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ABSTRACT 
Research on Extended Reality (XR) and Artifcial Intelligence (AI) 
is booming, which has led to an emerging body of literature in 
their intersection. However, the main topics in this intersection are 
unclear, as are the benefts of combining XR and AI. This paper 
presents a scoping review that highlights how XR is applied in AI 
research and vice versa. We screened 2619 publications from 203 
international venues published between 2017 and 2021, followed by 
an in-depth review of 311 papers. Based on our review, we identify 
fve main topics at the intersection of XR and AI, showing how 
research at the intersection can beneft each other. Furthermore, we 
present a list of commonly used datasets, software, libraries, and 
models to help researchers interested in this intersection. Finally, 
we present 13 research opportunities and recommendations for 
future work in XR and AI research. 

CCS CONCEPTS 
• General and reference → Surveys and overviews; • Human-
centered computing → Virtual reality; Mixed / augmented reality; 
• Computing methodologies → Artifcial intelligence. 
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1 INTRODUCTION 
Extended Reality (XR) and Artifcial Intelligence (AI) have become 
prominent research topics in Human-Computer Interaction (HCI) 
and Computer Science in general. Previously, research on these 
topics happened primarily within their respective felds. However, 
tools and technologies such as Unity3D and Keras have made XR 
and AI more accessible to researchers from diferent domains and 
backgrounds. As a consequence, a new research feld has emerged 
at the intersection of XR and AI. On the one hand, XR researchers 
employ AI methods for problems, such as foveated rendering [357], 
object tracking [202, 416], or predicting virtual reality (VR) sick-
ness [199, 373]. On the other hand, AI researchers use XR technolo-
gies to address issues, such as understandability, say, by visualizing 
neural networks in VR [243], and explainability, for example, by 
providing immersive interfaces to train machine learning (ML) 
models for non-experts [125]. Furthermore, in 2018, ACM and IEEE 
launched new conferences to specifcally address research at the 
intersection of XR and AI1,2. 

Currently, it is difcult to obtain an overview of the research 
at this intersection. There are some reviews that summarize the 
literature on XR and AI for certain topics. For example, they analyze 
intelligent embodied agents [262], production systems [299], or 
specifc use cases, such as surgery simulations [383] or medical 
education [99]. However, the purpose of these works is to answer a 
specifc question on applying XR and AI to an external use case. In 
contrast, we aim to provide a comprehensive account of the current 
landscape and research directions at the intersection of XR and AI. 

To remedy this situation, we present a scoping review covering 
311 papers published between 2017 and 2021. Scoping reviews aim 

1IEEE International Conference on Artifcial Intelligence and Virtual Reality: https: 
//ieeexplore.ieee.org/xpl/conhome/1830004/all-proceedings, last accessed: August 18, 
2022 
2ACM International Conference on Artifcial Intelligence and Virtual Reality: https: 
//dl.acm.org/conference/aivr, last accessed: August 18, 2022 
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to map the breadth of the available evidence [340]. In doing so, 
we follow the process suggested by Cooper et al. [68] and Aro-
mataris and Munn [21]. First, we screened 2619 publications from 
203 venues to cover the broad spectrum of XR and AI research. For 
the search, we used an inductively built set of XR and AI terms. The 
venues include research from XR, AI, Human-Computer Interaction, 
Computer Graphics, Computer Vision, and others (see Appendix D 
for a complete list of the venues). After a two-phase screening pro-
cess, we reviewed and extracted data from 311 full papers based on a 
code book with 26 codes about the research direction, contribution, 
and topics of the papers, as well as the algorithms, tools, datasets, 
models, and data types the researchers used to address research 
questions on XR and AI. The extracted data for these codes form 
the basis for our predominantly narrative synthesis. As a result, we 
found fve main topics at the intersection of XR and AI: (1) Using AI 
to create XR worlds (28.6%), (2) Using AI to understand users (19.3%), 
(3) Using AI to support interaction (15.4%), (4) Investigating interac-
tion with intelligent virtual agents (IVAs) (8.0%), and (5) Using XR to 
Support AI Research (2.3%). The remaining 23.8% of the papers apply 
XR and AI to an external problem, such as for medical training 
applications (3.5%) or for simulation purposes (3.0%). Finally, we 
summarize our fndings in 13 research opportunities and present 
ideas and recommendations for how to address them in future work. 
Some of the most pressing issues are a lack of generative use of AI to 
create worlds, understand users, and enhance interaction, a lack of 
generalizability and robustness, and a lack of discussion about ethical 
and societal implications. 

In summary, we make the following contributions: First, we 
summarize the state-of-the-art XR and AI research by presenting a 
typology including fve main topics. We also provide a dataset of 
the reviewed papers, including the extracted data for the codes. Sec-
ond, we present an overview of algorithms, tools, datasets, models, 
data types, and user study data from the reviewed papers. We also 
provide a list of commonly used datasets, software, libraries, ML 
networks, and models in Appendix A. This list can help researchers 
interested in XR and AI research to fnd suitable tools. Third, we 
critically discuss current research gaps, and provide 13 research 
opportunities, as well as recommendations for future work. 

2 BACKGROUND 
In this section, we frst discuss existing reviews on particular issues 
in XR and AI research. Second, we introduce our understanding of 
the terms XR and AI. 

2.1 Literature Reviews on XR and AI 
Existing reviews on XR and AI typically focus on a particular as-
pect about XR and AI research, but do not cover their intersection 
comprehensively. Lampropoulos et al. [186], for example, reviewed 
applications of deep learning, semantic web, and knowledge graphs 
to improve augmented reality (AR). They identifed object detec-
tion, image processing, and computer vision as three areas where 
deep learning can enhance user experience and services in AR. 
Throughout the paper, AI is expressed as a technology to enhance 
the detection of input like gestures or speech in AR. However, the 
paper is not specifc on which techniques should be used for these 
purposes. Furthermore, there are many reviews of IVAs [262, 263]. 

Norouzi et al. [262] presented a systematic review on embodied 
agents in AR head-mounted displays (HMDs). They identifed the 
application of embodied agents in assistive and collaborative roles 
as one of the emerging trends. One of the major challenges in this 
area is to enhance agents’ understanding of their physical envi-
ronment. Another two emerging trends are the use of agents as 
companions (e.g., as therapy partners) and the modeling of agent 
personality and empathy. Other articles focused on IVAs in a certain 
domain, for example, for education and training [300], professional 
skills training [42], or healthcare [225]. Some reviews specifcally 
address empathy [270] or the nonverbal behavior [30] of agents. 
We also found reviews that synthesize literature about applying 
both XR and AI for a specifc use case. A frequent example of this 
category are works from the medical domain, such as clinical simu-
lation for nursing pain education [119], using ML to assess surgical 
expertise in a VR simulation [383], personalizing doctor-patient 
surgical risk communication [14], or about the application of AI and 
AR/VR in medical education [99]. These papers cover individual 
topics that report on insights about applying AI and XR (mainly 
VR or AR) to a particular external use case, like in the medical do-
main. However, the state of the art of XR and AI research is not 
addressed by these papers. We not only difer from these reviews 
in methodology (i.e., using a scoping review instead of a systematic 
review), but also in our aim of giving an overview of the state of 
the art. 

We found three papers that describe the broad range of research 
at the intersection of XR and AI. Luck and Aylett [224] coin the 
term intelligent virtual environments in their 2000 article about 
“applying artifcial intelligence to VR”. A key concept that they use 
to discuss work on intelligent virtual environments is the concept of 
autonomy. Being very much an outlook into future systems, their 
work provides an interesting preamble to our work. Ribeiro de 
Oliveira et al. [299] reviewed papers with a focus on how VR and 
AI are applied to specifc problems in “industry, commerce, services, 
logistics, processes, or systems”. This complements our research, 
which focuses on basic research at the intersection of the two felds 
without addressing how both technologies are applied to such an 
external problem. As a result, the authors point out that AI methods 
mostly contribute through high precision and high efciency to VR 
problems (e.g., in surgery). The main drawbacks of applying AI for 
VR problems is a lack of training data and high computational costs. 
The most recent article in this area by Reiners et al. [296] is about 
the combination of XR and AI research. The main applications of 
XR and AI, as revealed in their review, are training (i.e., medical 
and military), gaming, robots and autonomous cars, and advanced 
visualization. These existing reviews focus around felds that XR 
and AI are applied to. In general, a lot of research is going on in 
the medical domain and on training. The papers point out that 
computational costs and limited training data are two major issues 
that limit the current methods. The work by Luck and Aylett [224] 
is more conceptual, identifying autonomy as an important axis on 
which to describe intelligent virtual instances. In contrast to these 
works, our review is focusing on the state of basic research at the 
intersection of XR and AI. More precisely, we are not interested in 
the application domains XR and AI are applied to, but how they are 
used with respect to fundamental research questions, for example, 
about interaction techniques in XR or user characteristics. 
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2.2 Our Understanding of XR and AI 
In the following, we characterize the understanding of XR and AI 
used in this work. XR is typically referred to as an umbrella term 
for VR, AR, and mixed reality (MR) [37, 112, 245, 293]. VR refers 
to overlaying the real world with virtual content by completely 
blocking real-world content. In contrast, AR refers to virtual objects 
being superimposed on an existing, three-dimensional real-world 
environment [23] using projection, optical, or video see-through 
devices. While researchers generally agree on these notions of VR 
and AR, the case is more complicated for MR [333]. The reality-
virtuality continuum by Milgram and Kishino [246] typically serves 
as the basis for discussions around the term MR, but it has been crit-
icised to not fully cover modern, more advanced technologies [333]. 
XR covers all of these notions (VR, AR, MR), and since we aim to 
cover the breadth of XR research, we include all of the above terms 
in our defnition of XR. 

In the case of AI, giving a defnition is more challenging. Nu-
merous articles aim to address the problem of defning AI [92]. As 
highlighted by Wang [375], early defnitions of the term “indicate 
the same scope of intelligence as we see in human action” [261], or 
more abstractly note that “intelligence usually means the ability to 
solve hard problems” [249]. However, to date, “there is no widely 
accepted defnition of AI” [375]. The ACM Computing Classifca-
tion System3 lists AI, as well as ML, as computing methodologies, 
while in other cases ML is often considered a sub-category of AI. 
With our work, we do not aim to add another defnition of AI to 
this collection. Our defnition of AI is refected in the set of key-
words chosen for the search. To do that, we follow an inductive 
data-driven approach. We include articles that communicate on a 
high level that they used AI or specify a concrete method of AI. 
Since, to our knowledge, currently no clear list of such methods 
exists, we adopted an iterative approach to obtain AI terms. 

