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Figure 1: We evaluate the performance of the three widely used gaze-based interaction methods: Dwell time (A), Pursuits
(B) and Gaze gestures (C), for target selections on handheld mobile devices while sitting (left) and while walking (right). All
participants performed all selections using the three different techniques while sitting and while walking. The red arrow in (B)
illustrates the direction in which a yellow dot stimuli was rotating around a selectable target. The red arrows in (C) indicate the
directions in which the user could perform a gaze gesture. All arrows are for illustration and were not shown to participants.

Abstract
Gaze is promising for hands-free interaction on mobile devices.
However, it is not clear how gaze interaction methods compare to
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each other in mobile settings. This paper presents the first experi-
ment in a mobile setting that compares three of the most commonly
used gaze interaction methods: Dwell time, Pursuits, and Gaze ges-
tures. In our study, 24 participants selected one of 2, 4, 9, 12 and 32
targets via gaze while sitting and while walking. Results show that
input using Pursuits is faster than Dwell time and Gaze gestures
especially when there are many targets. Users prefer Pursuits when
stationary, but prefer Dwell time when walking. While selection
using Gaze gestures is more demanding and slower when there are
many targets, it is suitable for contexts where accuracy is more
important than speed. We conclude with guidelines for the design
of gaze interaction on handheld mobile devices.
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1 Introduction
With the recent advances in smartphone manufacturing, front-
facing cameras are becoming more powerful and processors are
becoming faster [24, 43], allowing smartphones to run eye tracking
applications [24, 43]. Such advances allow a wide range of HCI
applications. This includes empowering mobile users with novel
gaze-based input methods that enable hands-free interaction. Exam-
ples of previously proposed applications of gaze-based interaction
on mobile devices include gaze-based authentication [42, 46], trans-
ferring content between devices [76], gaze-based scrolling [73], and
supporting other modalities using gaze [52, 71, 73].

Although a number of gaze interaction techniques, such as dwell
time [21, 24], Pursuits [78], and gestures [21, 61] were deemed
promising for mobile devices [15, 43], an empirical evaluation of
how well they perform when used to interact with mobile devices
in mobile settings is missing.

Most studies on gaze interaction were deployed in settings that
are very different from those for daily gaze interaction on hand-
held mobile devices such as on interactive surfaces [81], desktop
machines [69], public displays [47, 50], mobile devices held by a
mount [24, 43], wearables [28] and head-mounted displays (HMDs)
(e.g., for VR and AR) [27, 34, 49]. On the other hand, several prior
works suggested that gaze interaction methods that do not require
precise gaze estimates hold a lot of promise [38]. Examples of these
include the use of eye behaviours such as gaze gestures [23] and
smooth pursuit [78]. Both Pursuits and gestures were suggested to
be suitable for mobile devices [43], and Pursuits was found to be
suitable for selection while walking past public displays [47]. These
positive results were likely due to the fact that these techniques are
less reliant on calibration, and allow accurate interactions using
inaccurate gaze estimates [43]. This is a substantial advantage in
the context of mobile devices because calibration is likely to break
frequently in the inevitably shaky mobile settings especially when
the user moves or changes their posture. Nevertheless, considering
that neither gestures nor Pursuits allow users to “point and select”
as done by a mouse or a tapping a touchscreen, gaze interfaces that
require accurate gaze estimation such as dwell time will continue
to exist [30]. This underlines the importance of understanding the
performance of the aforementioned gaze interaction techniques in
mobile settings as a prerequisite to reaping the benefits of gaze on
mobile devices.

While previous work evaluated similar techniques in non-mobile
settings, or on modified mobile devices in unnatural settings (e.g.,
by wearing an HMD while interacting with a phone [34]), natural
mobile settings feature unique challenges that make results from
said previous studies inapplicable. This underlines the importance
of investigating how well these techniques perform a) directly on
mobile devices, b) while users are on the move, and c) with different
number of selectable targets.

In this work, we report on the results of the first user study
(N=24) to compare three widely used gaze interaction techniques
namely 1) Dwell time, 2) Pursuits, and 3) Gaze gestures on smart-
phones while sitting and while walking, to select one of 2, 4, 9,
12 and 32 on-screen targets. We compare the methods in terms of
selection time, error counts, timeouts, perceived cognitive load, and
user preference. We found that while sitting, input using Pursuits
(1.36 sec) is statistically significantly faster compared to Dwell time
(2.33 sec) and Gaze gestures (5.17 sec). While gaze input is generally
slower while walking, it is significantly slower when using Gaze
gestures (6.68 sec) compared to Pursuits (2.14 sec) and Dwell time
(2.76 sec). Despite being the slowest and most demanding, input
using Gaze gestures is significantly more accurate than both other
methods both while walking and while sitting, suggesting that it
is more suited for situations in which accuracy is more important
than speed. When asked about their preferences, our participants
preferred Pursuits the most for stationary interaction and preferred
Dwell time for interaction while walking.

Based on our results, we concludewith a set of guidelines for gaze
interactions on handheld mobile devices. Our findings contribute
to the field of gaze-aware interfaces and pave the road for adapting
and deploying eye gaze interaction on handheld devices.

2 Related Work
Our work builds on previous work on gaze-based interaction and
the opportunities and challenges of eye tracking on handheld mo-
bile devices.

2.1 Gaze Interaction Techniques
Gaze-based interaction has long been studied by HCI researchers.
It has been classified in prior work into two main categories: 1)
Implicit gaze-based interaction, in which the interface adapts to
the users’ passive gaze behaviour. This approach is often used in
attentive user interfaces [13, 20, 40] and in security applications [5,
14, 59, 62] especially biometric authentication [74]; and 2) Explicit
gaze-based interaction, where users deliberately move their eyes
to provide direct input. Our work focuses on explicit gaze-based
interaction on handheld mobile devices.

The most common technique for explicit gaze input is Dwell
Time [38]. In Dwell time, a brief delay is required to differentiate
between casual viewing and gaze input [24, 30, 38, 57], thereby
coping with the so-called Midas touch problem in which users
make unintentional selections as they perceive potential targets.
Dwell time has been used in gaze-only interactions [3, 54, 56, 70]
and in multimodal interaction to support other modalities such as
touch [63, 71], input using a stylus [64] or hand gestures [3, 65].
Dwell time requires accurate gaze estimates, hence the accuracy of
the technique is highly dependent on calibration, and the mobile
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nature of handhelds makes it likely that calibration would break
often [43].

