and (i) Bee Swarm.

able novel playful experiences [25, 26]. There is growing inter-
est in implementing gaze as a mechanic for multiplayer games,
in both cooperative [19, 21] and competitive [16, 20] settings.
While the use of gaze in cooperative gameplay can directly
leverage the findings of ‘shared gaze’ literature (e.g. [21]),
competitive gameplay presents a different design challenge,
as players have opposing objectives and are more likely to
see different information on screen. We seek to find a gaze
representation for use in competitive games that maintains the
game balance, giving neither player a disproportionate edge
over their opponent while not being disruptive to gameplay.

The existing literature makes clear that there is a need to
balance visibility, distraction and visual information. Fur-
thermore, we note that the problem with a majority of gaze
representations is that they are designed to be used in post-
processing of gaze data. Therefore, there is a need to design
and evaluate novel gaze representations, such as that presented
by Li et al. [17], to cater for settings where gaze input is not
commonly used. Before we can design novel gaze represen-
tations, we need to understand the intrinsic characteristics of
existing representations in relation to the context of use. In
the next section, we present a variety of visual gaze represen-
tations that we have selected for use in our study.

REAL-TIME GAZE REPRESENTATIONS
Figure 2 shows the nine visual gaze representations which
were evaluated in this study. For each representation, we pro-
vide an account of its current applications, its characteristics
and the parameters for our use in the study. Most of the rep-
resentations are common in existing in eye-tracking software,
such as Tobii Pro Studio2. These representations are primar-
ily used for gaze data analysis and to replay collected gaze
data. We also considered a wide selection of representations
from works that: (1) survey gaze representations (e.g. [2, 18]),
(2) evaluate gaze representations (e.g. [29]) and (3) use gaze
for interaction (e.g. [21]). In making our selection, we re-
quired the representations to be clearly distinguishable from
one another. The selection was based on the characteristics
conspicuousness and visual information (see Table 1). We
chose the term conspicuousness (rather than ‘visibility’) to
highlight the degree to which the representations can be used
to display and draw attention, beyond just how well the viewer
is able to see the representation. Visual information refers to
the amount of information the representation provides. This is
2http://www.tobiipro.com

Representation Conspicuousness Visual Information Category

Dot Low High Point
Cursor Low Low Point
Spotlight Low Moderate Point
Fixation High Low Trajectory
Scanpath High Moderate Trajectory
Fixation Trail Moderate Moderate Trajectory
Heatmap Moderate High AOI
Convex Hull Moderate Low AOI
Bee Swarm High High AOI

Table 1: Real-time gaze representations in relation to conspicuousness
and visual information.

measured by the amount of aggregated gaze data used to gener-
ate the representation in addition to its overall size. We further
sub-categorised the selected representations by their character-
istics into three equally-sized subgroups: (1) Point-based, (2)
Trajectory-based and (3) Area of Interest (AOI)-based.

Point-Based Representations
For this category, we first selected two types of gaze repre-
sentations previously examined by Zhang et al. [29]: cursor
and spotlight. We then added the commonly-used dot repre-
sentation as a contrast to the first two in terms of precision
and visual information. The point-based representations are
mapped directly to the real-time gaze coordinates from the eye
tracker. To reduce the jittery motions that naturally arise from
eye movements, we applied a weighted moving average filter
[27] on top of the eye tracker’s already lightly filtered data to
smooth out the motion. This gave all three representations a
hovering effect when a user’s eyes moved across the screen
and reduced distracting jitter during gaze fixations.

Dot: This representation appears as a translucent red dot, akin
to a laser pointer beam or, at larger sizes, a torch beam (Fig. 2a).
It has commonly been adopted for use in gaze-based interac-
tion as a deictic pointer and has been demonstrated to be an
effective referential pointer to facilitate coordination in remote
collaboration [1]. This representation allows a viewer to see
gaze with high precision but can be potentially distracting.
Our implementation used a 0.5 opacity with a radius of 30-px.

Cursor: This representation is a large ring with a transparent
centre (Figure 2b). Its use has been demonstrated by Zhang et
al. [29] and in GazeArchers [21], a game in which two players
use gaze and touch simultaneously on a shared surface. Fur-
ther, Tobii divisions has implemented a similar representation
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in many of their recent products (Tobii Gaming3 Gaze Trace,
Tobii Pro Gaze Share4). Tobii Pro also uses this representation
for their wearable eye tracker controller to view the gaze of
a user in the real world in real-time. This representation is
equivalent to the size of the foveal vision which is about the
size of a thumb at arm’s length, making explicit the confidence
range of the gaze estimation. We matched the size of this
representation to default size of Tobii’s Gaze Trace (150-pixel
radius) and coloured the outline in grey to give this a low visi-
bility. This representation provides more visual information
than the previous representation (Dot) as it allows users to see
what is enclosed in the ring as opposed to a specific point.

Spotlight: Figure 2c depicts this representation where the gaze
point is shown as a red circle with high opacity in the centre
and decreasing opacity towards the edges. This was the most
widely preferred representation in Zhang et al.’s evaluation
[29]. It was noted to be more subtle and less distracting due
to the reduced overall visibility and conspicuousness. We
modified the parameters to suit our study, reducing its overall
size to a radius of 90 pixels (30 pixels at the highest opacity)
and changing the colour to red, as white blended into the light
background of the map area of the Ticket to Ride game board.