3 METHOD 
We aim to identify and examine the state of the art of XR and AI 
research and, therefore, chose to conduct a scoping review. Scoping 
reviews aim to “provide a preliminary assessment of the potential 
size and scope of available research literature” [340]. While system-
atic reviews typically focus on one precise question [340], scoping 
reviews aim to explore the “range of evidence” [277] rather than 
dive deep into one particular question [68, 159, 256]. Since their 
aim is to assess the full scope of literature on a topic, literature 
is included regardless of methodological quality [17]. Yet, some 
authors argue that some sort of quality assessment should take 
place to better identify critical gaps in evidence and not just a “lack 
of research” [197, 282]. Consequently, our aim is to cover a range of 
venues; and we only limited the publication type to full papers for 
quality assessment. Furthermore, a formal synthesis is typically not 
carried out (as opposed to systematic reviews that require a formal 
synthesis) [277]. Instead, scoping reviews present and structure the 
located evidence and give an overview of studies or research con-
tributions conducted on a topic [277]. We followed the checklists 
suggested by Cooper et al. [68] and Aromataris and Munn [21] for 

3ACM Computing Classifcation System: https://dl.acm.org/ccs, last accessed Septem-
ber 10, 2022 

conducting scoping reviews in the procedure and development of 
the protocol. 

3.1 Research Questions and Rationale 
This review is guided by the following research questions (RQs): 
RQ1 What are the main topics researched at the intersection of 

XR and AI? 
RQ2 What are the main problem areas that are addressed with XR 

and AI research? 
RQ3 How is the research conducted? In particular, what algo-

rithms, tools, datasets, models, data types, and user study data 
are employed to conduct the research? 

3.2 Search Strategy 
3.2.1 Definition of Keywords. It is a non-trivial task to choose an 
appropriate set of keywords that covers the full spectrum of XR 
and AI research. To avoid subjective bias, we chose to defne the 
keywords through a data-driven approach. That means, we defned 
one XR-related and one AI-related keyword set based on the key 
terms that are used in the literature. Through this approach we 
ensure that we fnd the majority of related keywords and are not 
limited to our own knowledge or biases towards terms that we 
think describe XR and AI best. 

Method to defne XR-related keywords. We started with the key-
words “extended reality”, “virtual reality”, “augmented reality”, and 
“mixed reality”. We then used this list to search the 2021 proceed-
ings of two XR-related venues (ISMAR4 and VRST5). We compared 
the retrieved set of papers with the 2021 proceedings of both con-
ferences and noted the papers that were not in the result list. Au-
thor A6 then read the title, abstract, and author keywords of these 
missed publications and identifed additional XR terms (e.g., “head-
mounted display” and “virtual space”). The aim of this process 
was to retrieve the full proceedings with the selected XR-related 
keyword list. Table 1 shows the full keyword list. 

Method to defne AI-related keywords. For the AI keywords we 
started with the keywords “artifcial intelligence” and “machine 
learning”. We then searched the 2021 proceedings of two machine 
learning conferences (ICML7 and NeurIPS8) with this set of key-
words and compared the result with the full proceedings. Again, 
author A went through title, abstract, and author keywords to iden-
tify additional AI-related keywords. The complete list is shown in 
Table 1. 

3.2.2 Search. We searched Web of Science9 and Scopus10 using an 
OR operator between keywords within each set and an AND operator 

4International Symposium on Mixed and Augmented Reality: https://ieeexplore.ieee. 
org/xpl/conhome/9583730/proceeding, last accessed August 28, 2022
5ACM Symposium on Virtual Reality Software and Technology: https://dl.acm.org/ 
doi/proceedings/10.1145/3489849, last accessed August 28, 2002
6Throughout the following sections, we will refer to the six authors of this paper with 
A-F to indicate which authors took part in the search, data extraction, and analysis 
parts.
7International Conference on Machine Learning: https://proceedings.mlr.press/v139/, 
last accessed September 10, 2022
8Advances in Neural Information Processing Systems: https://papers.nips.cc/paper/ 
2021, last accessed August 28, 2022
9Web of Science: https://www.webofscience.com/, last accessed: July 15. 2022
10Scopus: https://www.scopus.com/, last accessed: July 15. 2022 

https://dl.acm.org/ccs
https://ieeexplore.ieee.org/xpl/conhome/9583730/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9583730/proceeding
https://dl.acm.org/doi/proceedings/10.1145/3489849
https://dl.acm.org/doi/proceedings/10.1145/3489849
https://proceedings.mlr.press/v139/
https://papers.nips.cc/paper/2021
https://papers.nips.cc/paper/2021
https://www.webofscience.com/
https://www.scopus.com/
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Table 1: Keyword list for the literature search. The search term was constructed by putting an OR operator between each phrase 
within a set and an AND operator between the two keyword sets. 

XR-related keywords AI-related keywords 

augmented reality, AR, extended reality, head-mounted dis-
play, head-up display, head-worn display, headset, HMD, 
immersive environment, mixed reality, virtual environ-
ment, virtual reality, virtual space, VR, XR 

agent, artifcial intelligence, bandit, classif*, cluster*, com-
putational, computer vision, dataset, deep, estimation, gen-
erative, intelligent, learning, machine learning, markov, 
model*, natural language processing, neural, optimi*, pre-
dict*, reasoning, recognition, segmentation, *supervised*, 
tensor 

between the two keyword sets. We limited our search to the title, 
abstract, and author keywords of an article. The specifc queries for 
each data base are shown in Appendix B. 

Furthermore, we applied a number of flters. We limited the 
search to the fve years from 2017 to 2021, and only included articles 
in main conference proceedings and journal articles. We chose to 
select the last fve years as time period, since we wanted to display 
the current state of the art of XR and AI research, including the 
most recent developments in the feld. Furthermore, previous years 
have in part been covered by several narrower reviews on these 
topics [296, 299]. We realized that Scopus does not index some of 
the ML conferences that we deemed important for our review (e.g., 
NeurIPS). Therefore, we decided to use Web of Science only. The 
initial search yielded a result of 10714 records. By double-checking 
some of the conferences, we found errors in the database (e.g., years 
2020 and 2021 were missing for VRST5, years 2019, 2020, and 2021 
were missing for IEEE Transactions on Image Processing11). For 
other publication venues, a substantial part of the papers published 
in certain years were missing (e.g., only 373 out of the 746 papers of 
the CHI 2021 proceedings12 were found). Consequently, we decided 
that Web of Science worked too unreliably and adopted a venue-
based approach. 

We selected a set of venues based on the search results. We 
found papers from a total of 1361 publication venues, including 
conference proceedings and journal publications. Authors A and 
F then identifed which venues should be included in the search. 
They frst individually coded 25% of the venues with include (yes/no) 
(intercoder reliability: 82%). After resolving conficts, the remain-
ing venues were coded by author A. The criteria for including a 
publication venue are shown in Appendix C. The complete list 
consists of 203 publication venues and is shown in Appendix D. We 
then conducted a separate search with our search term for each of 
the venues on the publisher websites, ACM DL13, IEEE Xplore14, 
ScienceDirect15, PMLR16, and NeurIPS Proceedings17. We used the 
same search query and flters as in the initial search. 

11IEEE Transactions on Image Processing: https://ieeexplore.ieee.org/xpl/RecentIssue. 
jsp?punumber=83, last accessed September 10. 2022
12CHI 2021 Proceedings: https://chi2021.acm.org/proceedings, last accessed September 
10, 2022
13ACM DL: https://dl.acm.org/, last accessed: July 15. 2022 
14IEEE Xplore: https://ieeexplore.ieee.org/, last accessed: July 15. 2022 
15ScienceDirect: https://www.sciencedirect.com/, last accessed: July 15. 2022 
16Proceeding of Machine Learning Research: https://proceedings.mlr.press/, last ac-
cessed: July 15. 2022
17NeurIPS Proceedings: https://papers.nips.cc/, last accessed: July 15. 2022 

3.3 Evidence Screening and Selection 
We adopted a two-phase screening process: In the frst phase, we 
screened the papers based on title, abstract, and author keywords 
and in the second one based on the full text. Figure 1 shows the 
PRISMA diagram for scoping reviews (PRISMA-ScR) [356]. It details 
the complete process from initiating the search to identifying the 
papers included in the analysis. For both screening phases we frst 
conducted a calibration phase on each 10% of the records in which 
all coders (authors A-E) screened the same set of papers, followed 
by single extraction for the remaining papers. 

Exclusion and inclusion criteria. Based on our research questions, 
we defned the following exclusion (EC) and inclusion (IC) criteria. 
We derived them in an iterative process: Authors A and F frst gen-
erated an initial set of criteria, which was refned with all authors 
after the screening process. Both screening phases used the same 
criteria, except E9, which we added after the frst screening phase 
and thus it only applied in the second one. 

EC1 Not in main proceedings: adjunct, poster, extended abstract, 
companion proceedings, short paper, workshop proposal, 
position paper, demo, editorial.18 

EC2 Survey or literature review: We excluded surveys, literature 
reviews, and opinion pieces. 

EC3 Year : not published between 2017 - 2021.18 

EC4 Missing term: No XR or AI term is mentioned. We found a 
considerable amount of papers as part of the result list that 
should not have been found by the search engine.18 

EC5 False positive: Words/terms are used in a diferent sense of 
the word (e.g., “model” is used in the context of 3D modeling 
but not to refer to an ML model). 

EC6 Example mention: XR and AI term is only mentioned as an 
example in the abstract or introduction(e.g., as motivation), 
but the work itself does not use any type of XR or AI. 

EC7 Example application: XR term is used as one example appli-
cation or implementation OR the XR term refers to training 
or testing or simulation of an AI method in a virtual envi-
ronment, but not for actual deployment. 

EC8 Dataset: A dataset is presented, but no XR or AI reference is 
made. 

EC9 Lacking information: The paper does not present enough 
details to allow for full application of the codes. 

18These cases should have been excluded by the search engine, but still we had some 
in the search result. 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://chi2021.acm.org/proceedings
https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://proceedings.mlr.press/
https://papers.nips.cc/
https://engine.18
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Figure 1: The PRISMA-ScR fowchart documents the scoping review process from identifcation of sources to the fnal sample 
of articles that are included for data extraction. 

IC1 AI method applied for XR: An AI method is applied for an XR 
problem (e.g., for redirected walking, viewport generation, 
or sickness prediction). 

IC2 XR applied for AI : An XR technology is applied for an AI 
problem (e.g., to visualize neural networks in VR). 

IC3 Interaction with embodied AI : Papers aiming to enhance in-
teraction with intelligent VAs. 

IC4 Application focus: XR and AI are applied to a problem, but 
are not the focus of the presented research (e.g., an AR-based 
system that helps with tumor recognition and applies deep 
learning to estimate positions). 