An alternative to Dwell time is to use interaction techniques
that do not require accurate gaze estimates. In this regard, several
interaction techniques were proposed, such as Pursuits [78]. The
Pursuits technique relies on the Smooth Pursuit eye movements
which is a distinctive form of eye movement that occurs when the
eyes follow a moving object and human eyes cannot generate such
movements without external stimuli to follow [28, 78]. This means
that interfaces that use Pursuits need to show users moving stimuli.
By measuring how well the user’s eye movements match the tra-
jectory of the moving stimuli, the system determines which object
is being gazed at. This is a significant distinction from interfaces
that employ absolute point of gaze [78]. Fatigue and confusion
due to the constant movements of objects and being able to cre-
ate distinct trajectories for all objects are among the challenges
to enabling Pursuits on mobile devices [28, 78]. Pursuits has been
used to interact with different devices such as smart watches [28],
public displays [50, 78, 79], and in VR [49] and AR [29] environ-
ments. Input using Gaze gestures is also a widely used alternative
in the literature [21, 23, 25, 26]. The technique requires users to
perform coarse gestures in a certain direction [82] or perform a
series of gestures with their eyes [23, 69]. One of the important
advantages of gestures is that they do not require a screen’s real
state [21], and by using more gestures, a greater number of com-
mands may be issued. On the downside, increasing the number of
gestures introduces some complexity and comes with problems, as
complex gestures may be difficult to recall cognitively, and they
may be challenging to initiate and perform physically [61]. Gaze
gestures found applications in gaming [36, 37, 61], authentication
[4, 44, 46, 48, 69] and also as a generic input method for mobile
devices [41]. The difference between Gaze gestures and Pursuits is
that Gaze gestures, in recent implementations, are performed from
memory rather than by following a stimulus. This requires spatial
rather than temporal synchronisation and requires a learning phase
for the user to know how to perform the gesture. Pursuits, on the
other hand, has a tight spatial and temporal coupling with visual
stimulus, meaning that you can only issue the commands by fol-
lowing the moving objects within the time window; manipulating
the commands out of sync with the animation will not trigger a
response [18, 23, 28, 78]. In terms of eye movements, gaze gestures
are more similar to saccades, whereas Pursuits requires smooth
pursuit eye movements. Both Pursuits and Gaze gestures allow
for calibration-free interaction and also reduce the chances of un-
intentional selection as they require users to perform specific eye
movements [10, 30].

Other types of gaze interaction techniques include the use of
eye vergences [51, 53, 75], which relies on the simultaneous move-
ments of both eyes in opposition to one another when looking at
closeby targets [75]. Although eye vergence showed great potential
in solving the Midas Touch problem [7] and outperformed Dwell
time in selection speed [51], it is perceived to be uncomfortable
and hard to perform regularly. It also shifts user’s focus away from
the screen, making it challenging to perceive the content while
providing input [51]. A further promising gaze interaction tech-
nique relies on the Vestibulo-ocular reflex (VOR) which is a reflex
action that occurs when a human fixates on a target and moves their

head [11, 19]. VOR was proposed for detecting head gestures based
on eye movements [67], and was used for improving gaze-based
selection in VR when targets are occluded [58]. Prior work on gaze
interaction also explored Optokinetic Nystagmus [39], which is
a combination of saccadic and smooth pursuits eye movements,
and was used to detect the image of interest in image scrolling
application [39].

2.2 Opportunities and Challenges of Eye
Tracking on Handheld Mobile Devices

While eye tracking on handheld mobile devices has been studied
for more than 20 years in Mobile HCI, it is only recently that we
started to see an uptake of real-time gaze estimation on off-the-shelf
handheld mobile devices outside the lab. The recent integration of
front-facing depth cameras in handheld mobile devices, and their
improved processing power and camera resolutions, are transform-
ing mobile eye tracking. In their review of gaze-enabled handheld
mobile devices, Khamis et al. [43] argued that this brings a myriad
of opportunities, such as gaze-based interaction on the move and in-
the-wild analysis of gaze behaviour on mobile devices. Applications
of this include improving interaction on mobile devices [16, 20, 21],
security applications [42] including authentication [48] and privacy
protection [9, 72, 83], as well as in-the-wild gaze behaviour analysis
[5, 6, 80].

On the downside, eye tracking on mobile devices comes with
a unique set of challenges. Unlike wearable eye trackers and sta-
tionary remote cameras, handheld mobile devices track the user’s
eyes using a front-facing camera, whose view might be occluded by
the user’s clothing or their hands [35, 45]. Khamis et al. collected a
dataset of 25, 726 photos taken from front-facing cameras of smart-
phones in the wild [45]. They found that users hold their phones
in different ways and that it is not always the case the face is suffi-
ciently visible to the camera for estimating gaze. Huang et al. also
collected a dataset of photos taken from tablets but in controlled
settings [35] and found that the full face of users was visible in only
30.8% of the photos. Additionally, the environment is often shaky
due to the user’s movements (e.g., interacting while walking) and
the dynamic environment (e.g., in a bus on a bumpy road). This
is further worsened by the user’s holding posture, which may not
necessarily result in their face being visible to the camera [45]. All
of the factors above impact gaze estimation accuracy, which may
in turn impact the user experience when using gaze for interaction.

2.3 Summary and Contribution Over Prior
Work

Our work focuses on application-independent gaze-based interac-
tion, where users actively move their eyes to select one of many
on-screen targets when stationary and when on the move. While
previous work studied gaze interaction and eye tracking on hand-
held mobile devices, an investigation of how gaze interaction tech-
niques perform on said devices in mobile settings is missing. A
key novelty of our contribution is that we consider mobile settings
where users are interacting while walking. While gaze interaction
while on themove was studied on public displays [47] and onHMDs
[49], the results from prior studies are not transferable to the con-
text of handheld mobile devices, where users’ holding postures and
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the shaky environments play a big role in the quality of collected
gaze data.

3 Gaze Interaction Techniques: Concepts and
Our Implementations

In this work, we focus on comparing three of the most widely used
gaze interaction methods: 1) Dwell time, 2) Pursuits, and 3) Gaze
gestures. Below we describe our implementations. Note that none
of the implementations visualised where the user is looking, as this
will likely distract users, especially when the gaze estimates are
inaccurate.

3.1 Dwell Time
Dwell time selection is performed by fixating on a target for a period
of time [24]. In order to perform a selection using Dwell time: the
user would gaze and fixate at the object to be selected for a period of
time to indicate attention. Literature on dwell times reports values
from 150ms to 1500ms [27]. Based on prior work and pilot tests
with 5 participants using 500ms, 800ms, and 1000ms, we adopted
a dwell time of 800ms [17, 30]. Thus, in our implementation, a
selection is executed when a target has been gazed at for a minimum
of 800ms by calculating the mean fixation point within the specified
time window. This improves our approach’s robustness against
noise, because if a few gaze points land outside the target, they will
not impact selection negatively. In our implementation, this is the
only gaze interaction technique that is preceded by a calibration
process.

3.2 Pursuits
Pursuits selection can be performed by matching the eyes’ trajec-
tory with the relative trajectory of the object of interest [78]. To
provide input using Pursuits, the user would: 1) observe the target
that needs to be selected, then 2) follow the object orbiting around
the target briefly with their eyes. This will result in selecting the
target and triggering its functionality. In our implementation, we
use the Pearson correlation coefficient to determine how similar the
user’s eye movements are to the moving stimuli or target. This is the
most common implementation in prior work [22, 27, 28, 49, 77, 78],
which is calculated as follows:

𝐸 [(𝐸𝑦𝑒𝑥 − 𝐸𝑦𝑒𝑥 ) (𝑇𝑎𝑟𝑔𝑥 −𝑇𝑎𝑟𝑔 )]
𝑐𝑜𝑟𝑟𝑥 =

𝑥 (1)
𝜎𝐸𝑦𝑒𝑥𝜎𝑇𝑎𝑟𝑔𝑥

Where 𝐸𝑦𝑒𝑥 , 𝜎𝐸𝑦𝑒 , 𝑇𝑎
dard deviations of the

𝑥
𝑟𝑔𝑥 , and 𝜎𝑇𝑎𝑟𝑔𝑥 are the means and stan-

horizontal eye and moving targets positions
respectively. The coefficient is also calculated for the vertical posi-
tions the same way, denoted as 𝑐𝑜𝑟𝑟𝑦 . Our system calculates Pear-
son’s correlation, 𝑐𝑜𝑟𝑟𝑥 and 𝑐𝑜𝑟𝑟𝑦 every one second (30 samples).
The choice of 1,000ms was motivated by prior work [27, 28] and
pilot testing with 2 participants. As done in prior work [28], as long
as the correlation of the smallest of the two is greater than 0.8, the
moving target whose movement most closely matches the user’s
eye movement is considered to be the target being observed. If the
system does not detect a selection within the time window, the cor-
relation is computed for every new sample collected over a sliding
window of 30 samples. 120°/sec is the constant speed of all targets.

