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ABSTRACT
Gaze interaction holds a lot of promise for seamless human-
computer interaction. At the same time, current wearable mo-
bile eye trackers require user augmentation that negatively im-
pacts natural user behavior while remote trackers require users
to position themselves within a confined tracking range. We
present GazeDrone, the first system that combines a camera-
equipped aerial drone with a computational method to detect
sidelong glances for spontaneous (calibration-free) gaze-based
interaction with surrounding pervasive systems (e.g., public
displays). GazeDrone does not require augmenting each user
with on-body sensors and allows interaction from arbitrary
positions, even while moving. We demonstrate that drone-
supported gaze interaction is feasible and accurate for certain
movement types. It is well-perceived by users, in particu-
lar while interacting from a fixed position as well as while
moving orthogonally or diagonally to a display. We present
design implications and discuss opportunities and challenges
for drone-supported gaze interaction in public.
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INTRODUCTION
Being a fast and natural modality, gaze holds a lot of potential
for seamless human-computer interaction.

To date, mobile and remote eye tracking are the predominant
technologies to enable such interactions [18]. Mobile eye
trackers rely on head-mounted cameras to track users’ abso-
lute point of gaze and movements of the eyes. In contrast,
remote eye trackers use cameras placed in the environment,
e.g., attached to a display. While mobile trackers allow for
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Figure 1. GazeDrone is a novel system for gaze interaction in public
space. We use the drone’s camera to allow users to interact via gaze
from random positions and orientations relative to the system and even
while moving.

free movement and continuous tracking, they currently re-
quire heavy user augmentation, which makes users not behave
naturally in public [23]. Remote trackers do not require aug-
mentation, but their tracking range is limited to about 60 to
90 cm in front of the tracker [13]. Gaze estimation accuracy
then degrades as users move away from the tracker [12].

At the same time, Unmanned Aerial Vehicles (UAV), also
known as drones or quadcopters, have entered the mainstream
consumer market. Drones have become increasingly equipped
with a multitude of sensors, such as GPS, accelerometers,
and recently also high-resolution cameras. While drones are
associated with privacy concerns [28], which we discuss later
in this paper, they also present opportunities for seamless
pervasive interactions. Previous work explored interacting
with drones via explicit input such as mid-air gestures [7],
and via implicit input such as body motion [22] or facial
recognition [6]. While these works focused on interaction with
the drone, in this work we focus on gaze interaction through
the drone. Drones can be regarded as portable interactive
platforms that can sense the user’s input and channel it to
surrounding pervasive systems, such as public displays.

66

https://doi.org/10.1145/3213526.3213539


Dright

Dleft

NodeJS Server

OpenFace

Figure 2. The drone continuously streams the video feed to a NodeJS server. After detecting the face landmarks, we measure the distance between the
inner eye corner and the pupil for each eye (Dleft and Dright). The ratio determines if the user performed a gaze gesture. The values were decided
based on a series pilot studies with 11 participants.

To address the limitations of mobile and remote eye track-
ing, we present GazeDrone, the first system that combines a
camera-equipped aerial drone with a computational method
to detect sidelong glances for spontaneous (calibration-free)
gaze-based interaction. GazeDrone inspires fresh thinking
about a whole new range of gaze-enabled applications and use
cases. For example, rather than requiring users to move into
the tracking range of a remote tracker and position themselves
properly, the drone could instead approach the user and conve-
niently track their eyes in their current location. This would
enable hands-free gaze interaction with physically unreachable
systems such as mid-air displays [24] or large distant displays.
GazeDrone advances the state of the art in eye tracking by
allowing gaze interaction (1) without augmenting the user, (2)
from arbitrary positions, distances, and orientations relative to
the interactive system, and (3) without restricting movements
(i.e., users could interact via gaze while on the move).

The contributions of this work are threefold. First, we intro-
duce the concept and implementation of GazeDrone, a novel
system that enables pervasive gaze-based interaction in public
spaces through an aerial drone. Second, we report on an eval-
uation of GazeDrone to investigate its performance and user
acceptance. Third, we present four design implications that
inform future drone-supported gaze interactions.