IC5 Requires further reading: We included papers for the second 
screening phase when it was not clear from reading the 
abstract whether it meets the inclusion criteria. 

Before the frst round of screening, we implemented a script to 
identify obvious exclusion cases. First, the script identifed whether 
there was no XR or AI term in title, abstract, or author keywords. 
Such cases should not have been found by the search engines in the 
frst place, but we still had some cases in our list. Second, it identifed 
survey papers (by looking for the words “survey” and “review” in 
the respective felds). It also highlighted cases where “learning” 
referred to an educational context and cases where “AR” referred to 
a false positive case, such as “LDAR”. Lastly, it identifed duplicates 
by comparing the DOI of the papers and highlighted whether a 
paper was not published in the main proceedings (by highlighting 
the words “extended abstract”, “short paper”, “poster”, “adjunct”, 
“companion proceedings”). Author A reviewed and excluded these 
cases when needed. 

First round of screening. In the initial screening, 2619 unique 
records were screened based on title, abstract, and author keywords 
by authors A-E. First, the fve authors screened the same subset 
of 10% of the papers (258) separately. In a meeting after this cali-
bration phase, the authors discussed discrepancies and refned the 
defnitions of the exclusion and inclusion criteria. Before the discus-
sion, there was an agreement of 56.6%, where all authors coded the 
respective record with the same decision. For another 23.6% of the 
records, all but one coders agreed (i.e., four coders agreed on the 
same decision) and the majority vote was taken. For the remaining 
19.8% the authors disagreed. These papers were discussed in a meet-
ing and and discrepancies were resolved. After the calibration, the 
remaining papers (2361) were distributed equally between authors 
A-E, resulting in a pool of 688 papers to be included for the second 
round of screening. 

Second round of screening. The full text screening was conducted 
together with the data extraction phase. The authors frst screened 
the full text for eligibility with the same exclusion and inclusion 
criteria as in the frst round. Only one criterion was added (E9), 
which refers to the paper not presenting sufcient details on the 
methods, implementation, or results part to apply the codes. If the 
paper was included, data extraction was performed. 

3.4 Data Extraction and Code Book 
A total of 311 papers were included for the data extraction phase. 
We charted data for four main categories: “research objective and 
contribution”, “user-based evaluation”, “XR-related codes”, and “AI-
related codes”. The data items are presented in Table 2. The complete 
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Table 2: Summary of the codes used for data extraction. See Table 13 and Table 14 in the Appendix for the code book including 
a description for each code. 

Research objective + contribution User-based evaluation XR-related 
C1 Category C7 Type of user study C11 Type of XR 
C2 Research question/objective C8 Purpose of user study C12 Device type 
C3 Contribution or main fndings C9 Metric for user-based evaluation C13 Interaction/application/task 
C4 Contribution type C10 Study details (e.g., sample size) C14 What XR problem is solved? 
C5 AI part of the contribution? 
C6 Limitations 

AI-related 
C15 Custom implementation? C19 Validation and test C23 When/how AI is applied 
C16 Tool/library/dataset used C20 Performance + validation metric C24 Data acquisition 
C17 Class of algorithm C21 Model technique C25 Publicly available resources 
C18 Details about algorithm C22 Purpose + application C26 What AI problem is solved? 

code book (i.e., the codes with descriptions) is presented in the Ap-
pendix in Table 13 and Table 14. Authors A-E coded the papers. 
The code book was developed in an iterative process that combined 
an inductive and deductive strategy. We frst started with a set of 
codes identifed by author A. We then defned a random sub set of 
10% of the papers (=69 papers), which we used for calibration to 
evaluate the suitability of the codes. During this phase we had three 
meetings, in which we discussed the codes’ suitability. Author A 
discussed the codes with author F in three separate meetings. After 
the calibration phase, we had a fnal set of 26 codes. We performed 
single extraction for the remaining papers. The remaining 619 pa-
pers were distributed among coders A-E (A:150, B:150, C:149, D:150, 
E:20). 

3.5 Critical Appraisal, Potential Bias, and 
Limitations 

Critical appraisal. Scoping reviews typically include all available 
evidence regardless of methodological quality [17]. We followed 
this approach. However, to receive a manageable set of papers, we 
decided to include the full paper proceedings and journal publica-
tions only. Besides these flters we did not exclude papers based on 
their methodological quality. 

Limitations and potential bias. We acknowledge that our key-
words selection process might have been infuenced by the papers 
in the specifc proceedings that we chose as a basis for the se-
lection process. We chose this process to reduce subjective bias 
as much as possible. A second point that made the selection of 
keywords difcult is that both concepts (XR and AI) lack a clear 
defnition. This is especially the case for AI. Being an ill-defned 
concept, it is difcult to fnd a comprehensive list of keywords and 
existing lists are likely biased towards the authors understanding 
of AI. Therefore, generating a list based on our outlined iterative 
process is the most bias-free solution that we found feasible. In 
conclusion, although we might have missed some keywords, we 
are confdent that we found the majority of relevant papers. We 
aimed to cover the breadth of research at the intersection of XR 
and AI. Therefore, we defned broad keyword sets. We intentionally 
included terms that might only loosely be connected to XR and 

AI (e.g., “virtual space” in addition to “virtual reality” or “model” 
and “intelligent”). This approach left us with a high number of false 
positives. Yet, we still deemed it necessary to go for this breadth-
frst approach to really cover the full scope of XR and AI research. 
Nevertheless, we acknowledge that this approach might not be in 
agreement with other researchers’ defnitions of XR and AI, who 
might have selected a more focused set of keywords. We adopted a 
data-driven approach to defne the terms XR and AI. We did this 
to cover a broad spectrum of research. However, we acknowledge 
that there are other understandings of XR and AI, which might 
have led to a slightly diferent set. To reduce errors in the screening 
and coding phases, we conducted calibration phases on each 10% 
of the records for the screening and the data extraction phase with 
all the coders. Furthermore, we had extensive discussion sessions 
to resolve conficts and adapt the exclusion/inclusion criteria and 
code descriptions (two one-hour sessions for initial screening, three 
one-hour sessions for full-text screening and data extraction). 

3.6 Analysis and Informal Synthesis 
Our analysis combines categorization, quantization, and narrative 
synthesis. First, we categorized the papers into topics based on 
C1. Then, we collected the research question(s) (C2) and contri-
bution statements (C3, C4, C5) of each paper and summarized the 
main topic of the paper in one sentence. These sentences were 
grouped into topics using an approach inspired by afnity diagram-
ming [222]. While author A performed this process, all authors 
discussed the topics in three meetings. The result of this process is 
a typology about the state of the art of XR and AI research, which 
is presented in the next section. Furthermore, we summarized the 
quantitative codes (C10, C11, C12, C17, C21, C23, and C24) and, based 
on the summary of all codes, we created a narrative synthesis, which 
is presented in the following. 

4 RESULTS 
In the following, we present the review results. First, we give an 
overview of the papers’ research directions, publication venues, 
distribution of XR technologies, and distribution of keywords. Then, 
we present a typology of the state-of-the-art XR and AI research and 
give an overview of the main problem areas and methods. Our aim 
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Figure 2: (A) Number of records per year. (B) Number of records per research direction. 

is to reveal and discuss general trends and point out challenges that 
the intersection as a feld has to face. Therefore, while discussing 
several reviewed papers in detail, describing all the included papers 
is not within the scope of this work. However, we provide the full 
list of papers as a resource for future in-depth analyses. 

4.1 Overview of Papers 
The fnal corpus consists of 311 unique papers. The papers were 
published in 50 publication venues, with the most frequent ones 
being VRST (57), AIVR (42), TVCG (35), ISMAR (28), and CHI (22). 
Table 15 in the Appendix shows the full list of the number of papers 
per publication venue. The number of published papers per year is 
increasing, with a slight drop in 2020 (see Figure 2 A). Notably, the 
number of publications on XR and AI has more than quadrupled 
from 2017 to 2021. 

4.1.1 Research Directions. Based on C1, we found four research 
directions (see Figure 2 B). 

• AI for XR: Papers that address or investigate an XR problem 
using an AI method (187/60%). These papers typically present 
an algorithm or model to address an issue in XR (e.g., VR 
sickness), often with a focus on prediction, and an empirical 
evaluation thereof. 

• XR for AI : Papers that address or investigate an AI problem 
using XR technologies (7/2.3%). These papers either use XR 
to visualize an AI technique to improve understandability, 
or focus on generating training data for XR. 

• Intelligent VAs: Papers that address or investigate a prob-
lem concerning intelligent VAs (43/13.8%). The papers are 
either concerned with the design of agents (e.g., physical 
appearance) or with how users perceive VAs (e.g., regarding 
trust). 

• XR and AI Applied: Papers that apply an XR technology and 
an AI method to an external problem (74/23.8%19). These pa-
pers typically present applications, such as medical training 
applications or using XR for simulation purposes (e.g., driv-
ing simulators). The focus in this research direction is not 
on an XR or AI problem. We grouped these papers into eight 

19Due to rounding, the percentages add up to 99.9% and not 100%. 

topic clusters, with the largest one being health-related train-
ing applications (18), simulation applications (13), and general 
training and learning applications (11). However, since our 
paper’s focus is on the research that addresses problems 
within XR and AI, these papers will not be further discussed. 
Table 18 in the Appendix gives an overview of the clusters 
and papers. 

4.1.2 Publication Venues. Most of the papers were published in 
XR venues (36%), followed by Computer Graphics (19.6%), venues at 
the intersection of XR and AI (14.1%), and HCI (13.5%). Only 5.8% 
of the papers were published in AI venues. The remaining papers 
were published in venues on Artifcial Agents (3.3%), Computer Vi-
sion (2.9%), Afective Computing (2.3%), Eye Tracking and Perception 
(2.3%), or others (0.3%). Table 16 in the Appendix shows an overview 
of the published papers per research direction and venue group. 
Since this paper is written from an HCI perspective, we took a 
closer look at the papers published in HCI venues (42/13.5%). When 
it comes to research directions, the distribution of the HCI papers 
is almost identical with the overall distribution: AI for XR 60%, XR 
for AI 0%, Intelligent VAs 14%, and XR and AI Applied 26%. 

4.1.3 Distribution of XR Technologies. Most of the papers present 
research on VR (68%) or AR (21%). The remaining 11% present 
research about a relevant issue for XR, which is not actually tested 
in XR, but with images [221] or videos [29, 289]. The distribution 
of VR/AR for the research directions is: AI for XR (74% VR/19% AR); 
XR for AI (100% VR/0% AR); Intelligent VAs (67% VR/16% AR); and 
XR and AI applied (56% VR/37% AR). 