Figure 2: Targets were designed to look like app icons found
on the home screens of Android and iOS devices. All the
targets presented in the interface were selectable and the
targets participants had to select were coloured in black. For
all three interaction techniques, the interface has the same
arrangement with the letters inscribed alphabetically in the
circles, left to right, top to bottom. Left: Interface for Pursuits
with dynamic targets – note that arrows are for illustration
and were not shown to participants. Right: Dwell time inter-
face. When a user fixates on a target for at least 800ms, the
background of the target changes colour.

By having half of the targets move in opposite directions (clock-
wise and counterclockwise) and separating their initial positions by
360/n (with n equal to the number of targets displayed on-screen),
we increased the distance between the targets presented to min-
imise acquisition errors [28]. Calibration is not required for our
implementation, and thus no calibration data is used for Pursuits
selections.

3.3 Gaze Gestures
Gaze gestures are essentially eye movements that follow particular
patterns in a sequential time order to issue commands or perform
selections. Our implementation of Gaze gestures follows that of
Look to Speak by Google [2]. For the user to provide input, they: 1)
locate the target on the screen, either on the left or right side of the
screen (see Figure 3), 2) perform a gesture (right or left), to select
the side that has the desired target. 3) Each time the user selects a
side, the number of targets will narrow down until they select the
desired target. Gesture selection is achieved by performing a single
right or left gesture within a 1000ms (30 samples) time window,
which was also chosen based on prior work [21, 61] and pilot tests
with 2 participants. Single gestures are argued to be efficient, easy
to learn, and require less effort compared to complex gestures [60],
and horizontal gestures were found to be faster compared to vertical
gestures [61]. For detecting gestures, we use Pearson correlation
coefficient as part of a template matching algorithm to match the
user’s scan path against the right and left gestures template paths
[69]. With a correlation value above a threshold of 0.8, the template
path of the gesture that is similar to the candidate path is determined
as the one followed by the user. To differentiate between normal
eye movement and gaze gestures, the gesture is completed when
the user gazes on either side outside the screen’s bounds as they
move their gaze towards them [33, 60]. To detect that the user’s
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Left gesture

A B C D E

Gesture (Left) Gesture (Left) Gesture (Right) Gesture (Left) Gesture (Left)

Figure 3: Making selections using gaze gestures in our implementation requires a number of steps, which increases as the
number of targets increase. For example, to select one of 32 targets, the participant has to perform a gaze gesture in the direction
where the target is. In this example, the target is labelled "I" (left in A). The targets on the left side are then redistributed to
allow the user to narrow down their selection further.

gaze left the screen to complete the gesture, and based on pilot
testing with 2 participants, we implemented a caution area (mobile
device’s length × 20 pt width in the iOS coordinate system), near
the screen border on both the left and right edges of the screen
[33]. If the last horizontal gaze point in the current window lands
in the caution area, they are considered as outside the screen [33].
Because we only detect left and right gestures, calibration errors
on the y-axis did not impact selection accuracy. Calibration errors
on the x-axis would have an impact only if they offset the last gaze
point in the gesture by more than 2 × 20 pt + mobile device’s width
in the opposite direction. A calibration error that large is unlikely
and was indeed not observed throughout our experiment. Gestures
ending inside the screen area are not registered. Calibration is not
required; thus, no calibration data is used in our implementation of
gaze gestures.

4 Evaluation
Our experiment was conducted in a quiet room without windows
and under constant lighting condition. Our aim was to compare the
performance and perception of three gaze interaction techniques for
handheld mobile devices: Dwell time, Pursuits and Gaze gestures.
To this end, we studied the effect of the number of targets (2, 4,
9, 12, 32) on the performance of each technique in two different
states: while sitting and while walking. Participants were free to
hold the mobile device the way they would do naturally. Markers
were put on the floor to indicate how the participants should move
in the walking state (see Figure 1), and participants were instructed
to walk as they would naturally and not to pause walking while
completing the tasks. Throughout the experiment, the experimenter
monitored the participants and ensured they did not stop when
performing selection while walking. Participants were seated in
front of a desk for the sitting state.

4.1 Participants
We recruited 24 participants (15 male, 9 female) with an average age
of 28.88 years old (𝑟𝑎𝑛𝑔𝑒 : 20−41, 𝑆𝐷 = 5.65), and an average height
of 1.72m (𝑟𝑎𝑛𝑔𝑒 : 1.58𝑚 − 1.95𝑚, 𝑆𝐷 = 8.89). Participants indicated
that they have little to no previous experience (𝑀 = 1.08, 𝑆𝐷 = 1.50)

in eye tracking (0: no experience; 5: Very experienced). Out of
the 24 participants, 1 participant suffered from astigmatism, 5 suf-
fered from farsightedness, 5 suffered from nearsightedness and 1
participant suffered from both nearsightedness and astigmatism,
while 1 more participant suffered from nearsightedness, farsighted-
ness and astigmatism. Participants reported that they sometimes
(𝑀 = 3.13, 𝑆𝐷 = 1.19) use their phones while walking (0: never; 5:
always). 3 participants wore glasses during the experiment. The
experiment took an hour and participants were compensated by
an e-shop voucher. This experiment received ethical approval from
our institution.

4.2 Apparatus
For the experiment, we used an iPhone X with iOS version number
15.3.1. The device is equipped with a super Retina HD display that
has a resolution of 2436x1125 pixels and a front-facing camera with
7 MP sensor, f/2.2-aperture lens, and 32mm-equivalent focal length.
The SeeSo SDK library (link) was used for Eye tracking. With 30
frames per second, SeeSo uses the RGB images from the front-
facing camera of the phone for real-time gaze point estimation. All
calculations were done locally on the device. A path with a total
distance of 5.20m was marked on the floor using tape to guide the
participants when performing the tasks while walking.

As for the user interface, to keep all conditions visually iden-
tical, targets on the screen were arranged in a way to represent
typical app icons on the android and iOS home screens (see Figure
2). Targets were centered to maintain consistency among all the
techniques. We chose this design because in gaze gestures, targets
need to be centered before being split into the right and left sides
of the screen to narrow down the selection. As for the target size,
a size of (65 pt; 195 pixels) was used. This is equivalent to 1.7° vi-
sual angle since the calculated average distance of participants to
the screen was 41.5 cm. This was motivated by the fact that Apple
recommends using a size of 60 pt for apps icons [1] which maps to
(180 pixels) in iPhone X, the device we used for the experiment. We
added an extra 5 pt to the recommended size to account for the area
in which the moving stimuli is displayed in the Pursuits condition.

https://seeso.io/
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4.3 Study Design
The study was designed as a repeated measures experiment. There
were two independent variables:

IV1 Gaze Interaction Techniques: we covered three condi-
tions: Dwell time, Pursuits and Gaze gestures.