RELATED WORK
Researchers have investigated ways for enabling gaze-based
interactions beyond the desktop, specifically also displays
in public. For example, previous works explored gaze ges-
tures [9] and smooth pursuit eye movements [27] for public
display interaction. Similar to our work, Zhang et al. intro-
duced SideWays, a gaze-based system that responds to the
user’s gaze gestures to the left and to the right [29]. For all
of these techniques, enabling interactions from different posi-
tions relative to the display remains one of the most important
and under-investigated challenges [13, 14].

One approach to address this is to actively guide users into
the tracker’s range. Zhang et al. investigated ways for guiding
users to position themselves in front of the center of a public
display [30]. It took their users 4.8 seconds to align the face
correctly based on an overlaid outline. In GravitySpot, visual
cues implicitly guide users to a public display’s sweet spot
(e.g., eye tracker’s range) [2]. Another approach is to rely on
mobile eye tracking to continuously track the relative position

of the display in the tracker’s scene camera. For example,
GazeProjector utilizes feature matching to detect surrounding
displays and map gaze points onto them; the gaze points are
transferred through a local WiFi network, to which the displays
and the eye tracker are connected [15]. A third approach is ac-
tive eye tracking, which refers to systems that use, for example,
pan-and-tilt cameras to adapt to the user’s head position [20,
25]. While all of these approaches allow for more freedom in
user positioning, they either require user augmentation or their
range is still limited and prohibitive for interactions from far
away from the eye tracker. The only exception is EyeScout
[14], where an eye tracker was mounted on a rail system to
allow the tracker to follow the user along the display. However
while this approach significantly increases the lateral range of
eye tracking, it is confined by the eye tracker’s range, which is
typically 60-90 cm [13].

In contrast, GazeDrone does not require user augmentation and
users are also not required to walk into the eye tracker’s range.
While gaze has been used to remotely operate drones from a
desktop computer [11], GazeDrone is first to leverage aerial
drones for active eye tracking and thereby enable interactions
with nearby interactive systems. Figure 1 illustrates a sample
use case, in which users can interact from an arbitrary position
relative to a public display.

GAZEDRONE
GazeDrone consists of three main components: a server, a
client, and an aerial drone. Previous solutions from indus-
try and research have already demonstrated the feasibility of
tracking and following users through drones [6, 21, 22]. In
this work we focus exclusively on gaze interaction through
the drone’s camera. As illustrated in Figure 2, we use a Parrot
AR.Drone 2.01 to continuously transfer the video stream to
the server via WiFi. The video stream is then processed on
a NodeJS server. The server runs the tracking algorithm and
estimates the user’s gaze. The gaze data is then pushed to the
client. The client can be programmed as desired, depending
on the use case. For example, it could run Android Things for
IoT applications, or a web browser for web-based interfaces.

We detect gaze gestures (left and right) in real time to evaluate
GazeDrone’s suitability for interactive applications and while
users are moving. Using the front camera of the AR.Drone,
1PARROT AR.DRONE 2.0 https://www.parrot.com/global/
drones/parrot-ardrone-20-elite-edition
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we stream the video feed (640 × 360 px at 7–9 fps) to the
server. Facial landmarks are detected using the Conditional
Local Neural Fields (CLNF) model [4], which is extended
using multiple training datasets [5, 10, 16]. These extensions
were integrated in the OpenFace framework [3]. The detected
facial landmarks are the inner eye corners and the pupils of
each eye. We measure the distance between the pupil’s center
and the inner eye corner for the left and right eyes (Dleft and
Dright separately). The ratio of Dleft to Dright is calculated
to determine whether the user is looking to the left or to the
right (see Figure 2). For example, if the user looks to the
left, Dleft increases while Dright decreases, which results
in a higher Dleft to Dright ratio. A series of pilot studies
with 11 participants revealed that thresholds of 1.05 and 0.9
are appropriate in our setup for detecting left and right gaze
gestures. We use a window of 5 frames for gesture detection.
For example, we conclude that the user is looking to the left if
we receive 5 frames in which Dleft

Dright
≥ 1.05.