4.1.4 Distribution of Keywords. The most common keywords in 
title, abstract, and author keywords for XR were virtual reality 
(375) and VR (372). Extended reality was found only four times. For 
the AI keywords the most common ones were learning (214) and 
model (207). Artifcial Intelligence was found 24 times. In Appendix 
Table 17 we show on overview of the complete list of keywords per 
research direction. 
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Figure 3: AI is used to create XR worlds by (1) creating a realistic replication of the real world, (2) modifying the real world, or 
(3) generating a synthetic world. 

4.2 Typology of the State-Of-The-Art XR and AI 
Research 

We present the state-of-the-art XR and AI research as a typology. 
To create the topics, we grouped the papers into clusters based on 
the extracted research questions and contribution statements (C2 
and C3) as described in subsection 3.6. In the following, we present 
the topics for the frst three research directions; the fourth is not at 
the core interest of this review. 

(1) Using AI to create XR worlds (89/37.6%20); 
(2) Using AI to understand users in XR (60/25.3%); 
(3) Using AI to support interaction in XR (48/20.3%); 
(4) Interaction with IVAs (25/10.5%); 
(5) Using XR to support AI research (7/3%). 

4.2.1 Using AI to Create XR Worlds. AI is used to create virtual 
representations of environments, people (avatars), agents, and ob-
jects. How these are created is by either (1) realistically replicating 
the real world, (2) modifying the real world, or (3) generating a 
synthetic world (see Figure 3). 

Creating Environments. With 34 (14.3%) papers, the largest clus-
ter of creating XR worlds addresses the problem of creating an XR 
environment, most of them with a focus on realism. Nine papers 
present work on improving tracking or reconstructing real-world 
geometries in XR spaces (e.g., [71, 137, 353]). Besides visual repre-
sentations, two works present the reproduction of spatial audio or 
sound efects in XR worlds [56, 162]. 

Chang et al. [56] use a generative adversarial network (GAN) 
for creating real-time synthetic drum sounds in VR perceived as 
real by the users. Kim et al. [162] present a system to recreate 
the spatial sound of a room using a CNN to estimate the depth 
from diferent images. The spatially synchronised audio is then 
reproduced by combining the depth estimates with the spatial 

20From here on the percentages are given in relation to the 237 papers that are part of 
the typology. 3.3% of these papers categorized as other. 

sound library Resonance Audio21. There is also work on realis-
tically presenting virtual content [95, 107, 200], for example, by 
improving the rendering of motion cues to improve depth percep-
tion in VR [255, 303]. Another cluster is about the improvement 
of image quality [54, 184, 387] and optimizing illumination 
[215, 231, 307]. Two works aim to improve the efciency of algo-
rithms [117, 411]. 

Seven examples modify an XR world by mapping a physical 
and a virtual environment. In this case, the content of the XR 
world is mapped to the physical world, creating a mix of real and 
virtual environments. For example, Taylor et al. [346] present an 
approach to create virtual representations of real rigid and non-rigid 
objects. They used a CNN to predict deformation parameters of said 
objects. Cheng et al. [60] present an optimization-based approach 
to automatize the process of placing virtual interfaces in the real 
environment to enhance user performance. Another example is 
the work by He et al. [122], which maps virtual objects to real 
objects. Yoon et al. [402] map the virtual environments of two users 
working in diferent physical spaces to allow them to interact in 
the same virtual space, while considering their individual physical 
constraints. Furthermore, there is work on correctly placing virtual 
characters according to real-world scene semantics [187]. 

We found one example that followed a generative approach to 
generate an environment. Sra et al. [334] show how virtual 
worlds can be generated based on music-induced moods (in partic-
ular happiness and sadness). As highlighted by the authors, a way 
of creating an XR world that abstracts from realism but focuses on 
an aesthetically pleasing appearance is a challenging task, which 
might explain that current XR worlds mostly focus on realism. Fur-
thermore, current challenges remain, as interactive elements still 
have to be added manually. 

Creating Avatars. 27 (11.4%) of the papers focus on realistically 
replicating human bodies to create avatars in XR. The majority 
of these papers is concerned with the physical appearance of 

21Resonance Audio: https://resonance-audio.github.io/resonance-audio/, last accessed 
September 15, 2022 

https://resonance-audio.github.io/resonance-audio/
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Table 3: Typology of XR and AI research. 

Main Topic Cluster Count Papers 

89 
34 
9 

Using AI to Create XR Worlds 
Creating XR Environments 

Tracking of environments 
Presenting realistic virtual content 
Measuring and optimising illumination 
Optimising image quality 
Mapping environments 
Augmenting content in AR 
Improving efciency 
Generating environments 

Creating Avatars 
Recognition and animation of facial expressions 
Physical appearance: certain aspects of human bodies 
Tracking 
Physical appearance: full body reconstruction 
Infuence of avatars on users 
Animation of movements 
Toolkit for creating avatars 
Animation of gaze behaviour 
Animation of gestures 
Modifcation 

Creating Agents 
Realistic modelling of agent behaviour 
Investigating non-realistic agents 
Blended agents 

Creating XR Objects 
Tracking of objects 
Rendering of objects 
Modifying object appearance 

[53, 56, 71, 131, 137, 161, 162, 182, 353] 
[95, 107, 153, 200, 255, 303] 
[180, 215, 231, 307, 409] 
[54, 184, 209, 387] 
[60, 122, 187, 402] 
[140, 147, 174] 
[117, 411] 
[334] 

[61, 181, 268, 320, 341, 348] 
[229, 236, 361, 377, 386, 390] 
[87, 215, 272, 352] 
[52, 205, 283] 
[2, 193, 284] 
[24, 176] 
[120] 
[323] 
[295] 
[241] 

[12, 33, 34, 106, 110, 185, 286, 288–290, 309, 398] 
[167, 297, 370, 376, 418] 
[317] 

[202, 346, 347, 416] 
[216, 331, 391] 
[257, 358] 

6 
5 
4 
4 
3 
2 
1 
28 
6 
6 
4 
3 
3 
2 
1 
1 
1 
1 
18 
12 
5 
1 
9 
4 
3 
2 

Using AI to Understand Users 60 
Predicting VR Sickness 25 [25, 82, 88, 132, 142, 143, 146, 163–166, 168, 170, 171, 194, 195, 

199, 210, 232, 251, 267, 273, 294, 320, 373] 
Predicting User Characteristics 13 [8, 103, 127, 128, 175, 207, 226, 230, 259, 321, 328, 362, 400] 
Predicting Viewport and Head Movement 11 [7, 90, 91, 124, 279, 304, 305, 357, 365, 366, 406] 
Eye Tracking and Gaze Analysis 11 

Gaze analysis and visual attention estimation 4 [9, 77, 201, 337] 
Gaze prediction 4 [134–136, 393] 
Eye tracking and gaze modelling 3 [81, 178, 221] 

Using AI to Support Interaction 48 
Gesture-based Interaction 22 

3D mid-air gesture interaction 11 [72, 105, 126, 219, 238, 239, 248, 322, 350, 372, 403] 
Gesture recognition and classifcation 11 [16, 57, 98, 148, 234, 250, 325, 380, 392, 395, 410] 

Locomotion Techniques 13 
Redirected walking techniques 8 [58, 62, 80, 100, 191, 192, 204, 336] 
General locomotion techniques 5 [46, 47, 118, 158, 269] 

Novel Devices 7 
HMDs 4 [6, 196, 292, 388] 
Controllers 3 [96, 326, 371] 

Novel Interaction Techniques 3 [76, 121, 123] 
Haptic Feedback 3 [66, 83, 399] 

Interaction with Intelligent Virtual Agents 25 
Interacting with Crowds of Agents 10 [32, 38, 74, 156, 183, 188, 258, 271, 306, 368] 
Physical Interaction with Agents 7 

Peripersonal space 4 [40, 41, 48, 342] 
Touch 3 [4, 44, 129] 

Interacting with One Agent 4 [43, 113, 382, 421] 
Trust in Agents 4 [114–116, 139] 

Using XR to Support AI Research 7 
Visualising AI Methods in XR 5 [28, 125, 228, 243, 343] 
Generating Training Data for XR 2 [94, 287] 

Other 8 
User Authentication and Identifcation 7 [5, 15, 133, 208, 247, 280, 281] 
Software Testing For VR 1 [11] 

avatars, either by capturing and reconstructing the complete body 
of a person [52, 205, 283] or by reconstructing specifc parts of 
the body, like the teeth [361], face [229], or fngers [236]. A par-
ticularly challenging problem is to create realistic hair. Xing et al. 
[390] present an approach that combines expert feedback with deep 

learning to create realistic models of hair. Hair modeling artists 
created a set of structures and styles, which served as the basis for 
the model. Furthermore, there is work on recognizing and gener-
ating facial expressions of avatars [61, 268, 341], for example, by 
tracking the eyes or facial expressions of a person and rendering 
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that on an avatar’s face [181, 320, 348]. All of these works aim to 
create some part or even the complete body of a realistic virtual 
avatar. We found three works on the infuence of such a realistic 
avatar on the user. For example, they studied how distortion in 
avatar movement [284] or walking in place [193] infuence body 
ownership. We found only one example of a modifcation of an 
avatar. McIntosh et al. [241] presented an adaptable avatar that, 
based on a task-integrated optimization approach, changes its arm 
or fnger length based on target distance. As a result, the adapted 
avatar created less frustration and less physical demand compared 
to the non-adapted one. This work shows the potential of modify-
ing virtual representations of humans for specifc tasks. We did not 
fnd any case about generating a synthetic avatar. 

Creating Agents. 18 papers (7.8%) related to creating IVAs, 12 of 
which focus on realistically modeling agent behavior, and fve 
on investigating non-realistic agents. We found that agents in 
VR are typically embodied and modelled to imitate human appear-
ance and behavior. To achieve this realistic modeling, researchers 
have modelled gait [290, 398], gaze [12], and personality [309], 
among others. However, we found several works questioning whether 
VAs should be modelled realistically. For example, these works com-
pare realistic, embodied VAs with other forms of agents [167, 370, 
418]. Reinhardt et al. [297] compared an invisible agent with a sim-
plifed humanoid agent and a fully textured realistic agent. They 
found that non-verbal behavior, such as eye contact, seems to be the 
main cue why a realistic agent was preferred over the others. Weber 
et al. [376] present a design space for edible VAs for human-food 
interaction by augmenting food with virtual eyes and hands. The 
edible agents could explain facts about themselves (e.g., ingredi-
ents) and made the meal a “fun experience”, while allowing the 
users to learn something about the food. These works on unreal-
istic agents can be understood as modifcations, since they take 
the human body as basis and modify the appearance or behavior 
[167, 297, 376]. Lastly, we found one paper [317] about mapping 
realities. They present blended agents that are able to manipu-
late physical properties of virtual objects, thus bridging the gap 
between realities. This was perceived as “amazing” and “surprising” 
by participants of the user study. They also mentioned that the 
physical consequences of an agent’s movements made it appear 
more present. This work is the only of its kind in our corpus; it 
shows the promises of XR-based interaction by mapping realities 
with agents. We did not fnd any work addressing the synthetic 
generation of agents. 