IV2 Number of Targets: We covered five different number of
targets: 2, 4, 9, 12 and 32. We were interested in exploring the
impact of the number of targets on the selection techniques.
We chose a maximum of 32 targets as this is the highest
number of targets that can be fit on the screen considering
Apple recommended size for apps icons [1].

4.4 Procedure
Upon arrival, participants were asked to sign a consent form, com-
plete a demographic questionnaire and rate their previous experi-
ence with eye tracking. An information sheet about the experiment
was also provided. Afterwards, participants were introduced to
the experiment, its goal, the tasks, and also the metrics the system
collects (selection time, error counts and timeouts). A Latin Square
design was used to counter-balance the order of conditions. The
study was split into two parts: a part for the walking state, and
another for the sitting state. Half of the participants started with
the walking state, followed by the sitting state, while the other half
started with the sitting state and concluded with the walking state.
In each part, participants went through three blocks; one block per
gaze interaction technique. In each block, participants had to select
one of 2, 4, 9, 12 and 32 targets in a counter-balanced order us-
ing Latin square. Before each block, participants were explained
how to perform the selection and were allowed to complete three
trial runs to familiarise themselves with the technique. These runs
were excluded from the analysis. All the targets presented in the
interface were selectable. The target participants had to select was
coloured in black (see Figure 2). Participants underwent a calibra-
tion phase before the dwell time block, but not before the other two
techniques, as it is not required. Using SeeSo’s calibration process,
the calibration was performed by presenting participants with five
different targets at known points on the screen to gaze at for few
seconds, one at a time, to establish a mapping between the screen’s
coordinates and the optical axes of the eyes. Calibration data was
discarded after the dwell time block. During the block, for each
selection task with different number of targets, participants were
first presented with a screen with instructions. Upon tapping the
start button, the task started. Each selection task ended after a
20-second timeout has elapsed or when participants selected the
correct target with a displayed message confirming that, whichever
is earlier. Following each block, participants’ perceived workload
was collected using the NASA-TLX scale (link), and then qualitative
feedback was collected through 5-point Likert scale and open-ended
questions. After completing the three blocks, we asked partici-
pants to rank the selection techniques based on their preference and
performance. Each participant performed 2 states x 3 techniques x
5 number of targets = 30 trials. The study lasted for approximately
an hour for each participant.

4.5 Limitations
In our study, participants did not need to examine selectable ob-
jects in search for the target as it was already highlighted and can
be clearly distinguished. We made this decision as our focus is to
evaluate the interaction methods, whereas the time it takes to find
the target is out of our scope. However, this also means the perfor-
mance of the input techniques may differ in day-to-day scenarios
in terms of selection time, as users will need to search for the target,
and in terms of errors, as users may accidentally select a target
while searching. This is particularly the case for Dwell time, where
Midas touch selections, while the user is examining the interface,
can be disruptive. Midas touch can be overcome by requiring longer
dwell durations, but this, in turn, results in longer interaction time.

Another limitation is that the effects caused by the different
targets shapes and sizes were not analysed. As mentioned earlier,
we aimed to keep all conditions visually identical to avoid potential
biases.

Finally, in the walking part of the study, participants had no
obstacles to avoid while performing selections. Our aim was to
characterise the performance of interaction techniques while par-
ticipants are walking and pave the way towards on the go gaze
interaction. However, during everyday life, people face many ob-
stacles and distractions which might impact their gaze behaviours
when interacting with their mobile devices, which in turn might
affect the results. This can be addressed in a future study

5 Results
We measured selection time, error counts, timeouts, user perceived
cognitive load using NASA TLX [32], and user preference. We ex-
cluded data points that matched the following criteria as outliers:
selection times where a timeout occurred (i.e., exceeded 20 sec-
onds without a successful selection [31]), selection times and error
counts where gaze tracking failed (e.g., due to the participant’s face
not being visible) and values that were deemed as outliers when in-
specting a box plot visualisation prior to any exclusion [68]. These
outliers were replaced with the mean of the rest of the values for
that condition. Out of 720 values for each measure, 5 data points
were excluded from selection time and 7 data points from error
counts. For selection time, error counts and the perceived cognitive
workload, we used two-way repeated measures ANOVA tests. We
used Greenhouse-Geisser-correction in cases where Mauchly’s test
indicated a violation of sphericity. P-values for post-hoc tests were
corrected using Bonferroni correction to account for multiple com-
parisons. In case of an interaction effect, separate one-way repeated
measures ANOVA tests were run too to distinguish the impact of
each condition.

5.1 Selection Time
We define selection time as the time from the moment the targets
appeared until the moment the correct target was selected. The
descriptive statistics are summarised in figure 4.

5.1.1 Sitting state The statistical tests revealed a significant main
effect for input techniques F1.452, 33.395 = 67.814, 𝑃 < .001 and
number of targets F2.754, 63.335 = 18.561, 𝑃 < .001 on selection time,
with an interaction effect between the two F4.326, 99.506 = 19.355,

https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
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Figure 4: Participants select faster using Pursuits regardless
of the number of targets in both sitting and walking states.
Selection time for Gaze gestures is linearly affected by the
number of targets. The error bars represent the standard
deviation.

𝑃 < .001. Significant differences were found between all pairs:
between Dwell time and Pursuits (𝑃 = .002), between Dwell time
and Gaze gestures (𝑃 < .001), and between Pursuits and Gaze
Gestures (𝑃 < .001). The mean values were 2.33 sec for Dwell time
(𝑆𝐷 = 2.58 𝑠𝑒𝑐), 1.36 sec for Pursuits (𝑆𝐷 = .62 𝑠𝑒𝑐), and 5.17 sec for
Gaze Gestures (𝑆𝐷 = 3.50 𝑠𝑒𝑐). Due to the interaction effect, we
investigated in-depth the effect of the techniques on selection time
with respect to each number of targets. Post-hoc analysis showed
significant differences between multiple pairs as detailed in table 1.

5.1.2 Walking state We found a significant main effect for tech-
niques F2, 46 = 96.896, 𝑃 < .001, and number of targets F4, 92 =
14.728, 𝑃 < .001 on selection time. There was also statistically
significant two-way interaction between the two F8, 184 = 27.988,
𝑃 < .001. Significant differences (𝑃 < .001) were found between
Gaze gestures (𝑀 = 6.68 𝑠𝑒𝑐, 𝑆𝐷 = 4.74 𝑠𝑒𝑐) and both Dwell time
(𝑀 = 2.76 𝑠𝑒𝑐, 𝑆𝐷 = 2.53 𝑠𝑒𝑐) and Pursuits (𝑀 = 2.14 𝑠𝑒𝑐, 𝑆𝐷 =

1.64 𝑠𝑒𝑐). Post-hoc analysis showed significant differences between
multiple pairs as detailed in table 1.