Trajectory-Based Representations
The representations in this category use the sensitive fixa-
tion stream provided by the eye tracker’s SDK to reveal the
sequence of points at which the player has recently looked,
leaving behind a short history of the player’s gaze. We initially
drew from professional eye tracking usability studies that use
animated representations to replay gaze data. In our review,
we found similar representations being used in eye tracking
research. For example, Qvarfordt and Zhai use a scanpath
representation to infer dynamic eye movements in their study
[22]. We also found proposed representations aimed to en-
hance remote collaboration, demonstrating the importance of
assessing representations that fall into this category [17]. A
red fill is used for representations in this category, with each
fixation presented as a translucent ellipse.

Fixation: This representation aims to illustrate points of focus
by displaying a single, unmoving fixation point as a red dot
(Figure 2d). When a player maintains their fixation, the dot re-
mains small in size. If the distance to the next fixation is within
a threshold, the dot becomes larger. In real-time, this represen-
tation gives the appearance of small eruptions occurring on the
interface that indicates whether a player is sustaining attention
in an area (large dots) or flicking around between multiple
areas (small dots). This representation was inspired by the
‘Live Viewer’ feature in the Tobii software, which Higuch et al.
implemented for use in a remote collaborative scenario [11].
Our adaptation removes the elements of direction (tail, fade)
used in other implementations to potentially reduce the mental
load. Therefore, participants see a single point that appears
then disappears instead of following a point.

Scanpath: The scanpath representation shows the length, du-
ration and direction of gaze by using a sequence of fixations
connected by a line (Fig. 2e). Variation of this representation
3https://www.tobiigaming.com
4https://tobiicloud.com/share/

has long been used to visualise gaze patterns in both psychol-
ogy, eye tracking usability studies and in HCI. This represen-
tation has been used unidirectionally such as in Qvarfordt and
Zhai’s study to show the interest of a remote unaware user,
or bi-directionally such as in Jermann and Nussli to improve
communication in a remote pair-programming scenario [13,
22]. We implemented this representation based on Goldberg
and Helfman [10]. Many approaches have been presented to
overcome the problem of visual clutter such as by bundling
close fixations into a single point. Another approach is to
use time duration such as in previous works (e.g. 5 seconds
[28]. Instead, we opted to limit the number of fixation bundles
displayed to 5, reduce the visibility of the lines connected the
fixation bundle and removed other elements such the number-
ing of each fixation bundle to reduce visual information.

Fixation Trail: This representation was originally proposed
by Li et al. to illustrate gaze paths as opposed to a single fixa-
tion point [17]. In our study, we renamed this representation
to Fixation Trail (originally Gaze Trail) as it uses fixation data
and leaves a trail of fixations (see Figure 2f). Li et al. believe
that the availability of prolonged gaze information allowed
participants to make references to multiple locations (e.g. con-
trasting two different fixation clusters). This representation is
different to Scanpath in that we fixed the size of the fixation
to a 30-px radius. Only 5 fixation points remain fully visible
while the remainder fades over time.

AOI-Based Representations
In this category, we selected gaze representations that allow
an observer to view the Areas of Interest (AOI) at which the
user has looked as a whole rather than a specific point. Repre-
sentations in this category use fixations aggregated over time.
We can control how much visual information is displayed by
adjusting its time window. Our implementation uses 120 fixa-
tion points (2̃ seconds) so as not occlude the screen (increase
visibility, reduce visual information). We selected three repre-
sentations with varying levels of visual information based on
their popularity in eye tracking research.

Heatmap: Heatmaps represent the distribution of gaze points
by a colour gradient (Figure 2g). We included this representa-
tion as it has commonly been used to visualise data in many
domains and is not limited to eye tracking. In eye tracking us-
ability studies it is also used for aggregating the gaze data from
multiple participants. While the representation requires the
aggregate participant data, it is possible to display a dynamic
heatmap of a single tracked user [7]. Our implementation
calculates the density of fixations within a 2-second window
and displays the heatmap accordingly. The window size in
our implementation attempts to balance visual information,
allowing several ‘hot spots’ to be shown but do not remain for
too long that it starts to occlude the interface.

Convex Hull: This representation is also known as Cluster
(Tobii Pro) which display areas with a high concentration of
gaze points as polygons to shows areas of interest (Figure 2h).
Our implementation uses the fixation data stream in which
we use to render a convex hull polygon in real-time using a
clustering algorithm. As the stream continuously updates the
convex hull, this creates a shifting polygon that shows the
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area in which the area is interested in. When the player looks
rapidly between two points, the polygon stretches towards
the points, but when the focus on a small area is high, the
representation becomes small. This representation aims to
provide minimal visual information of the area in which the
participant has shown interest in.