Creating Objects. Nine papers (3.8%) create XR objects, either 
realistically (7) or by modifying the real world (2). Four of these 
papers were about object tracking [202, 346, 347, 416] and three 
about object rendering [216, 331, 391]. Liu et al. [216] used a GAN 
for creating virtual object shadows in AR. The algorithm generates 
a shadow based on a synthetic AR image and a virtual object mask 
input. The authors report their key insight is that the model is 
able to map a virtual shadow to an object based on the depth clues 
provided in the environment only. We found one particular use 
case where objects were modifed. Concretely, these papers are 
about modifying the appearance of food [257, 358]. Nakano et al. 
[257] use StarGAN to overlay the complete image with a newly 
styled version of the food (i.e., diferent style of noodles or rice), 

while Ueda and Okajima [358] used a version of ResNet to track 
and recreate the exact shape of the food. Similar to the avatars, 
we did not fnd an example for generating synthetic objects for XR 
worlds. 

4.2.2 Using AI to Understand Users. In total 60 (25.3%) papers pre-
sented work about understanding users in XR. 

Predicting VR Sickness. The most frequent topic about under-
standing users is predicting VR sickness (25/10.5%). Despite the 
high density of this cluster, only a few papers present real-time 
applications [25, 88, 210, 232], while most of them analyze sickness 
symptoms post-hoc (e.g., [165, 251, 373]). There are many diferent 
approaches for predicting VR sickness, such as using support vector 
machines [88, 232], long short-term memory networks [164, 165], 
or convolutional neural networks [146, 195]. In terms of model 
technique, ten papers addressed the problem as a classifcation 
problem and ten as a regression problem. However, while many 
papers work on predicting sickness, AI is not often applied for a 
solution. The work by Lim et al. [210] is an exception here. They 
present a solution that dynamically adapts the feld of view to a 
minimal degree to reduce VR sickness symptoms. 

Predicting User Characteristics. The second cluster in under-
standing users presents work about predicting user charac-
teristics, such as afect and emotion [128, 328, 400], presence 
[207, 230, 321], or mental workload [226]. 

Predicting Viewport and Head Movement. The most basic form 
of interacting with an environment is viewing. We found ten pa-
pers that presented a technique for viewport or head movement 
prediction (e.g., [7, 124, 304]). These works typically address the 
problem of computational rendering cost and propose to only ren-
der the part where the user is looking at with high detail. 

Eye Tracking and Gaze Analysis. Lastly, there are 11 (4.6%) papers 
that present approaches for eye tracking and gaze analysis. In 
particular, there is work on gaze prediction [135, 136, 393], visual 
attention estimation [9, 77, 201, 337], and gaze modeling [81, 178, 
221]. 

4.2.3 Using AI to Support Interaction. 

Gestural Interaction. The majority (22/9.3%) of papers in this area 
are about 3D mid-air gesture-based interaction. They, for ex-
ample, present improvements in hand tracking for a better gesture 
recognition (e.g., for AR [248, 372], for VR [239]). Most of these 
works focus on hand gestures [57, 250, 410], hand pose estima-
tion [16, 380], and hand trajectory prediction [98]. We identifed 
four papers presenting work on gesture interaction using other 
modalities, namely foot [325], face [234, 395], and waist gestures 
[392]. Mo et al. [250] present a tool for designing hand gestures for 
MR applications with minimal training data. Hirota and Komuro 
[126] present a classifer to recognize whether a hand gesture is a 
grasping gesture. Tian et al. [350] also present a grasping algorithm. 
Three papers address the problem of freehand mid-air sketching 
in VR [105, 219, 403]. Yu et al. [403] present a real-time application 
that allows users to sketch 3D objects based on curve networks. The 
system is specifcally tailored towards idea generation and concept 
sketches. The algorithm frst calculates possible intersections of 
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new strokes with the existing 3D curves created by users. It then 
selects an intersection based on discrete optimization. There are 
two works focusing on users’ perception of gestures rather than 
improving the tracking thereof [72, 238]. Dalsgaard et al. [72] built 
a model that refects natural pointing in a 3D space. In particular, 
they focus on features that best describe natural pointing. They 
compared several ML models (Naive Bayes, RF, SVM) for both a 
classifcation and regression problem and found the best accuracy 
for SVM-based classifcation. 

Locomotion Techniques. The vast majority of the 13 (5.5%) papers 
about locomotion techniques present improvements on redi-
rected walking (e.g., [80, 191, 204]). They mostly address this 
as reinforcement learning [58, 192, 204, 336] or regression prob-
lem [62, 100, 191]. There is also work on backwards movement 
[269], evaluating unintentional positional drifts [47], and walking 
in place [158]. 

Novel Devices. Seven (3%) papers apply AI to design and imple-
ment novel devices, in particular, controllers [96, 326, 371] and 
HMDs [6, 196, 292, 388]. Shigeyama et al. [326] present a haptic 
controller that changes its shape dynamically to adapt to diferent 
objects by mapping its mass properties to the form of the respec-
tive object. A linear regression model was optimized to predict the 
shape of the controller based on the properties of VR objects. 

Novel Interaction Techniques. Only three (1.3%) papers used AI 
to create non-gesture-based novel interaction techniques. These 
are virtual keyboard typing [123], a smartphone-based interaction 
technique for AR [121], and a framework for sword fghting expe-
riences in VR [76]. 

Haptic Feedback. Lastly, three (1.3%) papers aimed to improve 
haptic feedback in XR by using drones [83], haptic retargeting 
[66], or simulating haptics using a robotic prop [399]. 

4.2.4 Interacting with Intelligent Virtual Agents. Besides the physi-
cal appearance and behavior modeling aspects about VAs, which 
we discussed in the paragraph about creating agents in subsubsec-
tion 4.2.1, 25 (10.5%) papers investigated the interaction with in-
telligent agents. The largest group in this category is about social 
aspects of interacting with a crowd of agents (e.g., [38, 306, 368]). 
They investigate empathy towards groups of VAs [156], algorithms 
to generate plausible movements for agents interacting with other 
agents [258], or creating VAs that are able to transition between 
individual and collaborative behavior [183]. Furthermore, seven 
papers present work on physical aspects with agents, includ-
ing how users perceived physical touch by agents [4, 44, 129] and 
how their relationship to agents infuenced users’ perception of 
peripersonal space [40, 41, 48, 342]. Four papers each were about 
interacting with one agent [43, 113, 382, 421] and measuring 
diferent aspects about trust in VAs [114–116, 139]. 

4.2.5 Using XR to Support AI Research. We only identifed seven 
works (3%) that apply XR technologies to AI problems (2.3%). Five of 
these works visualize AI methods in XR, for example, for immer-
sive analytics [343], or to improve the understanding of neural net-
works for non-expert users by visualizing them in VR [28, 228, 243]. 
Hilton et al. [125] present a tool for non-experts to confgure and 

train an ML model. With the increasing complexity of neural net-
works, such methods are promising to facilitate the interaction with 
neural networks for novices. Another problem of AI methods in 
general is the limited amount of available data and, consequently, 
the generation of training data. To address this problem, typ-
ically images are synthesised by creating variants of one image. 
Franchi and Ntagiou [94] address this problem in VR by providing 
an application to create synthetic VR training data. Lastly, Ramirez 
et al. [287] provide a tool for labeling data in VR. 

4.2.6 Topic Distribution for HCI Papers. Similar to the research 
direction, we analysed the topic distribution for HCI papers (3122). 
39% (12) of the HCI papers used AI to create XR worlds, with two 
papers creating XR environments and each fve creating avatars and 
agents. We found only two papers (6%) in the understanding users 
category with both focusing on predicting user characteristics. The 
majority of HCI papers (15/48%) use AI to support interaction. Most 
of them use it for gestural interaction (10). Lastly, there is one paper 
about the interaction with intelligent VAs and one in the “other” 
cateogry. 

4.3 Main Problem Areas Addressed in XR and 
AI Research 

We found 15 problem areas that are addressed by the papers in our 
corpus (see Table 4). The list of challenges is based on the articles 
on challenges in AR and virtual environments by Billinghurst [36], 
Kim et al. [173], and Slater [329]. Most of the papers address a 
challenge about perception and neuroscience (21.9%). The main 
interest in this area is about understanding how users perceive realis-
tic worlds and about how interacting with these worlds afects users, 
for example, in their feeling of presence [230], emotions [127], or 
visual attention [77]. The second area is interacting with IVAs 
(19.8%). Research on these challenges is mostly empirical (16.5%). 
The actual behavior of agents is rarely implemented based on a 
model, but mostly scripted. The third challenge is the presenta-
tion of virtual content. Here, many ML models are applied and 
evaluated with perceptual user studies (19.8%). These papers are 
about optimizing image quality or tracking of the real world and 
representing it in XR. This is similar for the problem of tracking 
technologies (17.3%). We found only one topic about health in XR, 
in particular simulator sickness (10.5%). The focus of these papers 
is on building ML models, followed by empirical research, but not 
all the ML models are evaluated empirically. The next two problems 
are creating high fdelity human characters (10.1%), which is 
mostly addressed by a combination of an ML model and an empiri-
cal evaluation. The same holds for interaction techniques (9.7%). 
Surprisingly, there were only 21 (8.9%) papers addressing social 
and ethical issues. Two thirds of them investigated an issue about 
interacting with VAs and one third about creating worlds. The vast 
majority of these papers contains a form of empirical evaluation, 
but, there is not much technical work in this area. Lastly, there is 
little work on more “traditional” computer graphics and computer 
vision topics like building devices (4.2%), rendering (3.8%), or 
display technology (1.7%). Lastly, as also demonstrated by the 

22Note that the 11 HCI papers about applying XR and AI to an external use case are 
not discussed here. 
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Table 4: Main problem areas addressed in XR and AI research. 