5.1.3 Sitting vsWalking The results show that regardless of the par-
ticipants’ states during selection, Pursuits was the fastest for four
or more targets, followed by Dwell time. On the other hand, Gaze
gestures was the fastest when there were two targets to choose
from, followed by Pursuits in the sitting state, and followed by
Dwell time in the walking state (see Figure 4). To support the quan-
titative results, participants responded to ‘Performing selections
using this technique is fast’ on a 5-point Likert scale (1=strongly

Figure 5: Number of attempts before a successful selection.
Errors are less in the sitting state across all three input tech-
niques. The graphs show that Gaze gestures is less error-
prone and immune to the impact of the number of targets.
Errors increase with more targets when using Dwell time
and Pursuits

disagree; 5=strongly agree), they perceived Pursuits as the fastest
technique when sitting (𝑀𝑒𝑑 = 4.5, 𝐼𝑄𝑅 = 4 − 5) while the three
input techniques were perceived equally fast when walking (see
Section 5.5).

5.2 Error Counts
We define error count as the number of attempts before a successful
selection, as erroneous selections were not accepted and did not
cause the trials to end. Figure 5 summarises the descriptive statistics.

5.2.1 Sitting state We tested for effects on the error counts. We
found a significant main effect of techniques F1.227,28.217 = 14.447,
𝑃 < .001, significant main effect of number of targets F2.332,53.626 =
8.737, 𝑃 < .001, and an interaction between the two F3.301,75.925 =
4.416, 𝑃 = .005. Significant differences were found between Dwell
time and Gaze gestures (𝑃 < .005) and between Pursuits and Gaze
gestures (𝑃 < .001). The mean values were 1.01 for Dwell time
(𝑆𝐷 = 2.62), 1.28 for Pursuits (𝑆𝐷 = 1.80), and .01 for Gaze ges-
tures (𝑆𝐷 = .09). When analysing the effect of techniques on error
counts, pairwise comparisons revealed significant differences be-
tween multiple pairs as detailed in table 2. For two targets, we found
no evidence of significant differences between techniques as error
counts were low for all techniques with one wrong selection for
Dwell time and Pursuits and no wrong selection for Gaze gestures.
Regardless of the number of targets in the sitting state, 60% of trials
were completed with no errors using Dwell time, 42% using Pursuits
and 94% using Gaze gestures.

5.2.2 Walking state Significant main effects were found for tech-
niques F1.419,32.640 = 16.446, 𝑃 < .001 and number of targets F2.703,62.172
= 14.649, 𝑃 < .001 on error counts. There was an interaction be-
tween the techniques and the number of targets F3.737,85.948 = 5.740,
𝑃 < .001. Significance differences (𝑃 < .001) were found between
Dwell time and Gaze gestures and between Pursuits and Gaze ges-
tures. The mean values were 1.77 for Dwell time (𝑆𝐷 = 3.27), 2.32

Observation 1: In terms of selection time, selection using Pursuits 
performs better than Dwell time and Gestures in both the sitting 
and walking states.
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Table 1: In both Sitting (Left) and walking (Right) states, the selection time for Gaze gestures is significantly longer than that of
Dwell time and Pursuits as the number of targets increases. Pursuits, on the other hand, is significantly faster than Dwell time
and Gaze gestures when more targets are displayed. Means are given in brackets.

Significant differences in Selection Time [Pairwise comparisons]
Sitting state Walking state

Number of targets: 2 p< Number of targets: 2 p<
Pursuits (3.46 sec) Gestures (1.78 sec) .05

Number of targets: 4 p<
Pursuits (1.56 sec) Gestures (3.71 sec) .05

Number of targets: 4 p<
Dwell time (2.76 sec) Gestures (4.08 sec) .05
Pursuits (2.26 sec) Gestures (4.08 sec) .05

Number of targets: 9 p<
Dwell time (2.00 sec) Gestures (5.09 sec) .001
Pursuits (1.25 sec) Gestures (5.09 sec) .001

Number of targets: 9 p<
Dwell time (3.16 sec) Gestures (6.57 sec) .01
Pursuits (1.97 sec) Gestures (6.57 sec) .001

Number of targets: 12 p<
Dwell time (1.60 sec) Pursuits (1.13 sec) .05
Dwell time (1.60 sec) Gestures (6.36 sec) .001
Pursuits (1.13 sec) Gestures (6.36 sec) .001

Number of targets: 12 p<
Dwell time (2.44 sec) Gestures (8.89 sec) .001
Pursuits (1.50 sec) Gestures (8.89 sec) .001

Number of targets: 32 p<
Dwell time (3.05 sec) Gestures (9.23 sec) .001
Pursuits (1.11 sec) Gestures (9.23 sec) .001

Number of targets: 32 p<
Dwell time (2.96,sec) Pursuits (1.51 sec) .05
Dwell time (2.96 sec) Gestures (12.08 sec) .001
Pursuits (1.51 sec) Gestures (12.08 sec) .001

for Pursuits (𝑆𝐷 = 3.24), and .04 for Gaze gestures (𝑆𝐷 = .20). Post-
hoc analysis showed significant differences between multiple pairs
as detailed in table 2. Similar to the sitting state for two targets, tests
showed no evidence of significant differences between techniques
on error counts. In the walking state and regardless of the number
of targets, 49% of trials were completed with no errors using Dwell
time, 38% using Pursuits, and 92% using Gaze gestures.

5.2.3 Sitting vs Walking The results show that participants made
more errors in the walking state compared to sitting. On the other
hand, Gaze gestures performed well in both states and regardless
of the number of targets, as it produces fewer input errors. Par-
ticipants’ feedback (5-point Likert scale; 1=strongly disagree; 5=
strongly agree) also supports this argument as participants per-
ceived Gaze gestures to be more accurate than Dwell time and
Pursuits in both sitting (𝑀𝑒𝑑 = 5, 𝐼𝑄𝑅 = 4 − 5) and walking
(𝑀𝑒𝑑 = 4, 𝐼𝑄𝑅 = 3 − 4.25) states ,when asked if they found the
technique accurate (see Section 5.5). The results also show that
Dwell time was more accurate than Pursuits as the number of tar-
gets increased in both the sitting and the walking states (see Figure
5).

Obser vation  2:  While    gaze gestur   es requir e    longer sele ction    times 
   when ther   e ar e  many    targets, the   y ar e  highly  accurate  and    thus 
r eliable    in conte   xts wher e  accuracy    is mor   e imp ortant    than speed

5.3 Timeout
We counted how many times a timeout occurred, calculated as a
percentage of the total number of trials per condition. A timeout is
considered if a participant failed to select the correct targets within
20 seconds.

We observed that timeout occurred more when performing a
selection using Dwell time compared to Pursuits and Gaze gestures

Figure 6: Overall,more participants failed to select the correct
targets within 20 seconds in the walking state compared to
the sitting state. More timeout occurred when performing
selection using Dwell time compared to Pursuits and Gaze
gestures in both sitting and walking states.

in both sitting and walking states (see Figure 6). Timeout could
happen due to the participant’s face not being visible as a result of
participants’ changing their holding postures. For Dwell time, since
it also requires accurate gaze estimation and relies on calibration
[24], the inevitable shaky mobile settings cause calibration to break
frequently and thus, results in participants failing to perform a
selection within the time limit.

Observation 3: As expected, Dwell time relies on calibration 
because it requires accurate gaze estimation. The inevitably shaky 
mobile settings typically result in calibration to break often. This
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Table 2: Performing a selection using Gaze gestures is less error-prone compared to Dwell time and Pursuits in both Sitting
(Left) and walking (Right) states. We found no significant differences between Dwell time and Pursuits in terms of error counts
in most conditions, means in brackets.