Bee Swarm: Bee Swarm has been typically used to replay
gaze points of several subjects against dynamic content such
as videos, allowing efficient comparison of recordings from
several subjects. Our variation aims to emulate this representa-
tion for use with a single user by displaying all fixation points
in the last 2 seconds in which we enclose in a convex hull (Fig-
ure 2i). Each point was 5 pixels in radius with a red translucent
fill. This visualization allows the player not only to see where
the area in which the opponent was looking but the also points
within that area. When the user focuses in a particular area, the
points will become denser in the area, revealing an interest in
the area. This representation has the highest amount of visual
information as it combines characteristics from both AOI- and
point-based representations.

RESEARCH DESIGN
In this study, we aim to understand the following research
questions derived from our review of the literature:

[RQ1] How well are human subjects able to infer intent
from a range of gaze representations?
[RQ2] What characteristics of gaze representations enable
humans to perform better in predicting intentions?
[RQ3] Do gaze representations have an influence on pre-
dicting intent in a competitive gameplay setting?

To answer these questions, we adopted a spectator (‘third per-
son’) approach. This means that participants other than the
players watched clips of gameplay sessions after the fact, with
different clips featuring different gaze representations. We
chose to make our participants spectators rather than active
players in order to simplify the task they were asked to per-
form, as they could focus on interpreting the gaze data without
worrying about managing their own strategy. This decision
was informed by the common finding in prior works that live
gaze data can be highly distracting from a task at hand [17,
20, 29]. As this was the first study to assess people’s ability
to infer intent from gaze data of a remote opponent in a game
setting, we decided to begin with a more concentrated test of
interpretive ability, before introducing the distractions of live
gameplay in a future study.

We recorded our data in two stages. In the first, we recruited 8
players to record 4 games of our selected game—Ticket to Ride
(described below) in which one player’s gaze was shared. In
the second, a separate group of 27 participants watched short
selected clips (< 1 minute) of the recorded gameplay from
the perspective of the player who could see the real-time gaze
representations. These participants provided an assessment of
each clip, which we used in our analysis. A secondary benefit
of this two-stage approach was that we were able to conduct a
larger number of gaze visualization assessments in a shorter
period of time than would have been possible if all participants
had had to actively complete multiple games. This enabled a

Figure 3: Participant assessing a clip in a lounge room setting.

larger sample size for this foundational work, which we will
build on in future studies involving active players.

Application
We developed a custom networked system that overlays real-
time gaze visualizations over any application (see through,
click through). We used this application to stream gaze data
between two laptops, each equipped with a Tobii EyeX eye
tracker, in different rooms. We streamed two types of gaze
data concurrently from the SDK: the lightly filtered gaze data
and the sensitive fixation data. Our application is capable of
displaying the gaze of one or both users simultaneously, mean-
ing that we have the ability to switch on the gaze of one user
to be visualised by themselves or by another user. Moreover,
we can easily switch the gaze between representations through
a control window on an extended screen.

Game and Stages
In Ticket to Ride, each player competes to claim train routes
between cities across a map of North America, seeking to
connect certain pairs of cities (‘tickets’) in a continuous path
of linked routes. Only one player can claim each route, and
players do not know which cities their opponent is seeking to
connect. Therefore, players must place their routes carefully,
staying alert to the risk that their opponent will claim a route
before them and block the most convenient path between their
goal cities. Keeping information hidden plays a large role in
Ticket to Ride, as a player can gain significant advantages over
their opponents by correctly guessing which routes they are
planning to take. Hence, Ticket to Ride works as an excel-
lent use case for our study for several reasons. First, it is a
widely-played board game, already familiar to many, with a
digital game version that is almost identical to the board game;
and because it has relatively simple rules involving clear goals
and actions, which can be learned in under 15 minutes by
interested players who have not played it previously. Second,
as a tabletop game, it demands constant attention, requiring
regular thought processing and frequent changes to short- and
long-term strategies. This affords us to obtain a range of be-
haviours to display. Third, Lankes et al. have determined
that turn-based games are better-suited to gaze transfer appli-
cations (as opposed to real-time first person shooters) [16].
This is because such games give players the opportunity to
alternate between playing their own moves and watching their
opponents’ behaviour as they take their turn. Fourth, it is a
map-based game, in which the players’ focus and strategic
calculations are closely concentrated on the geography of the
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Figure 4: Method for analysis for Area of Interest (AOI) Estimation and Route Prediction.

map; gaze awareness and eye movement studies with map-
based applications have been shown to be highly successful,
as the static map gives users a point of reference [15, 22, 29].

As a playthrough of Ticket to Ride progresses, the map be-
comes increasingly populated with trains, and the strategic
information available to the players becomes consequently
richer while their choices of unclaimed routes become more
constrained. Each player starts with a stock of 45 trains, and
the game ends when any player’s stock of unplaced trains falls
below three. We use this train stock as a metric for game
progression to divide the recorded games into three stages:
early (45-31 trains), middle (31-16 trains), late (15-0 trains).
The early stage is typically given over to planning, and plac-
ing trains are minimised as players try not to give away their
goals. The middle stage sees greater competition for routes,
and is where players often find themselves clashing over the
most efficient paths between their respective goal cities. The
late stage involves players either slotting in the last remaining
routes that they need, seeking to block their opponent, or look-
ing for other routes they can pick up extra points. We include
an even selection of representations of each stage in our study,
as we hypothesised that the usefulness and relevance of gaze
visualizations might change as the game progresses.