1. Perception and neuroscience 
2. Interacting with IVAs 
3. Presentation of virtual content 
4. Tracking technologies 
5. Health-related impacts 
6. High fdelity virtual human characters 
7. Interaction techniques 
8. Social and ethical issues 
9. Locomotion techniques 
10. Collaboration with people 
11. Novel system and devices 
12. Rendering 
13. Explainability of AI methods 
14. Display technology 
15. Limited training data 

Sum 

52 
47 
47 
41 
26 
24 
23 
21 
13 
11 
10 
9 
5 
4 
2 

Create 
Worlds 

12 
20 
35 
22 
1 
23 
1 
7 
2 
5 
0 
8 
0 
1 
0 

Understand 
Users 

31 
2 
11 
6 

25 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 

Support 
Interaction 

9 
0 
1 
13 
0 
0 
22 
0 
10 
2 
9 
1 
0 
3 
0 

Interaction 
with IVAs 

0 
25 
0 
0 
0 
1 
0 

14 
0 
4 
0 
0 
0 
0 
0 

XR to 
Support AI 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5 
0 
2 

Table 5: Contribution types presented by the papers. 

Sum Create Understand Support In- Interaction XR to 
Worlds Users teraction with IVAs Support AI 

Empirical 143 46 37 34 23 3 
ML model 137 51 50 33 3 0 
System/artifact 46 18 4 16 5 3 
Technological 43 24 6 11 2 0 
Dataset 29 7 14 8 0 0 
Methodological 9 3 2 2 0 2 
Application 5 2 1 1 0 1 
Theoretical 5 3 0 0 2 0 

typology, there is not much research about using XR to address an 
AI problem (3%). 

Contribution Types. When looking at the methods used to ad-
dress problems (see Table 5), we see a trend of building ML models 
(57.8%) and evaluating them empirically (60.3%). This is present in 
many of the problems, as discussed in the previous paragraph. In 
general, there is very little theoretical and methodological work. 
Interestingly, there are some dataset contributions, in particular, 
in the problem areas of tracking technologies and health-related 
impacts. We collected all the datasets presented by the papers and 
provide a list of them in the Appendix in Table 8. 

4.4 Algorithms, Tools, Datasets, Networks, Data 
Types, and User Study Data 

In the following, we summarize what type of algorithm techniques 
and classes are used in the reviewed papers. Furthermore, we 
present a list of commonly used tools, datasets, and networks. We 
also discuss the data types and summarize data about the users that 
is used to train and evaluate the ML models. 

4.4.1 Algorithm Techniques and Classes. 

Algorithm Techniques. Table 6 and Table 7 give an overview 
of the algorithm techniques and classes. With 138 papers (58.2%), 
there is a clear focus on supervised learning. In contrast, only 
11 papers (4.6%) use an unsupervised learning technique. Nine 
papers (3.8%) address a problem with reinforcement learning, the 
majority of which are in the support interaction topic. Also, we 
did not fnd many applications of optimization algorithms (2.1%), 
with some occasional cases in creating worlds, understanding 
users, and supporting interaction. 

Algorithm Classes. Most often, problems in creating worlds, 
understanding users, and supporting interaction are consid-
ered either classifcation (32.1%) or regression (24.5%) problems. 
Only very few papers use a generative technique (3%), primarily 
for creating worlds. 

4.4.2 Tools, Datasets, and Networks. PyTorch23, Keras24, Tensor-
Flow25, and Scikit-learn26 are the most frequently used tools for 
the implementation of algorithms and ML models. Furthermore, we 
found some software toolkits being used, for example, for sensing 

23PyTorch: https://pytorch.org/, last accessed September 13, 2022 
24Keras: https://keras.io/, last accessed September 13, 2022 
25TensorFlow: https://www.tensorfow.org/, last accessed September 13, 2022 
26Scikit-learn: https://scikit-learn.org/, last accessed September 13, 2022 
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Table 6: Algorithm techniques. 

Sum Create Understand Support In- Interaction XR to 
Worlds Users teraction with IVAs Support AI 

Supervised learning 138 45 49 38 3 3 
Unsupervised learning 11 8 2 0 0 1 
Reinforcement learning 9 2 2 5 0 0 
Optimization 5 2 2 1 0 0 
Semi-supervised learning 2 2 0 0 0 0 
Unclear/other 18 9 2 4 2 1 

Table 7: Algorithm Classes. 

Sum Create Understand Support In- Interaction XR to 
Worlds Users teraction with IVAs Support AI 

Classifcation 76 22 24 26 3 1 
Regression 58 21 25 12 0 0 
Generation 7 5 0 0 1 1 
Optimization 8 5 1 2 0 0 
Reinforcement learning 8 1 2 5 0 0 
Clustering 4 3 1 0 0 0 
Planning 1 0 0 0 1 0 
Unclear/other 4 3 0 1 0 0 

facial expressions [306] or creating virtual humans [291]. We also 
collected a list of datasets (e.g,. hand model datasets [16], motion 
capture datasets [289], indoor datasets [117], or datasets for facial 
expressions [61]), as well as networks and models. We provide 
the complete list of tools, datasets, networks, and models in the 
Appendix in Appendix A. 

4.4.3 Data Types. We collected a data types, including sensor 
data (e.g., eye tracking, acoustic sensors, brain computer interface 
data, electroencelography, positional tracking, inertial tracking, and 
speech and audio data), subjective self-report data (e.g., question-
naire results), and images and videos. Furthermore, we noted when 
synthetic data was used. The most common data types for creat-
ing worlds are images and videos (42 papers). For understanding 
users the most common data type is self-report questionnaire data 
(21 papers). To support interaction the most common data type 
is hand tracking data (11 papers) and positional tracking (13). Inter-
acting with IVAs is typically investigated in perceptual empirical 
studies, in which no ML technique or algorithm is applied. Conse-
quently, we could not reveal a main type of data used. Refecting 
the generation issue, synthetic data is rarely used in XR and AI 
research (19 papers in total). 

4.4.4 Assessment and Evaluation. In 73% of the papers that trained 
a model based on data of a user study, the evaluation of the model 
was performed on the data of the same user study. Only in 27% 
a second (or third) user study was performed to test the model 
or classifer on unseen, new data. Furthermore, the task was typi-
cally the same in the training and the evaluation study. The mean 
sample size for training studies is 28.94 (N=94, SD=36.94, range: 
3-212) and for evaluation studies 29.15 (N=179, SD=30.61, range: 

3-200). The mean gender distribution of the training studies is 66% 
male and 34% female participants; for evaluation studies 64% of the 
participants were male and 36% were female. In total there were 
three training studies where one person of the participants each 
identifed as non-binary and seven evaluation studies, where on 
average two participants identifed as non-binary. The mean age of 
the participants in the training studies is 25.96 years (N=38, SD=3.62, 
range: 19.15-37.26) and in the evaluation studies 26.85 years (N=89, 
SD=6.72, range: 20.9-40.01). 

4.4.5 When is AI applied? Most of the use cases presented to ad-
dress an XR problem with an AI technique or method are aiming 
for real-time processing (77%). Of these about half (52%) are already 
deployed in real-time, while 48% cannot yet fulfl this goal. In gen-
eral, only a few papers use an AI method for post-hoc analysis (7%) 
or for generating virtual content before the interaction takes place 
(15%). For the remaining 2%, the main focus of the technique was 
unclear. 

5 DISCUSSION 
We summarize the results, highlight our paper’s relevance to HCI, 
and present 13 research opportunities and recommendations for 
future work. 

5.1 Summary of Results 
We found fve topic clusters on XR and AI research. Most of the 
reviewed papers address a topic related to using AI to create XR 
worlds (89), using AI to understand users (61), and using AI 
to support interaction (48). Papers on these three topics typi-
cally address classifcation (72) or regression (58) problems and often 

https://20.9-40.01
https://19.15-37.26
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present an ML model (134) together with an empirical (117) con-
tribution. The fourth topic cluster is about interacting with VAs 
(25). Papers addressing this typically present empirical research (23), 
investigating user perception of interacting with agents, such as 
emotions or trust, but rarely present an implementation of agents. 
Lastly, there is very little work on using XR for AI (7). These seven 
papers present either a technique to enhance understandability by 
visualizing AI models in VR (5) or address the problem of limited 
training data in XR (2). 

5.2 Relevance to HCI 
We analyzed the distribution of research directions and topics sep-
arately for HCI papers and compared them to the complete paper 
corpus. The distribution of research directions for HCI papers is 
almost the same as for the corpus in general. This might suggest 
that the topics at the intersection of XR and AI addressed by HCI 
research refect the general distribution of topics as well. This is, 
however, not the case, as we discuss in the following. Almost half 
of the HCI papers (48%) are in the category of Using AI to Support 
Interaction. While this might not come as a surprise, given that 
this topic is the one that is arguably most relevant to HCI, it is still 
interesting to note. Thus, the primary interest of HCI research at 
the intersection of XR and AI is using AI for the improvement of 
interaction techniques in XR. With 39% the second largest group 
of HCI papers is about Creating XR Environments. We conclude 
that HCI researchers’ second most important interest is on investi-
gating how AI methods can be used to enhance and ease content 
presentation in XR, mostly focusing on user body representations 
(avatars) and agents. Interestingly, our results show that only a few 
HCI papers use AI for what we labeled as Understanding Users (6%). 
This reveals a lack, where the core HCI venues (like CHI) could take 
inspiration from other venues (in particular XR venues), where AI 
methods are already applied to understand user characteristics and 
other properties of users. Lastly, we found only one HCI paper for 
the topic of Interaction with Intelligent VAs. This is surprising, since 
the core interest of HCI is about how users interact with computer 
systems and with more and more intelligent systems entering our 
lives, we argue that the research on interaction with virtual agents 
can be very benefcial and helpful to understand how users per-
ceive and interact with cognitively enhanced computer systems, 
like agents. In general, we note that research at the intersection of 
XR and AI is highly relevant for HCI, since three of the fve topics 
in out typology are about core HCI problems (understanding users, 
supporting interaction, and interaction with IVAs). Speaking from 
an HCI lens, we understand XR research as inherently connected 
to HCI, given that XR devices will likely become next-generation 
personal computing devices that we will interact with on a regular 
basis. Therefore, we are convinced that it is important for the feld 
of HCI to understand how novel sub-areas (in this case the inter-
section of XR and AI) can infuence and shape the feld of HCI in 
general. 

5.3 Research Opportunities Based on Topic 
Analysis 

Based on our results, we formulate 13 research opportunities and 
recommend promising research directions. We frst summarize fve 

opportunities based on the analysis of the topics and conclude with 
eight general opportunities. 

5.3.1 The Focus when Creating XR Worlds is on Realism. 

Challenge. Most of the papers about creating XR worlds focus 
on realistically replicating the real world in XR. The beneft of 
creating realistic XR worlds and realistic representations of avatars 
and agents seems implicit, not only for the representation of content 
(e.g., the appearance of environments or avatars), but also for the 
behavior of avatars and agents. In their review on realism in digital 
games, Rogers et al. [302] also reported that realism is paramount as 
a goal for VR games. In contrast to the papers in Rogers et al. [302]’s 
review, papers in our corpus (e.g., [52, 205, 229, 390]) typically did 
not give a motivation for why they aim to create realistic worlds. 
The focus of these papers is often on technical details, addressing 
how realistic worlds can be implemented. 