Significant differences in Error counts [Pairwise comparisons]
Sitting state Walking state

Number of targets: 4 p< Number of targets: 4 p<
Dwell time (.625) Gestures (.000) .05 Dwell time (1.958) Gestures (.042) .05
Pursuits (.292) Gestures (.000) .05 Pursuits (1.000) Gestures (.042) .05

Number of targets: 9 p< Number of targets: 9 p<
Pursuits (.958) Gestures (.000) .05 Dwell time (.870) Pursuits (2.500) .05

Dwell time (.870) Gestures (.042) .01
Pursuits (2.500) Gestures (.042) .001

Number of targets: 12 p< Number of targets: 12 p<
Dwell time (1.826) Gestures (.043) .05 Dwell time (2.833) Gestures (.083) .05
Pursuits (1.958) Gestures (.043) .001 Pursuits (2.500) Gestures (.083) .01

Number of targets: 32 p< Number of targets: 32 p<
Pursuits (3.130) Gestures (.000) .001 Dwell time (2.833) Gestures (.042) .005

Pursuits (5.417) Gestures (.042) .001

prevents participants from selecting the correct target within the
time limit.

5.4 Perceived Cognitive Load
Figure 7 shows the mean scores for NASA-TLX dimensions in both
sitting and walking states. The scores are out of 100. The lower the
scores, the lower the workload.

5.4.1 Sitting state The statistical tests revealed significant differ-
ences in the overall NASA-TLX score when calculating the mean
across all six dimensions between the input techniques, F1.410,32.427
= 4.387, 𝑃 = .032. Significant differences (𝑃 < .05) were found
between Pursuits (𝑀 = 9.76, 𝑆𝐷 = 8.86) and Gaze gestures (𝑀 =

19.72, 𝑆𝐷 = 18.59). We ran multiple repeated measures ANOVAs for
each NASA-TLX dimension. A significant main effect was found for
input techniques on mental demand F1.599,36.782 = 5.905, 𝑃 = .009,
physical demand F1.575,36.229 = 4.646, 𝑃 = .023, and effort F2, 46 =
5.891, 𝑃 = .005. Post-hoc pairwise comparison revealed a significant
difference between Pursuits and Gaze gestures (𝑃 < .01) in mental
demand, physical demands, and effort.

Observation 4: The difference in users’ perceived workload was 
significant between Pursuits and Gaze gestures in the sitting state. 
Participants self-reported lower mental demand, lower physical 
demand, and less effort and frustration when providing input with 
Pursuits compared to Dwell time and Gaze gestures.

5.4.2 Walking state We found no statistically significant differ-
ences in the overall NASA-TLX score between the input techniques
F2, 46 = 5.891, 𝑃 = .097. The mean values were 18.96 for Dwell time
(SD = 14.18), 19.44 for Pursuits (𝑆𝐷 = 16.90), and 27.01 for Gaze
gestures (𝑆𝐷 = 16.80). Multiple repeated measures ANOVAs were
run to investigate if there is an effect of input techniques on each

NASA-TLX dimension. Significant main effects were found for in-
put techniques on physical F2, 46 = 8.414, 𝑃 < .001, and temporal
demand F2, 46 = 3.712, 𝑃 = .032. Post-hoc pairwise comparison
revealed a significant difference between Dwell time and Gaze ges-
ture (𝑃 < .01) and between Pursuits and Gaze gestures (𝑃 < .05) in
physical demand. the not significantly different (𝑃 > .05).

5.5 Qualitative Feedback
Participants responded to Likert scale questions (1-Strongly dis-
agree to 5-Strongly agree) and open-ended questions to reflect on
the different input techniques. As this data is non-parametric, we
used Friedman tests to check for significance and Wilcoxon Signed
Rank Test for posthoc pairwise comparisons with Bonferroni cor-
rection applied on the significance level to account for multiple
comparisons. Overall, participants enjoyed the hands-free nature
of gaze selections.

5.5.1 Sitting state As shown in Figure 8a, participants found Pur-
suits to be faster (𝑀𝑒𝑑 = 4.5, 𝐼𝑄𝑅 = 4 − 5) and less eye tiring
(𝑀𝑒𝑑 = 2, 𝐼𝑄𝑅 = 1 − 3) compared to Dwell time and Gaze gestures.
Although using Gaze gestures was the least favourable, partici-
pants indicated it was the most accurate (𝑀𝑒𝑑 = 5, 𝐼𝑄𝑅 = 4 − 5).
Participants perceived Pursuits significantly easier to use 2𝜒 (2) =
6.904, 𝑃 = .032, where pairwise comparisons showed significant
differences between Pursuits (𝑀𝑒𝑑 = 5, 𝐼𝑄𝑅 = 4 − 5) and both
Dwell time (𝑀𝑒𝑑 = 4, 𝐼𝑄𝑅 = 3 − 5) and Gaze gestures (𝑀𝑒𝑑 =

4, 𝐼𝑄𝑅 = 3 − 5). Gaze gestures was perceived as the least natural
to use (𝑀𝑒𝑑 = 3, 𝐼𝑄𝑅 = 2 − 3.25). This was also found to be sta-
tistically significant 2𝜒 (2) = 10.962, 𝑃 < .005, where comparisons
revealed significant differences between Gaze gestures and Pursuits
(𝑀𝑒𝑑 = 4, 𝐼𝑄𝑅 = 3 − 4.25), 𝑃 = .003. This indicates that Pursuits is
perceived as more natural.

Participants preferred Pursuits and Dwell time over Gaze ges-
tures when selecting one of 9, 12, and 32 targets. While with less
number of targets, no technique has preference over the others (see
Figure 8c). However, some participants disliked Pursuits with more
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(a) [Sitting state]

(b) [Walking state]

Figure 7: The mean Task Load index score of participants
as indicated in the NASA TLX questionnaire. The error bars
represent the standard deviation.

targets as they found the moving stimuli distracting. Although the
use of gaze gestures was not the most preferred, P13 preferred it
because of its reliability regardless of the number of targets “it was
easy to select irrespective of the number of targets but a bit of eye
movement was needed”.

We asked the participants about their perception of the input
techniques. Four participants perceived Dwell time and Pursuits to
be fast while nine participants reported Gaze gestures as such. “It’s
[Gaze gestures] quite fast when you get the hang of it” (P21). One
participant mentioned that Pursuits “Feels very interactive”. Four
participants reported Pursuits to be accurate. On the downside,
calibration in Dwell time is an issue that was reported by 5 partici-
pants. P11 criticised the techniques “It forbids me from following my
natural instinct of moving my eyes”, and 4 participants reported that
Dwell time requires a lot of time for selection (P1, P3, P8, P15). Few
participants reported that Pursuits become stressful to the eyes as
the number of targets increase. Few participants disliked the fact
that Gaze gestures require lots of eye movements and that they had
to look towards the edge of the screen to complete the gestures.

Observation 5: In the sitting state: participants found Pursuits 
significantly easier to use, faster, and less tiring compared to Dwell

time and Gaze gestures. Both Pursuits and Dwell time were per-
ceived to be more natural to use, easier to learn, and can be used
daily.