Commercial eye trackers often employ IR-sensors to exploit
infrared-induced corneal reflections for improved tracking
quality. However, these trackers typically have a range of
60–90 cm; using them for GazeDrone would require users to
stand too close to the drone. Hence we opted for video-based
eye tracking through the drone’s front camera. We expect
that the range of IR-based trackers will cover a wider area
in the near future. At that point, they can be integrated into
GazeDrone, increasing the range of detected eye movements.

USER STUDY
We evaluated GazeDrone for stationary and moving scenarios
on an 86” projected display in our lab.

Design
Inspired by prior work [29], we defined three basic gaze manip-
ulation tasks: selection, scrolling, and sliding. In the selection
task, participants had to perform a gaze gesture to the left
or to the right in response to an arrow shown on the display
(Figure 3A). In the scrolling task, participants had to scroll
through a set of figures via discrete gaze gestures until the
target figure (shown at the top) is at the center of the display
for 2 seconds (Figure 3B). In the sliding task, participants had
to move a slider towards the center; the task was completed
after the slider had stayed for 2 seconds at the center of the
display (Figure 3C). In the latter two tasks, participants always
started at a state where the target was two steps away from
the starting position. In half of the cases the participant had to
perform two steps to the right, and in the other half two steps
to the left were needed. Previous work reported that users
found it challenging to use their peripheral vision to judge
if the target was reached [29]. Hence, audio feedback was
provided at the recognition of input.

To cover cases where users are moving, we experimented with
four user movements: (1) Stationary: as a baseline condition,
participants stood 3.5 meters in front of the display’s center,
i.e., position 5 in Figure 4. (2) Orthogonal: walking towards
the display, i.e., 8 → 2 in Figure 4. (3) Parallel: walking
parallel to the display, i.e., 4↔ 6 in Figure 4. (4) Diagonal:

Projected Display

1 2 3

4 5 6

7 8 9

2.5
meters

3.5
meters

2.5 meters

Figure 4. We experimented with different user movement conditions:
(a) stationary - position 5, (b) orthogonal movement - 8 → 2, (c) parallel
movement - 4 ↔ 6, and (d) diagonal movement - 7 → 3 and 9 → 1.

walking diagonally towards one corner of the display, i.e., 7
→ 3 and 9→ 1 in Figure 4.

The study was designed as a repeated measures experiment.
Participants performed 4 blocks (stationary, orthogonal, par-
allel, diagonal), each block covered the three tasks. Each
participant performed 4 runs per condition, resulting in a total
of 48 trials per participant (4 user movements × 3 tasks ×
4 runs). Participants always started with the selection task,
since it is the most basic interaction. Scrolling and sliding
were performed second and third at an alternating order across
participants. For parallel and diagonal movements, partici-
pants moved from left to right (4 → 6 in parallel, and 7 →
3 in diagonal) in two of the four runs, while the other two
runs were from right two left (6→ 4 in parallel, and 9→ 1
in diagonal). The order of the movement conditions and the
starting position were counter balanced using a Latin-square.

Participants and Procedure
We recruited 17 participants (6 females) with ages ranging
from 23 to 35 years (M = 26.29, SD = 3.24). All par-
ticipants had normal or corrected-to-normal vision. The ex-
perimenters started by introducing the study and asking par-
ticipants to fill in a consent form. According to the Latin
square arrangement, participants were told the expected move-
ment, task, and starting position. To exclude possible effects
of unstable hovering, the drone was held and moved by an
experimenter. We concluded with a questionnaire and a semi-
structured interview to collect qualitative feedback.