Gaze Visualization Recording
We recruited 8 players (4 pairs) to record the necessary game-
play clips between a naive player (whose gaze was being
recorded) and an aware player (for whom their opponent’s
gaze was visualised). Both players were placed in separate
rooms with an experimenter and given the opportunity to play
the in-game tutorial for up to 10 minutes to understand the
rules and mechanics of the game. Once the naive player was
confident with the game, they were asked to perform the de-
fault calibration provided by the eye tracker. The naive player
does not know that they are being watched to record and ob-
serve ‘natural gaze’. Meanwhile, the aware player was briefed
that different gaze visualizations would be shown to them and
that their opponent was not aware that their gaze was being
shown. Each pair played three games, and the gaze representa-
tion was changed at every stage of the game. We recorded the
displays using Open Broadcaster Software (OBS) Studio5 and
logged the gaze data with our custom application.

5https://obsproject.com/download

Following the recordings, we reviewed the videos and noted in-
stances in which the naive player exhibited various behaviours,
such as planning, checking game counters or tickets, and look-
ing for routes to claim on the map. From the videos, we
selected three short clips for each of the nine gaze visualiza-
tion formats: one in early game, one in middle game and one in
late game. This gave us a total of 27 clips, exhibiting a variety
of behaviours, and balanced between stages to control for the
influence of game stage. Moreover, as different visualizations
were used in different stages of different games, we are able
to randomise the clips further. The length of the clips ranged
between 20 and 60 seconds. All clips were saved without au-
dio, to remove any potential sound clues such as the recorded
player speaking aloud about their opponents’ plans. As ex-
pected, the aware players experienced a level of distraction
causing them to be drawn away from their own strategy and
that some visualizations were preferred over others. However,
we disregarded the feedback to avoid any early speculations.

STUDY
For the second stage of our study, we recruited 27 participants
from the University of Melbourne. There were 11 male and
16 female participants, aged 18 to 44 years (mean=25.6), and
included undergraduate students, graduate students and non-
faculty staff. Only two had previously played the board game
version of Ticket to Ride, but 17 indicated they had played a
game of the same type in the past week. Participants were
compensated with a $5 coffee voucher for their time. We
encouraged participants to watch a short video6 that describes
the rules and objectives as part of the recruitment process.

Procedure
Upon arrival, participants were greeted and seated comfortably
in a lounge room setting, facing a 48-inch (1080p) television
display connected to a PC as depicted in Figure 3. They com-
pleted a consent form and a simple demographic questionnaire
and were briefed on the rules of Ticket to Ride. The facilitator
showed them an example clip of gameplay footage and with it,
explained how they should assess each clip on a paper survey,
with the measures outlined under ‘Measures and Analysis’.
Here, the facilitator ensured that the participants understood
the rules of the game and what was required of them before
starting the study. Each session ran between 30 to 60 minutes.
6https://www.youtube.com/watch?v=uDODCHcj6Sg

Session 9: VR and Other Novel IO Technology CHI PLAY 2017, October 15–18, 2017, Amsterdam, NL 

546



Representation Early Mid Late Overall

Heatmap .44(.78) .68(.63) .73 (.75) .62(.72)
Fixation Trail .48(.41) .66(.72) .48 (.75) .54(.62)
Dot .59(.49) .37(.55) .67(.36) .54(.47)
Cursor .46(.73) .68(.68) .44(.28) .53(.56)
Fixation .63(.72) 51(.87) .41(.80) .52(.80)
Scanpath .40(.65) .50(.79) .65(.70) .52(.71)
Bee Swarm .59(.58) .36(.63) .43(.72) .46(.64)
Convex Hull .40(.62) .17(.44) .23 (.44) .27(.50)
Spotlight .24(.37) .25(.43) .28 (.65) .26(.48)

Table 2: AOI Estimation Results. Precision(Recall).

We employed a repeated-measures design: each participant
was shown all 27 (3 stages × 9 visualizations) clips, each of
which was considered one study ‘condition’, representing one
gaze visualization format and one game stage. Participants
were divided into three sets (A, B and C), and the order of the
clips was randomised for each set.

Participants were given a maximum of 10 seconds to analyse
the game and board state before the clip was played. In almost
all cases, participants indicated that this was enough time for
them to understand the game state, either with a verbal ac-
knowledgement or a non-verbal indication such as a nod of the
head. This time limit was imposed to prevent the participant
from basing their inferences too heavily on reasoning about
the layout of the game board, rather than the visualizations of
the gaze data, and in order to more closely approximate a live
gameplay setting in which the gaze information would be pro-
cessed and responded to quickly. The facilitator encouraged
participants to think aloud about what they were seeing, and
to ask for any clarifications about the game if required. After
the participant had viewed and assessed all 27 clips, they were
finally asked to rank the nine gaze visualization formats from
most preferred to least preferred. In summary, we collected a
total of 27 participants × 9 visualizations × 3 stages = 729
responses for each of our dependent measures.