Ranking the techniques: At the end of the study, we asked
the participants to rank their preferences for the input techniques.
Raw scores were replaced by their weight factor; an input tech-
nique gains 3 points if ranked first, 2 points if ranked seconds, and
1 point if ranked last, and then weights are summed up to com-
pute weighted scores. Regardless of the number of targets, Pursuits
was the most preferred one (Score = 56), followed by Dwell time
(Score = 49), and then Gaze gestures (Score = 39). This matches
the results from the perceived selection time (see Figure 8a) and
the measured selection time (see Figure 4). When asked to rank
their preference based on the number of targets, Pursuits was also
the most preferred technique for 2, 4 and 9 targets while Dwell
time was the most preferred with 12 and 32 targets. Participants
who preferred Pursuits attributed that to the speed and ease of use,
“Pursuits technique was the best responsive one” (P3). Some ranked
Dwell time first because they found it intuitive, easier to learn and
fast. P22 preferred Pursuits because it “didn’t require calibrating
anything”. P11 ranked Gaze gestures first because “felt more in con-
trol” while those who ranked it last found it stressful and straining.
The ranking results are summarised in Table 3.

Obser vation  6:  In  the  sitting  state:  Participants ranke d  Pursuits 
 first ov er  other te chniques wit h  2,4  and  9  targets  while Dw ell  time 
 was  the  most preferre d  with  12  and  32 targets

5.5.2 Walking state Through the questionnaire, participants per-
ceived both Pursuits and Dwell time as easier to learn and more nat-
ural compared to Gaze gestures (see Figure 8b). We can also see that
Dwell time was perceived as less eye-tiring and preferred to be used
daily. Friedman revealed statistically significant differences between
the techniques in terms of being natural to use, 2𝜒 (2) = 11.760,
𝑃 = .003, where pairwise comparisons showed that Dwell time
(𝑀𝑒𝑑 = 4, 𝐼𝑄𝑅 = 4 − 5) and Gaze gestures (𝑀𝑒𝑑 = 3, 𝐼𝑄𝑅 = 2 − 4)
differs significantly, 𝑃 < .001.

Similar to the sitting state, participants indicated that Gaze ges-
tures was the most eye-tiring (𝑀𝑒𝑑 = 3.5, 𝐼𝑄𝑅 = 2 − 4). This was
also shown to be significantly different, 2𝜒 (2) = 6.441, 𝑃 < .05.
However, post-hoc analysis did not reveal significant differences
between the pairs. Six participants reported that Gaze gestures was
eye tiring because it was hard to end the gesture off-screen.

Participants preferred to use Dwell time and Pursuits over Gaze
gestures as the number of targets increase except for 32 targets
where they preferred Dwell time (see Figure 8d). However, no sig-
nificant differences in users’ preference were found between tech-
niques.

Observation 7: In the walking state: Participants ranked Dwell 
time as more preferred input method over Pursuits and Gaze ges-
tures.
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(a) Usability aspects in the sitting state (b) Usability aspects in the walking state

(c) Preferences for techniques in the sitting state (d) Preferences for techniques in the walking state

Figure 8: Participants rated aspects of the three input techniques on 5-point Likert Scales (1=Strongly Disagree;5=Strongly
Agree) in both states: Sitting in (a) and (c) and walking in (b) and (d). The box represents the 25th and 75th percentiles and the
line dividing the box represents the median responses.

We asked participants what they liked and disliked about each
technique. For Dwell time they stated, it is easy (9 participants),
works better while walking (2 participants), takes longer than while
sitting (5 participants), and causes some frustration (4 participants).
P23 associated that with movements “if I move while walking this
alters the accuracy of the technique and creates frustration”. Pursuits
was reported to be easy to use or learn (8 participants), accurate (2
participants) and intuitive (2 participants) but suffer from inaccu-
racy as the number of targets increase as reported (3 participants).
Four participants mentioned that performing selection using Pur-
suits becomes more demanding and requires much focus while
walking. Gaze gestures were perceived to be easy to learn or use
(5 participants) and fast (8 participants). P22 mentioned that Gaze
gestures “involved a slightly bigger learning curve” (P22), while P7
noted that it “was quick and also I get a chance to look ahead while
walking”. On the downside, Gaze gestures was reported to be tiring
to eyes by 9 participants.

Observation 8: In the walking state, both Pursuits and Dwell time
are perceived to be easier to learn and more natural compared to
Gaze gestures. In terms of the natural to use aspect, the difference
was significant between Dwell time and Gaze gestures.

Ranking the techniques: We asked participants to rank their
preference for the input techniques when performing selection in
the walking state. Regardless of the number of targets, Dwell time
was the most preferred one (Score = 55), while Gaze gestures was
ranked as the least preferred (Score = 38). Pursuits was ranked
second (Score = 51). Similarly, while considering the number of
targets, Dwell time was the most preferred too. This result matches
the preference for techniques with various targets (see Figure 8d).
Results are summarised in Table 3. One participant (P2) ranked
Dwell time first because the context is walking and needing to focus
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Table 3: Participants had different preferences for techniques for sitting andwalking states.When asked to rank their preference,
the weighted score showed that Pursuits was the most preferred for few targets while Dwell time was preferred with more
targets in sitting state (to left). For the walking state, Dwell time was the most preferred technique.

Sitting Walking
# of targets Ranking Technique Weighted score # of targets Ranking Technique Weighted score

1 Pursuits 52 1 Dwell time 52
2 2 Dwell time 47 2 2 Pursuits 46

3 Gaze gestures 45 2 Gaze gestures 46
1 Pursuits 59 1 Dwell time 53

4 2 Dwell time 45 4 2 Pursuits 48
3 Gaze gestures 40 3 Gaze gestures 43
1 Pursuits 54 1 Dwell time 52

9 2 Dwell time 51 9 2 Pursuits 50
3 Gaze gestures 39 3 Gaze gestures 42
1 Dwell time 53 1 Dwell time 51

12 2 Pursuits 47 12 1 Pursuits 51
3 Gaze gestures 44 3 Gaze gestures 42
1 Dwell time 53 1 Dwell time 52

32 2 Gaze gestures 46 32 2 Pursuits 48
3 Pursuits 45 3 Gaze gestures 44

on the way. Most participants who ranked Dwell time first found
it easier to use and more natural, “Dwell time felt more natural”
(P13), while those who ranked Pursuits first mostly mentioned
performance, “I think I based on my experience and performance.
With Pursuits, I wasn’t frustrated and could select most perfectly
if I remember” (P17). Accuracy was the main drive behind some
participants to rank Gaze gestures the first, “Gaze gestures even
though unnatural would give you the result you want” (P23).

UPPER TARGETS

LOWER TARGETS

INNER TARGETS

Obser vation  9:  Participants  had differ ent prefer ences  for tech-
 niques base d  on  sitting  and  walking  states:  Pursuits ranke d  as  the 
preferre d  input te chnique  in  sitting  and Dw ell  time  was ranke d 
 first  in walking.

6 Discussion and Future Work
In our implementation of the three commonly used gaze-based
interaction selection methods, Pursuits was found to be faster than
Dwell time and Gaze gestures in both the sitting and walking states,
especially when more targets are displayed. Pursuits was highly
ranked by participants as the most preferred technique to be used
when stationary regardless of the number of targets. Dwell time,
on the other hand, although slower, was preferred when walking.