Limitations
While GazeDrone is capable of tracking the user’s gaze while
hovering independently, the drone’s stability, its speed and its
distance to the user influence the perception of GazeDrone.
Users are concerned about their safety if a flying drone is not
far enough from their face or is not perfectly stable [8]. Hence,
in our evaluation of GazeDrone, an experimenter manually
carried the drone to overcome the influences of the state-of-the-
art technology limitations on user perceptions. Nevertheless,
progress in research and industry promises solutions through
advancements in camera resolutions, proximity sensors, and
processing power of on-drone chips. We expect that in the
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Figure 3. Participants performed 3 tasks: (A) Selection: performing a gaze gesture towards the direction shown on the screen. (B) Scrolling: scrolling
through the objects until the target (shown on top in blue) is at the center of the screen for 2 seconds. (C) Sliding: moving the slider to the center and
keeping it there for two seconds.

near future, a field deployment of GazeDrone will be feasible
without safety concerns.

Quantitative Results
We measured the correct input rate, which we define as the
number of times the system recognized a user’s gaze towards
the expected direction. An incorrect input could be a result
of the system mistakenly detecting a gaze gesture towards the
wrong direction (incorrect system detection), or a result of the
user mistakenly gazing towards the wrong direction (incorrect
user input). We analyzed the data using a repeated measures
ANOVA. This was followed by post-hoc Bonferroni-corrected
pairwise comparisons.

We found a significant main effect of the user movement type
(F3,45 = 5.551, p < 0.01) on correct input rate. Signifi-
cant differences in correct input rates (p < 0.01) were found
between stationary (M = 70%, SD = 33%) and parallel
movement (M = 52.2%, SD = 40.3%). This means that
input was significantly more accurate when stationary com-
pared to when moving parallel to the display. No significant
differences were found between any other pair, which means
that we could not find any evidence of differences in perfor-
mance among the other movement conditions. Figure 5 shows
that the highest accuracy is achieved when users are stationary.
The figure also suggests that accuracy is almost as high when
moving orthogonally towards the display, and drops slightly
when moving diagonally towards the display. However, a
sharp drop is noticed when moving parallel to it.

We attribute the lower accuracy in the moving conditions to
motion blur. The low accuracy of the parallel movement
condition can be explained by the participants’ feedback. Par-
ticipants reported that interacting while moving towards the
display (orthogonally or diagonally) is more natural, compared
to when moving parallel to the display; some reported being
often confused when they had to move parallel to the display
in a direction, while performing gaze gestures to the other
directions. This suggests that there are more “incorrect user
inputs” in the parallel movement condition.

We also found a significant main effect of the task type
(F2,30 = 4.662, p < 0.01) on correct input rate. Pairwise
comparisons (α = 0.05 / 3 comparisons = 0.0167) indicated a
significant difference between the selecting task (M = 69%,
SD = 37.5%) and the sliding task (M = 54%, SD = 37%).
This means that performing selection tasks is easier compared
to sliding tasks, which is in-line with previous work [29].

Figure 5. Performance is highest when selecting while stationary. Perfor-
mance is high in orthogonal and diagonal movements, but significantly
lower in parallel movements. This is attributed to: 1) reduced quality
due to motion blur, and 2) incorrect input by participants when moving
parallel to the display.

Subjective Feedback
When asked how often the system recognized their gaze ges-
tures accurately on a 5-point scale (5=always correct;1=never
correct), feedback from the participants matched the quan-
titative results. They found interaction very accurate when
stationary (Mdn = 4, SD = 1.12) and when moving orthog-
onally towards the display (Mdn = 4, SD = 1.05). While
accuracy is moderate when moving diagonally (Mdn = 3,
SD = 1.03), participants perceived accuracy to be lower
when moving parallel to the display (Mdn = 2, SD = 0.8).

In the interviews, 11 participants reported that they would use
GazeDrone if deployed in public, while six were concerned
about the privacy implications of being tracked by a drone in
public. All participants mentioned that they like the flexibility
and hands-free interaction enabled by GazeDrone. Four partic-
ularly highlighted that they found the system innovative and
interesting. On the flip side, four reported feeling uncomfort-
able when drones are close to their face. Two of which stated
they would only use it if it was too far from them and if the
drone was small. One participant complained about the noise
caused by the propellers of the drone. A participant mentioned
she would rather control when to provide gaze data by, for
example, launching a smartphone app.