Measures and Analysis
In response to each clip, participants were asked to record
the following five pieces of information: (1) Area of Interest
Estimation, using a map of the game board they circled the area
(or multiple areas) in which they believed the gaze-tracked
player had been interested. (2) Route Prediction, on the same
map they highlighted any specific routes that they thought
the gaze-tracked player was planning to build upon. They
were also encouraged to write a short interpretation of what
the gaze-tracked player was thinking during the clip or to
explain their interpretation of the gaze behaviour out. (3) They
rated how informative they found the gaze visualization in the
clip on a 7-point scale ranging from Not informative at all to
Extremely informative. (4) They rated how well they felt they
could predict the gaze-tracked player’s intentions in the clip
on a 10-point rating scale. Participants were permitted to skip
any of these questions when they felt unable to give a response,
for example, if they could not predict any routes upon which
the gaze-tracked player was considering to build. Finally, we
collected (5) Qualitative Responses at the end of the session,
participants were asked to rank the representations in order of
preference and explain the reasoning behind their choices.

Representation Early Mid Late Overall

Bee Swarm .70(.37) .67(.43) .43 (.28) .60(.36)
Cursor .69(.85) .54(.37) .53 (.19) .59(.47)
Heatmap .57(.31) .63(.29) .50(.63) .57(.41)
Scanpath .40(.46) .45(.26) .63(.25) .50(.32)
Spotlight .50(.22) 49(.26) .25(.14) .41(.20)
Fixation Trail .44(.14) .50(.17) .26(.26) .40(.19)
Dot .59(.37) .37(.14) .10(.04) .35(.18)
Fixation .37(.44) .26(.14) .27(.21) .30(.26)
Convex Hull .25(.11) .27(.10) .74(.02) .20(.08)

Table 3: Route Prediction Results. Precision(Recall).

Area of Interest Estimation and Route Prediction
To determine how closely each participant guessed the area
of interest of the naive player, we compared the intersection
of each response against the ground truth for the respective
condition. Participants recorded their responses by circling
the corresponding area in the map. To be able to analyse this
data digitally, we scanned the highlighted pages and extracted
the contours of the highlights using a custom-built OpenCV
computer vision application. To establish a ground truth, we
generated 2D density maps from the gaze data in each clip
using the R statistical package. We then refined the AOIs
against the manual analysis of the clips, discarding outliers
that did not correspond to the routes the player eventually
built. We then compared the intersection of the two regions,
computing the precision (area of intersection divided by the
total area circled by the participant) and the recall (area of the
intersection divided by the area of the ground truth contour)
of the participant’s estimate (see Figure 4, top path).

Similarly to the analysis of the AOI Estimation, we scanned
the highlighted maps and extracted the highlighted routes
using our OpenCV application (see Figure 4, bottom path).
We established the ground truth by recording the routes that
the player eventually built after the clip. We also recorded
routes that the player was considering to build but never
did. We inferred such routes based on evidence from their
hidden goal cards, subsequent game actions, and in-game
comments. As with the AOI Estimation, we operationalise
their performance primarily based on precision and recall,
but also considered their harmonic mean i.e. F-Score (F =
2× (precision× recall)/(precision+ recall)). The details of
these performance metrics are explained by Rijsbergen [23].

Quantitative and Qualitative Responses
For our third and fourth measure, we will use descriptive statis-
tics to analyse how informative as well as the predictability
of the gaze representation. To gain richer insights beyond the
quantitative performance data, we collected subjective percep-
tions in three ways. First, we transcribed all verbal comments
as they thought out loud when watching the clips. Second, in
the questionnaires for the clips, participants answered an open-
ended question that asked them to predict what the player was
thinking. Third, we transcribed the interview about their order
of preference at the end of the study. We were particularly
interested in comments beyond the areas of interest and routes,
including potential strategies, such as building a route to block
the opponent, planning a route, verifying whether they have
enough resources to build a certain route.
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Representation Early Mid Late Overall

Spotlight 5.1 (1.0) 5.1 (1.1) 4.8 (1.0) 5.0 (1.0)
Heatmap 4.8 (1.0) 5.0 (0.8) 4.9 (1.0) 4.9 (0.9)
Cursor 4.9 (1.3) 4.8 (1.4) 4.6 (1.3) 4.8 (1.3)
Dot 5.1 (1.6) 4.8 (1.1) 4.1 (1.7) 4.7 (1.5)
Fixation 4.7 (1.0) 4.5 (1.2) 4.6 (1.1) 4.6 (1.1)
Scanpath 4.7 (1.0) 4.5 (1.2) 4.8 (1.0) 4.6 (1.1)
Bee Swarm 4.6 (1.1) 4.6 (1.3) 4.4 (1.4) 4.5 (1.3)
Fixation Trail 4.4 (1.2) 4.7 (1.0) 4.3 (1.0) 4.5 (1.1)
Convex Hull 3.2 (1.2) 3.6 (1.4) 3.0 (1.5) 3.3 (1.4)

Table 4: Ratings of Informativeness Results 1 Not Informative at all - 7
Extremely Informative). Score (Standard Deviation)

RESULTS
We report the results of the nine visualizations at each of the
three game stages and their overalls. Five primary metrics
are reported: the percentage overlap of the AOI indicated by
the participant against the AOI detected by the software; the
performance between routes predicted by the participant and
routes plausibly considered by the naive player; participant
ratings of the visualizations’ informativeness; participant self-
assessments of how well they can predict what the naive player
is planning to do; and participant rankings of gaze visualiza-
tion preference. Lastly, we compared the scores from their
performance in our first two metrics against the last three.