Opportunities and Recommendations for Future Research. Realism 
of avatars has frequently been discussed in previous work. Some 
works indicate that the realistic physical appearance of avatars 
causes eeriness and an uncanny valley efect [189]. Furthermore, 
some work suggests that the appearance of an avatar might not 
actually be the dominant factor in terms of social presence or appeal 
[401, 419, 420]. Some reviewed papers added to this discussion 
by comparing realistic, embodied agents with other forms, such 
as invisible [297] or abstract agents [376]. Furthermore, recent 
work on XR avatars explores how unrealistic avatars could be used, 
for example, for target selection at a distance [315], or to see a 
world from several perspectives [316]. AI methods are currently 
not used for these types of goal, but almost exclusively for realistic 
representations. We recommend to critically refect on the need 
for realism in the representation of avatars, as well as in agents, 
objects, and environments. 

5.3.2 The Focus when Understanding Users is Performance-driven 
Perspective. 

Challenge. In terms of understanding users, most papers focus 
on performance-driven issues, resulting in a lack of work on 
usability and user experience as a criteria for understanding users. 
Almost half of the papers in the understanding users category 
use AI to predict VR sickness. However, it is mostly used for 
recognizing VR sickness in users and solution techniques are rarely 
developed. Another large feld is viewport prediction. This is 
most often done to understand where users will look to improve 
the presentation of content accordingly [305, 357]. We found seven 
papers on gaze prediction, eye tracking, and gaze modeling, but it 
is not a big focus of research at the intersection. The main focus 
of these works is on predicting users’ gaze (i.e., on the technical 
challenge of predicting gaze). 

Opportunities and Recommendations for Future Research. ML tech-
niques are typically best applicable for well-defned problems, where 
a clear performance metric can be applied. Yet, we see potential 
in applying them for subjective user evaluations as well. Some 
works focus on experience-related aspects, such as presence [230] 
or mental workload [226, 362]. However, there is no bigger com-
munity for experience-related work (like VR sickness prediction), 
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which makes it difcult to accumulate fndings into general obser-
vations. These works could be combined with research on creating 
XR worlds to analyze how users perceive specifc aspects of these 
worlds. For example, ML-based presence estimation could be used 
to automatically evaluate and adapt XR environments, and afect 
and emotion models could be used to improve our understanding 
of the presentation of VAs. 

5.3.3 Focus of Interaction is on Gestural and Locomotion Techniques. 

Challenge. In terms of supporting interaction in XR, AI is currently 
used most frequently for gesture-based interaction (45.8%) and 
locomotion techniques (27.1%). In both cases, the focus is again 
on technical challenges, such as improving midair pointing [239], 
hand tracking [98], or path prediction [46]. Furthermore, we were 
surprised to see little work on haptics (3), although it is one of the 
major problems in current XR research [275]. 

Opportunities and Recommendations for Future Research. Although 
we found this technical focus of papers, the data types show that 
ML models can also be applied to subjective self-report data, which 
seems to be a promising future research direction to improve our 
understanding of users not only from a technical and performance-
driven perspective, but also from their subjective self-reports. Dals-
gaard et al. [73] show an example of how ML methods can be applied 
to improve the presentation of haptic stimuli. They present user-
driven mapping for mid-air haptic experiences based on keywords 
extracted by two natural language processing techniques. 

5.3.4 Interaction with VAs is mostly based on Perceptual Experi-
ments. 

Challenge. Similar to Norouzi et al. [262], we found a focus on 
agents’ infuence on personality and empathy. We also identifed 
diferent roles that VAs can inhabit, such as companions or assis-
tants. In their review, Norouzi et al. [262] note that more research 
is necessary to understand the spatial relationship between users 
and AR agents and we found some works addressing these issues 
[40, 48]. However, most of the work on IVAs in XR worlds investi-
gates users’ perception towards agents in perceptual experiments 
with the aim to inform the design of IVAs. Typically, the behavior of 
VAs is not implemented, but simulated or scripted. The validation 
of these studies from a technical perspective has yet to take place. 

Opportunities and Recommendations for Future Research. Our 
recommendation for future research is to invest in the technical 
implementation of agent models and to work on validating the 
fndings in empirical user studiesvice . 

5.3.5 Lack of Research on XR Supporting AI. 

Challenge. The few works on using XR technologies to support 
AI research focus on visualizing methods, for example, to support 
non-experts [125] in working with complex neural network struc-
tures. This huge imbalance between using XR for AI research and 
using AI for XR is hand expected. AI is predominantly used as 
a method in XR, either applied to technical issues (e.g., tracking, 
locomotion), or for analysis (e.g., user characteristics). On the other 
hand, XR is a technology, so the imbalance of the two (a method 
and a technology) is naturally given. However, whether some form 

of XR can be used as an interface to interact with AI or to improve 
our understanding of AI methods remains unanswered. 

Opportunities and Recommendations for Future Research. How 
can XR technology be used and contribute to the conception, design, 
and implementation of artifcial intelligence and machine learn-
ing? Educating people about the opportunities and challenges AI 
poses to society is important to create value. We are convinced 
that XR can contribute to fostering a better understanding of these 
new methods for a diverse set of individuals. Another unanswered 
research question is how XR can help design safe, reliable, and 
trustworthy AI. 

5.4 General Research Opportunities 
5.4.1 Lack of Generative Use of AI in XR Worlds. 

Challenge. We found only seven examples of generative models 
in XR. This is surprising, since GANs have been around for sev-
eral years [108] and have been applied to automatically generate 
images [407] or visualizations [264]. Given that content creation 
is one of the greatest challenges in current VR research, we were 
surprised to not see more work on the application of GANs to that 
problem. Yet, we understand that the research on generative VR 
content is still in its infancy. 

Opportunities and Recommendations for Future Research. We found 
one promising work in the reviewed papers that applied a genera-
tive method to build a new XR world based on mood [334]. Such 
an afective world could contribute to increasing empathy between 
individuals. Some other GANs were applied, for example to create 
context-dependent images [174] or virtual object shadows [216]. 
Given these promising examples, one avenue for future research is 
to further explore the use of GANs in the creation of virtual worlds. 

5.4.2 Lack of Optimization. 

Challenge. Optimization is widely applied in HCI research [149], 
for example, to optimize interfaces [85] and to design interaction 
techniques [55]. Surprisingly, we did not fnd many examples of 
optimization for VR or AR interfaces. 

Opportunities and Recommendations for Future Research. McIn-
tosh et al. [241] show the potential of optimization, for example, 
to optimize avatar representations for specifc tasks. This seems to 
be a promising direction. Since virtual representations of users are 
not bound by the same requirements as real world bodies, we see 
potential for optimizing interaction techniques in XR. For exam-
ple, the limbs of a virtual user representation could be adapted to 
the depth of a target in VR, say by optimizing arm extension as a 
function of target depth. Another example could be to optimize a 
user’s body for specifc tasks, for example, a user’s height could be 
implemented as a function of distance, thus enlarging or shrinking 
the user to ft a certain virtual space. In general, we see a lot of 
potential for optimization to enhance interaction techniques in XR. 

5.4.3 Lack of Generalizability. 

Challenge. The focus of using AI in XR is currently mainly done 
on problems. While we understand that this is because, by defnition, 
ML models work best with a well-defned problem, we are missing 
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a bigger picture of these problems. This can best be demonstrated 
by the following example. There are some larger groups of research, 
such as predicting VR sickness, predicting path direction for 
locomotion in VR, or improving 3D gestural interaction, but 
the individual papers typically collect their own datasets. For none 
of these problems, we found a general dataset that would provide 
generalizability of the developed models and algorithms. Another 
point is that most of the data that are used to train the models 
are based on WEIRD samples [212], indicating that the models 
are largely biased towards Western, Educated, Industrialized, Rich 
and Democratic people. The mean sample size for the studies to 
generate data for model training was 29 with a mean age of 26 years. 
Furthermore, there is a bias towards male users (average percentage 
of 66% male users). All of these points (sample size, mean age, gender 
distribution) are well-known issues for HCI research in general [50]. 
Our fndings show that this also holds for XR and AI research. This 
could easily reinforce already known biases and severely infuence 
trust in such systems. 

Opportunities and Recommendations for Future Research. There is 
some efort on creating large and more diverse datasets. For exam-
ple, Li et al. [204] presented an open-source library that provides a 
benchmark for “developing, deploying, and evaluating” redirected 
walking techniques. It even provides multi-user techniques, allow-
ing multiple users to move in the same physical space. Furthermore, 
we provide a collection of datasets and models that are both 
used and/or presented by the reviewed papers. With this list, we 
aim to guide researchers in investigating one of these issues from a 
more general perspective. While these collections of datasets are 
certainly useful, we need bigger datasets that include a larger vari-
ety of users. This is still very much an open challenge for XR and 
AI research. 

5.4.4 Lack of Robustness. 

Challenge. We found a lack of robustness in the data used to 
train models and algorithms. Most of the data that was used for 
training was generated by a user study. However, in most of these 
cases (73%), a model was trained and tested on the data from the 
same user study (typically also on the same task). Only in 27% of 
the papers a second or third user study was performed to validate 
the model, network, or trained algorithm. This is a serious concern 
regarding data leakage, since the models are typically tested with 
already known data or, at least, rarely tested with data that includes 
unseen scenarios or infuences. 

Opportunities and Recommendations for Future Research. To cre-
ate robust models that generalize for more than one very specifc 
sample and task, we need to develop the models on more diverse 
datasets, representing a broader population. Furthermore, current 
models are typically developed for one specifc task. Similarly, we 
should focus on testing our models in more diverse settings, includ-
ing a variety of diferent tasks and environments. 

5.4.5 Lack of Theoretical and Methodological Work. 

Challenge. Not surprisingly, we did not fnd much work on the-
oretical or methodological research. Due to our search process, 
we excluded “pure” theoretical work, such as surveys and meta-
analyzes. However, we expected more discussion of the theoretical 

implications of the presented works or methodological guidelines, 
for example, derived by a user study. Most of the theoretical work 
was related to agents, such as design guidelines for generating VA 
locomotion [398], needs model for agents [110], or a classifcation 
scheme of users interaction with a group of agents [38]. In terms 
of methodological work, there are some examples that present ap-
proaches for how to build models, for example, gaze modeling [337], 
or detailing how reinforcement learning can be used to create a 
generative model [123]. 