In addition to using GazeDrone for pervasive interactive sys-
tems, participants reported other use cases in which they would
imagine GazeDrone being used. For example, a participant
suggested employing GazeDrone near touristic attractions as
an audio guide for the objects users are looking at. A partici-
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pant proposed utilizing GazeDrone in large warehouses with
high-bay areas; GazeDrone can detect which product a worker
is trying to reach, another bigger drone could then bring it to
the worker. Participants suggested collecting gaze data at situ-
ated advertisements for market research, assisting the disabled,
and hands-free interaction with distant and mid-air displays in
sports, e.g., biking, jogging, or skiing.

DISCUSSION
The results indicate that GazeDrone is well perceived by users.
Performance is highest when the user is stationary, and almost
as good when the user is moving orthogonally and diagonally
towards the display. Performance however drops sharply when
moving parallel to the display. These findings are supported by
qualitative feedback from participants and quantitative results.

Free vs Enforced Ergonomic Movement
Participants reported that interacting while moving parallel to
the display is unnatural and demanding. A possible reason
is that users are not used to looking to their sides for a long
time while walking. This suggests that some walking patterns
are not well-suited for gaze interaction while on the move.
While making eye tracking more robust against motion blur
is an important direction for future work, systems should also
support and guide users to interact in an ergonomic way.

Previous work investigated guiding users to position them-
selves in a target location, the “sweet spot”, from which inter-
action is optimal [2]. This was done by using visual cues that,
for example, gradually brighten the content on the display as
the user approaches the sweet spot. Similar approaches can
be employed to influence the user’s movement towards the
interactive system. GazeDrone can be used to support interac-
tion while on the move, but when higher accuracy is required
by the application, GazeDrone would then gradually guide
users to become stationary or move in a particular pattern that
optimizes performance (e.g., towards the display rather than
parallel to it). Previous work has shown that behavior of robots
can influence the user’s proximity [19]. Future work could
investigate if the drone’s behavior can similarly make the user
slow down or move in a certain pattern.

Size of the Drone
Some participants reported that the bigger the drone the less
likely they are comfortable interacting with GazeDrone. This
suggests that drone-supported gaze interaction should utilize
smaller drones. Although not reported by our participants, a
further disadvantage of big drones is that they might block the
user’s view of the display.

Hence, we recommend hovering the drone with an adjustable
camera angle at an altitude below the user’s height, and to use
small drones, for example, the Aerius quad-copter (3 cm ×
3 cm × 2 cm [1]).

Privacy Implications
Feedback from six participants is in-line with previous work
that showed that users are not comfortable with drones storing
data about them [28]. Although we can technically store the
gaze data recorded by GazeDrone for offline processing and,

hence, higher accuracy, we opted for real-time processing in
our implementation. This means that we do not store data, but
rather process them on the fly.

Even when processing in real time, it is still recommended
that users are warned before drones collect data about them
[26]. Hence, a field deployment would require mechanisms
to inform the user that GazeDrone is tracking their eye move-
ments, and allow them to opt out when desired. For example,
GazeDrone can use auditory or visual announcements (e.g.,
LED lights [17]) to communicate that it is in eye tracking
mode. Previous work proposed using gestures to signal a
“stop” command to drones; this feature can be utilized by users
to indicate that they do not wish to be tracked [7]. Similarly,
and one participant suggested, the drone could enable gaze
interaction on demand only after the user’s request.

CONCLUSION
In this work we proposed a novel approach for gaze-based
interaction in public pervasive settings. GazeDrone employs
drone-supported gaze-based interaction, hence our approach
does not require augmenting the user, and does not restrict
their movements. We described the implementation of Gaze-
Drone, and reported on a lab study. The results show that
GazeDrone is well perceived and can indeed track users’ eyes
while moving despite motion blur. Performance is highest
when the user is stationary. Gaze interaction while moving
orthogonally or diagonally towards the display yields high
performance, but performance drops when moving parallel to
the display. We concluded with four design implications to
guide further research in drone-supported eye tracking.
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