Area of Interest Estimation
Table 2 shows the precision and recall for each representation,
ordered by precision. The order of the performance of the
visualizations in terms of precision were the Heatmap (.62),
followed by the Fixation Trail (.54), and finally the Dot (.54).
This means that these are the best representations for selecting
areas of interest within the ground truth. In terms of recall,
the Fixation (.80) was the best performing, followed by the
Heatmap (.72) and the Scanpath (.71). This indicates that
these were the representations in which the selected area cap-
tured a larger area within the area of interest. If we combine
both metrics using the F-Score, we find that the overall best
representation was the Heatmap (.66), followed by the Fixa-
tion (.63) and the Scanpath (.63). To test whether the stage
of the game had an effect on the precision and recall, we con-
ducted a repeated-measures ANOVA for each representation.
Except for Spotlight, we found that the stage had a significant
effect on the stage on the precision and recall. Precision sig-
nificantly increased in the Heatmap and Fixation Trail as the
game progressed, and decreased in the remaining conditions.

Route Prediction
Table 3 shows the computed precision and recall results for
each visualization ordered by precision. The best perform-
ing visualizations when it comes to route prediction in terms
of F-Score are Cursor (.52), Heatmap (.48), and Bee Swarm
(.45). Convex Hull was ranked significantly lower in both
precision and recall (.20 and .08 respectively) and this was
primarily from the late stage precision score (.02). The other
low score noted, also in the late stage, is the Dot representa-
tion recall score (.04). We tested the effects of the gameplay
stage on both precision and recall for each representation using
repeated-measures ANOVA. For precision, only the Scanpath
representation showed significance (p = 0.014) in which a

Representation Early Mid Late Overall

Heatmap 6.3 (2.0) 6.7 (1.9) 7.1 (1.7) 6.7 (1.9)
Cursor 7.0 (1.7) 6.1 (2.0) 6.6 (2.0) 6.6 (1.9)
Scanpath 6.0 (1.5) 6.0 (2.2) 6.6 (1.6) 6.2 (1.8)
Fixation 6.9 (1.7) 5.4 (2.1) 6.3 (1.5) 6.2 (1.9)
Spotlight 6.2 (1.7) 6.5 (1.5) 5.6 (1.9) 6.1 (1.8)
Bee Swarm 5.9 (2.1) 6.2 (2.0) 5.8 (2.3) 6.0 (2.1)
Fixation Trail 6.1 (1.7) 6.2 (1.5) 5.6 (2.2) 6.0 (2.0)
Dot 6.9 (2.3) 5.7 (1.8) 3.8 (2.0) 5.5 (2.4)
Convex Hull 4.0 (1.8) 4.7 (2.0) 3.9 (2.1) 4.2 (2.0)

Table 5: Predictive Ability Results. Score (Standard Deviation)

Bonferroni post hoc test showed a significant difference be-
tween the mid and late stage (p = 0.0069). Here, we note that
the Scanpath representation is the only representation to have
increase in precision from the mid stage (M = 45.5) to the late
stage (M = 63.4). A majority of representations, 6 out of 9
(Bee Swarm, Heatmap, Spotlight, Fixation Trail, Scanpath and
Convex Hull), remained precise for the early and mid stages
but significantly becomes less precise in the late stage. Both
Fixation and Cursor precision dropped significantly from early
(M = 37.3, M = 69.1) to mid game (M = 27.2, M = 54.0) but
remained consistent in the late game. The precision of the Dot
representation dropped linearly from early to late stage. There
was no significant effect on recall on the gameplay stages.

Ratings of Informativeness
The responses follows a normal distribution (Pearson chi-
square normality test, p < 0.05), in which calculated the mean
scores and standard deviation for each visualization for each
stage, and overalls (see Table 4). We test the effects of stage
on their rating on informativeness using repeated-measures
ANOVA and found a significance in the mid and late stage (p =
0.0247). We tabulated the results and ranked them by overall
rating accordingly. We found that Spotlight (5.0), Heatmap
(4.9) and Cursor (4.8) received the highest rating while Convex
Hull was rated significantly lower (3.3). Heatmap had the
lowest deviation (0.9) among the visualizations showing an
agreement among participants on its informativeness.

Self-Assessment of Predictive Ability
We ran the same statistical tests used in the previous measure
and found that the responses also follows a normal distribution.
We calculated the mean scores and standard deviation of each
visualization for each stage and overalls, and ranked them by
overall rating (see Table 5). We proceeded to test the effects of
stage on the responses using repeated-measures ANOVA and
found significance in the early and late stage (p = 0.331). The
results shows that Heatmap (6.7), Cursor (6.6) and Scanpath
(6.2) received the highest rating while Dot (5.5) and Convex
Hull (4.2) was rated significantly lower than the others.