In addition to the aforementioned novel insights, our results also
confirm that a number of findings from prior work hold for gaze
interaction on mobile devices. Prior work that compared gaze input
on head-mounted displays also reported that participants found
that Dwell time requires less exertion than motion matching [27].
While only a few participants ranked Gaze gestures as their most
preferred input method in our study, our results, as was suggested
in the literature [24], showed that Gaze gestures are highly accurate.

6.1 Challenges of Gaze Interaction
6.1.1 Gaze Interaction while on the Move Overall, all selection
techniques take longer time for selection and are less accurate
while walking. This is due to the shaky environment, which in turns
impacts the quality of the face images that are analysed to estimate

Figure 9: Left: Inner targets are highlighted while all the
other targets are considered as borders. Right: Upper and
lower targets are highlighted when 32 targets are presented.
Targets are highlighted in green for illustration purposes,
and in each trial of the study, the targets to be selected were
random.

the gaze point. Most affected by this was Dwell time as it relies on
calibration and accurate gaze estimation. Pursuits and Gaze gestures
are also affected by this, albeit to a lesser degree. Even though they
both do not require calibration or accurate gaze estimates, walking
results in noise that reduces the chance of matching eye movements
to trajectories and templates. Some participants reported that it
was challenging to focus on their way as they walk while making
selections at the same time. Future implementations of gaze input
methods need to account for more distractions when providing
input. A promising direction to compensate for this is to explore
ways to save the states of the users’ input (e.g., store the gaze points
when looking away and resume the same input when the user looks
at the same target again [30]). Some of our findings align with prior
work on gaze interaction with public and head-mounted displays
while on the move. For example, prior work on gaze interaction
with public displays also showed that selections using Pursuits are
slower while walking than while stationary [47]. In the context of
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(a) Inner vs border targets

(b) Upper vs lower targets

Figure 10: For each trial, we allow participants to continue
selecting until the correct target is selected or a timeout oc-
curs. Overall, selecting border targets is more error-prone
compared to inner targets (a). When comparing upper and
lower targets when selecting one of 9, 12, and 32 targets, no
particular trend was observed (b).

head-mounted displays, Pursuits was found to be more demanding
when making selections while walking [49].

6.1.2 Face and Eye Visibility In our study, we detected several cases
where participants failed to complete the selection tasks because
their faces were not visible to the camera and therefore, resulting in
gaze data loss. Assuming users’ full faces are always visible when
estimating gaze is not well suited for mobile settings [43]. Prior
work suggested that users hold their phones in different ways and
that hand postures are different across smartphones [35, 45]. Since
most gaze estimation algorithms require full-face images for eye
tracking to be reliable, the face and eye visibility issue become
prominent [43]. Future research directions are to explore gaze esti-
mation algorithms that rely on the eyes only for the mobile context
[12, 35] or to investigate ways to inform users when tracking is lost
or guide them to the best holding posture to maximise eye tracking
accuracy. Similar concepts were proposed in the literature for guid-
ing users in front of public displays to the ideal interaction position
[8]; studying the applicability of these methods in the context of
mobile devices is promising.

6.1.3 Calibration in Mobile Settings Gyroscope data collected dur-
ing the experiment revealed variations in participants’ holding
posture. We also noticed frequent changes in gyroscope data in
the same session, suggesting a lack of uniformity in phone-holding
posture throughout interaction sessions. These changes affect the
performance of gaze input methods especially Dwell time as it re-
lies on accurate gaze estimates. Even if held in the same way, the
inevitable shaking of the device could make the calibration data
obsolete and would make re-calibration necessary [10].

Some proposals were made tomitigate such issues. One approach
is to leverage the devices’ inertial sensors such as gyroscope and
accelerometer to decide what frames or images to use for gaze
estimation [55, 66]. A possible direction for future work is to auto-
matically compensate for the changed posture using the internal
sensing data or camera to update calibration parameters without
the need for re-calibration. Another approach is to use gaze input
methods that do not require calibration such as Pursuits and Gaze
gestures.

6.2 Impact of Target and Camera Positions
We noticed interesting differences in the number of errors when
performing selection between targets located on the border of the
screen and inner targets (see Figure 9 and 10). Selecting border tar-
gets using Dwell time is more error-prone compared to inner ones
in both the sitting and walking states, where participants made a
total of 84 errors when selecting one of the inner targets, while they
made 260 errors when selecting from the border targets. In terms of
selection time, the average selection time for Dwell time in walking
state when selecting inner targets was 2.15 𝑠𝑒𝑐 while it was 3.35 𝑠𝑒𝑐
when selecting border targets (see Figure 11a). As mentioned earlier,
this could be as result of inaccurate gaze estimation due to mobile
settings. Five participants noticed how sensitive Dwell time is to
shaky environments and that calibration data might just deteriorate
over time. The negative effect of border targets on selection time
was also observed when using Gaze gestures while sitting (see Fig-
ure 11a). Prior work comparing selection mechanism for gaze input
techniques on head-mounted displays also showed an increase in
selection time on the corner over the center targets when using
Dwell time while the effect of target location was reduced when
using motion matching [27]. Additional research is needed to assess
the impact of target positions on gaze input in mobile settings.

On the other hand, when comparing targets located at the upper
part of the screen and the lower part when selecting one of 9, 12, or
32 targets, the selection time increased on the lower targets using
Gaze gestures in both the sitting and walking states (see Figure 9
and 11b).

We found that the tracking accuracy is worse towards the left
edge of the screen compared to the right edge where in 119 trials,
participants made 265 errors whereas, with targets on the right
edge, participants made 201 errors in 165 trials. This could be due
to the camera’s position on the smartphone, which is on the center-
right of the top of the device in our experiment. This warrants
future work to investigate how the camera’s position influences
gaze selection.
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(a) Inner vs border targets

(b) Upper vs lower targets

Figure 11: Regardless of the number of targets, selection
time increased for border compared to inner targets using
Dwell time while walking and also when using Gaze gestures
while sitting (a). When comparing upper and lower targets
when selecting one of 9, 12, or 32 targets, the selection time
increased using Gaze gestures in both the sitting and walking
states (b).

6.3 Guidelines for Gaze Interaction on Mobile
Devices

Based on our results, we recommend the following:

[1] Use Pursuits if users are expected to use the phone while
stationary and there are < 9 targets. Gaze gestures is also
suitable when there are few targets (e.g., 2 targets). However,
it requires a longer learning curve.

[2] Dwell time should be used when there are > 9 targets while
stationary and while on the go. While Pursuits performs well
in terms of selection time, it is demanding and distracting
when there are many targets.

[3] Use Gaze gestures when accuracy is more important than
speed in both sitting and walking states.

[4] Allow users to opt for alternative techniques depending on
the context and number of targets.

7 Conclusion
In this work, we compared three of the most commonly used gaze
interaction methods in mobile settings; while sitting and while
walking: Dwell time, Pursuits, and Gaze gestures using quantitative
and qualitative measures. We found that input using Pursuits is
faster than Dwell time and Gaze gestures. When there are many
targets, Pursuits is particularly faster but also more distracting
to users. Users prefer Pursuits when stationary, but prefer Dwell
time when walking. While selection using Gaze gestures is more
demanding and slower when there are many targets, it is suitable
for contexts where accuracy is more important than speed. Based
on the analysis of our results and on prior work, We concluded with
guidelines for the design of gaze interaction on handheld mobile
devices.
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