Preference Rankings
Figure 5 shows the ranking data for each representation by
all participants, showing that the Convex Hull was ranked the
lowest (M = 2.0) while Heatmap was the highest ranked (M =
6.7). Cursor and Scanpath also was ranked highly. We further
analysed the ranked data using the Friedman test in which we
found a significance (p < 0.05). The post hoc test showed that
Convex Hull representation was ranked significantly lower than

Session 9: VR and Other Novel IO Technology CHI PLAY 2017, October 15–18, 2017, Amsterdam, NL 

548



Figure 5: Boxplot of Preference Ratings given for each visualization.
(BS) Bee Swarm, (C) Circle, (CH) Convex Hull, (D) Dot, (F) Fixation,
(FT) Fixation Trail, (HM) Heatmap, (SL) Spotlight and (SP) Scanpath.

all other representations. We ran the Friedman test once again
but this time removing the Convex Hull representation from
the test. We found that there were no significance differences
between the other rest (p = 0.07547). We proceeded to analyse
the interviews to gain further insights into these preferences.

We received many positive insights into why Heatmap was
ranked the highest and preferred by a majority of participants.
Participants that gave the Heatmap a high score mentioned its
‘persistence’ i.e. the visualization gave them a moment to make
an inference before it fades away (e.g. “I like that it stayed on
the screen for awhile” [P3]). A small number of participants
(e.g. P7) noted that they were familiar with the visualization
having seen or used them in other domains, noting its inherent
usefulness. When participants were asked why they preferred
Heatmap over the others, a majority they mentioned that they
had difficulty following them. Two contributing factors for
this were (1) speed (“too quick” [P16], “moved too much
and too quickly” [P11]) and (2) lack of conspicuousness (e.g.

“more subtle ones are harder to keep track of” [P19], “it was
hard to see” [P25]). Some participants mentioned that the
Scanpath visualization blended into the game making it hard
to differentiate (e.g. P20) while others found it useful (e.g.

“I like it because it gives you a track.” [P11]). Conversely,
some participants did rate visualization that falls under point-
based category highly. Participant 22 provided his explanation,
stating that he preferred the point-based representations as
he was able to process the visual information quickly and
described trajectory- or AOI-based representations as “a lot
going on”. Participants often compared Convex Hull and Bee
Swarm and found that the ‘red dots’ made it better (e.g. P17).
Bee Swarm’s ability to have persistence yet show movement at
the same time it is probably a reason why it scored well in the
route prediction measure. Overall, participants provided rich
feedback, noting that AOI-based representations were good for
predicting overall strategy while point-based representations
appear to be better moment-to-moment attention.

DISCUSSION
Our study explored the characteristics of nine visual repre-
sentations of gaze to determine which was most effective at
conveying intent to an observer by exploring relationship be-
tween the characteristics of representations and human ability
to infer intent from them. This section discusses the results
from the five metrics as well as the post study interviews.

Representation Performance and Preference
Once again Convex Hull was largely indecipherable to partici-
pants, with the lowest scores for route prediction and close to
the lowest scores for AOI estimation. However, the other AOI-
based visualizations, Bee Swarm and Heatmap, had among
the best results for route prediction. Unlike Convex Hull,
these visualizations can clearly display both the broad area of
sustained interest and the focal point of the player’s moment-
to-moment attention. The Heatmap shows multiple hot spots
and recent zones in which the player has looked. Interestingly,
Bee Swarm performed well for route prediction but relatively
poorly in AOI estimation measure. Our version of the Bee
Swarm is encompassed by a convex hull display, which allows
viewers to see at a glance the general region of the player’s
gaze while their more exact moment-to-moment attention is
captured by a large number of rapidly-propagating red dots.
We believe that participants used the convex hull to narrow
their focus, enabling them to see the routes more clearly;
avoiding a visual search for the next sequence.

Conversely, Fixation Trail and Dot performed strongly for AOI
estimation, but relatively poor for route prediction, suggesting
that these visualizations were effective at conveying general
information but were not fine-grained enough for inferring spe-
cific intent. We believe that trajectory-based representations
caused participants to divide their attention between two areas
of interest and this was specifically mentioned by Participant
22. None of the point-based representations performed partic-
ularly well. We believe by the time participants start to make a
connection between objects, the visual has moved somewhere
else, causing them to start making a new inference elsewhere.

The Heatmap gaze representation overall scored highly in all
five measures, and this is primarily attributed to its ability to
provide a high level of visual information by using averaged
information. Moreover, Heatmap takes a small amount of time
to ‘heat up’ and cool down, allowing the player to know areas
which are gaining interest and losing interest. We earlier noted
that Scanpath performance increased from the early-mid to
late stage of the game which may be reflective of the nature
of the game. Towards the late stage players tend to track the
missing paths which reduces the search space and enhances
the performance of the Scanpath gaze representation. Further,
with the increased availability of other cues to select from as
the game progresses, a sustained gaze (presenting sustained
interest) at a location is likely to signal with greater confidence
the likelihood of an intention to action. To some degree, we
expected the Heatmap to have performed the best being a
well-used representation. On the other hand, the Convex Hull
was notably disliked, being given the lowest or second-lowest
ranking by all but four participants.

Preferences were mixed for the rest, with a wide variation in
scores indicating that different participants valued different
characteristics. The trajectory-based representations were all
ranked relatively highly; we hypothesise that this is because
trajectory-based representations naturally calls attention to the
connections between different points of interest as the player
moves their gaze between them without overloading the user
and therefore remained neutral in our results.
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Interplay Between Game Cues and Overall Scores
As expected, we found that participants make use of in-game
and behavioural cues to predict routes such as by observing
what cards the naive player looked at or picked. From the
game analysis, there was 17 showed cards being picked and
many participants drew conclusions by matching the route seen
and card colour which is a probable cause of differences in
scores between the clips. Across all visualizations, prediction
accuracy was lower in the late game than in the early and
mid game. We consider several factors that may account
for this trend, with different implications for the use of gaze
visualizations in other contexts. First, the visual clutter on
the screen increases as the game progresses, so that in the
late game there are substantially more train routes that may
potentially distract the viewer from the gaze representation.
Second, the number of available routes is lower in the late
game, which tends to require players to draw more convoluted
routes; the combination of zigzagging existing routes and
fewer possibilities may increase the difficulty of recognising an
obvious path that the player is aiming for. Third, the behaviour
of the player is likely to be different, as they transition from
long-term planning in the earlier stages to opportunistic route-
grabbing and path-blocking in the late stage; this behaviour
may be more difficult for a viewer to interpret. We believe
that it is plausible that all three of these factors play a role,
but based on our own observation of the game recordings, we
expect that the third factor to be the most significant as gaze
behaviour clearly shows a different pattern late in the game.
This is exhibited in our results such as in the case of the Dot
representation where the naive player was looking for was
considering a route to build between a few potential routes.

Humans naturally rely on explicit actions as they confirm their
thoughts, such as in real life. Regardless of representation
shown, we are impressed at the ability of participants to put
themselves into the mind of the player with the introduction
of displayed gaze. In the same way, spectators rely on these
actions, and therefore participants employ a variety of cues
in making inferences. However, we observed in our study
that some participants better than other in keeping track of the
elements in the game, allowing them to make better inferences.

Design Implications
Our results present various implications towards the digital
games community. First and foremost, we demonstrated the
possibilities of using different types of representations to dis-
play mental processes (e.g. intention) of players in real-time,
which has direct implications towards game developers. When
using gaze explicitly for use in games, game developers must
be wary of how it is actually used in its execution. For ex-
ample, when we the tested the Convex Hull representation,
it worked well allowing two developers to reveal what the
other was looking at. However, during our evaluation, Con-
vex Hull obtained consistently low scores revealing a flaw in
our implementation when converting a static visualisation to
real-time. Then again, this consistently low score gave us
a reference point and confidence in the validity of our data.
The design of gaze representations should further consider the
amount it reveals without giving it away as it would give a
player a disadvantaged. Imagine playing a game and your op-

ponent is constantly one step ahead of you. For the evaluation
of games in real-time with gaze visualisation (implicit use),
representations such as the Heatmap can be used to reveal
intentions of players from natural gaze behaviour, and there-
fore provide insights into whether players understand the task
in hand or is making correct strategic decisions. Second, a
range of selectable gaze visualizations can implemented in live
game streaming platforms such as Twitch, where audiences to
create sensory excitement and anticipation. For example, audi-
ences can anticipate intentions of live players before the actual
move, providing a new experience. Lastly, players themselves
can benefit from visualisations the gaze of their opponent in
the form of an in-game ‘power up’ to create new gameplay
experiences, especially in similar competitive contexts.

CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK
This work presents three main contributions. First, we provide
an understanding of the role of gaze and its importance to
game designers in choosing and designing the right visuali-
sation. Second, an assessment of how people interpret visual
gaze visualisations, which has not been done before in this
context. The findings also highlight the effect of the differ-
ent techniques on the inferring ability. Third, we contribute
the assessment of AOI-based representations in the context of
gameplay. Limitations wise, we used clips in our study from
the entire game session which might not be comprehensive to
show the goals of the whole game but enough to determine
short term intention. Moreover, as each visualization was
tested in only three different clips, it is possible that one out-
lier clip could affect the overall result for that visualization;
nevertheless, we have taken this into account in our reporting
of the findings. We also acknowledged that we only used an
example of a strategic game to demonstrate gaze. However,
we believe our findings apply to similar games.

Our future work focuses on players, where we give one player
the ability to predict intentions using a real-time Heatmap,
and with room for deceptive or misinterpreted behaviours to
happen. We have also considered testing the viability of our
findings with a different game (e.g. on with a less cluttered
board) to provide further insights into the generalisation of
our results. Furthermore, our work has further implications in
gaze-aware artificial intelligence, and we have begun putting
together a planning-based AI that predicts players potential
intentions based on the recorded games from this study.

CONCLUSION
This paper contributes the groundwork for determining the
characteristics of gaze representations that allow human play-
ers to make inferences about other players’ intentions and to
derive insights into potential strategies. This has been achieved
by measuring the performance of human in their ability to pre-
dict intentions using a range of visual gaze representations.
Our results showed us that human subjects have a remarkable
ability to infer intent with the introduction of gaze. We con-
clude that representations that show both characteristics of
point- and AOI- based representations would work well in our
setting. Our work ultimately contributes gaze input as a viable
implicit modality in multiplayer competitive computer games
and with broader implications towards the games community.
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