Opportunities and Recommendations for Future Research. Our 
results show a need for more guidelines on how AI can be used for 
XR problems. For example, how studies should be conducted and 
how models can be developed. In general, we need more discussion 
about what type of methods work for which type of specifc XR 
problems. This work provides a frst investigation into this topic 
and provides a stepping stone for future research in this area. 

5.4.6 Lack of Discussion about Ethical and Societal Impacts. 

Challenge. The societal discussions about ethical concerns of 
XR and AI are generally not refected in the reviewed papers, al-
though they are receiving more attention in their respective felds. 
This is demonstrated by current CHI workshops about safety, se-
curity, and privacy in XR [112] or challenges of using VR HMDs 
in social spaces [111]. Furthermore, one of the largest AI confer-
ences NeurIPS has recently started to require a statement about the 
“potential negative societal impacts” of the proposed research27. 

Since we excluded surveys and literature reviews from our cor-
pus, we might have missed articles that talk about these issues 
from a meta perspective. Still, papers in the sample that implement 
models for XR typically do not elaborate on any ethical or societal 
implications. 

Opportunities and Recommendations for Future Research. Social 
impacts of human-agent interaction are discussed in some papers 
[43, 113, 382]. However, this is a very specifc issue that applies 
to the interaction with embodied AI. In general, only 21 papers 
(6.8% of the corpus) touch upon this issue. Similarly, societal issues 
are not discussed. We suggest that researchers provide statements 
about the potential societal and ethical impact of their research, 
similar to the statement required by NeurIPS. 

5.4.7 Lack of AR Research. 

Challenge. The vast majority of the reviewed papers addressed 
VR research (68%). This is likely due to the wider distribution of 
VR hardware. However, several of the topics researched regarding 
VR, could be applied to AR as well. 

Opportunities and Recommendations for Future Research. In AR, 
AI techniques are currently mostly applied for tracking. However, 
VR research shows some promising directions, which could also be 
applied to AR. The interaction with IVAs in AR is an interesting 
avenue for future research that will become more relevant as AR 
devices are increasingly used by consumers. A relevant question to 
answer is, for example, how users can interact with IVAs in a mix of 

27NeurIPS Ethical Guidelines: https://nips.cc/public/EthicsGuidelines, September 13, 
2022 
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real and virtual worlds. Schmidt et al. [317] show an example of how 
to merge such physical and virtual consequences of interactions. 

5.4.8 Human-AI Interaction in XR. 

Challenge. We found a trend to use AI to create XR content or 
for analysis purposes. Users were mostly involved in the process 
to evaluate the techniques, or to provide the data to predict, for 
example, their movement patterns [248]. However, we did not fnd 
examples of human users and AI working together collaboratively 
on problems. 

Opportunities and Recommendations for Future Research. We found 
some examples where an AI technique was combined with expert 
knowledge. For example, Xing et al. [390] use hair models created 
by experts as the basis for their model. Similarly, the model pre-
sented by Sra et al. [334] is trained on user-based suggestions, and 
Yu et al. [403] present a 3D sketching tool that creates 3D objects 
based on users’ 3D sketches. These works are promising examples 
for human-AI collaboration. However, all these cases are about 
asynchronous collaboration. Promising real-time human-AI interac-
tion in XR worlds is currently missing and would be a promising 
avenue for future research. 

6 CONCLUSION 
We present a scoping review of 311 papers at the intersection of 
XR and AI research. We reviewed the papers using a code book 
with 26 codes covering research direction, contribution, and details 
about technologies and methods. We present a typology of the 
state of the art covering fve main topics. Furthermore, we provide 
a list with commonly used tools, software, datasets, and models. 
Lastly, we summarize 13 research opportunities and provide rec-
ommendations for future research. Current XR and AI research 
mainly focuses on using AI to create realistic XR worlds, support 
technical aspects of interaction techniques, and understand users 
from a performance-driven perspective. Furthermore, interaction 
with VAs is mostly researched with perceptual experiments, and 
technical implementations are missing. Furthermore, there is a lack 
of research exploring how XR can be used to support AI research. 
In general, there is a lack of generalizability, robustness, method-
ological, and theoretical work in this area. Furthermore, ethical and 
societal impacts of XR and AI research are largely neglected. 

ACKNOWLEDGMENTS 
We would like to thank Tor-Salve Dalsgaard for helping with collect-
ing the review articles and Sarah Bagge Valsborg for helping with 
extracting the links and text for the list of tools, methods, datasets, 
and software. This research was supported by the HumanE AI 
Network from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 952026, and the 
Pioneer Centre for AI, DNRF grant number P1. 

REFERENCES 
References marked with ✱ are in the set of reviewed papers. 
[1] ✱ Lotf Abdi and Aref Meddeb. 2018. In-vehicle augmented reality system to 

provide driving safety information. Journal of Visualization 21, 1 (Feb. 2018), 
163–184. https://doi.org/10.1007/s12650-017-0442-6 

[2] ✱ Philipp Agethen, Viswa Subramanian Sekar, Felix Gaisbauer, Thies Pfeifer, 
Michael Otto, and Enrico Rukzio. 2018. Behavior Analysis of Human Locomotion 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

in the Real World and Virtual Reality for the Manufacturing Industry. ACM 
Trans. Appl. Percept. 15, 3, Article 20 (jul 2018), 19 pages. https://doi.org/10. 
1145/3230648 

[3] Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 Challenge on Single 
Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR) Workshops. IEEE, New York, 
NY, USA, –. 

[4] ✱ Imtiaj Ahmed, Ville J. Harjunen, Giulio Jacucci, Niklas Ravaja, Tuukka Ruot-
salo, and Michiel Spape. 2020. Touching virtual humans: Haptic responses 
reveal the emotional impact of afective agents. IEEE Transactions on Afective 
Computing -, - (2020), 1–1. https://doi.org/10.1109/TAFFC.2020.3038137 

[5] ✱ Ashwin Ajit, Natasha Kholgade Banerjee, and Sean Banerjee. 2019. Combining 
Pairwise Feature Matches from Device Trajectories for Biometric Authentica-
tion in Virtual Reality Environments. In 2019 IEEE International Conference on 
Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 9–97. https://doi.org/10.1109/AIVR46125.2019.00012 

[6] ✱ Kaan Akşit, Praneeth Chakravarthula, Kishore Rathinavel, Youngmo Jeong, 
Rachel Albert, Henry Fuchs, and David Luebke. 2019. Manufacturing 
Application-Driven Foveated Near-Eye Displays. IEEE Transactions on Visual-
ization and Computer Graphics 25, 5 (2019), 1928–1939. https://doi.org/10.1109/ 
TVCG.2019.2898781 

[7] ✱ A. Deniz Aladagli, Erhan Ekmekcioglu, Dmitri Jarnikov, and Ahmet Kondoz. 
2017. Predicting head trajectories in 360° virtual reality videos. In 2017 Interna-
tional Conference on 3D Immersion (IC3D), Vol. 1. IEEE, New York, NY, USA, 1–6. 
https://doi.org/10.1109/IC3D.2017.8251913 

[8] ✱ Rawan Alghofaili, Yasuhito Sawahata, Haikun Huang, Hsueh-Cheng Wang, 
Takaaki Shiratori, and Lap-Fai Yu. 2019. Lost in Style: Gaze-Driven Adaptive Aid 
for VR Navigation. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing 
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300578 

[9] ✱ Rawan Alghofaili, Michael S Solah, Haikun Huang, Yasuhito Sawahata, Marc 
Pomplun, and Lap-Fai Yu. 2019. Optimizing Visual Element Placement via 
Visual Attention Analysis. In 2019 IEEE Conference on Virtual Reality and 3D 
User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 464–473. https://doi.org/ 
10.1109/VR.2019.8797816 

[10] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard 
Pons-Moll. 2018. Video Based Reconstruction of 3D People Models. In 2018 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vol. 1. IEEE, 
New York, NY, USA, 8387–8397. https://doi.org/10.1109/CVPR.2018.00875 

[11] ✱ Stevão A. Andrade, Fatima L. S. Nunes, and Marcio E. Delamaro. 2019. Towards 
the Systematic Testing of Virtual Reality Programs. In 2019 21st Symposium on 
Virtual and Augmented Reality (SVR), Vol. 1. IEEE, New York, NY, USA, 196–205. 
https://doi.org/10.1109/SVR.2019.00044 

[12] ✱ Sean Andrist, Michael Gleicher, and Bilge Mutlu. 2017. Looking Coordinated: 
Bidirectional Gaze Mechanisms for Collaborative Interaction with Virtual Char-
acters. In Proceedings of the 2017 CHI Conference on Human Factors in Computing 
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machin-
ery, New York, NY, USA, 2571–2582. https://doi.org/10.1145/3025453.3026033 

[13] Deepali Aneja, Alex Colburn, Gary Faigin, Linda Shapiro, and Barbara Mones. 
2016. Modeling Stylized Character Expressions via Deep Learning. In Asian 
Conference on Computer Vision. Springer, -, 136–153. 

[14] Ryan Antel, Samira Abbasgholizadeh-Rahimi, Elena Guadagno, Jason M. Harley, 
and Dan Poenaru. 2022. The use of artifcial intelligence and virtual reality in 
doctor-patient risk communication: A scoping review. Patient Education and 
Counseling -, - (2022), –. https://doi.org/10.1016/j.pec.2022.06.006 

[15] ✱ Abdullah Al Arafat, Zhishan Guo, and Amro Awad. 2021. VR-Spy: A Side-
Channel Attack on Virtual Key-Logging in VR Headsets. In 2021 IEEE Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 564–572. 
https://doi.org/10.1109/VR50410.2021.00081 

[16] ✱ Kazuyuki Arimatsu and Hideki Mori. 2020. Evaluation of Machine Learning 
Techniques for Hand Pose Estimation on Handheld Device with Proximity 
Sensor. In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, 
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376712 

[17] Hilary Arksey and Lisa O’Malley. 2005. Scoping studies: towards a 
methodological framework. International Journal of Social Research Method-
ology 8, 1 (2005), 19–32. https://doi.org/10.1080/1364557032000119616 
arXiv:https://doi.org/10.1080/1364557032000119616 

[18] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. 2017. Joint 2D-3D-Semantic 
Data for Indoor Scene Understanding. ArXiv e-prints -, 1 (Feb. 2017), –. 
arXiv:1702.01105 [cs.CV] 

[19] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin 
Fischer, and Silvio Savarese. 2016. 3D Semantic Parsing of Large-Scale Indoor 
Spaces. In 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), Vol. 1. IEEE, New York, NY, USA, 1534–1543. https://doi.org/10.1109/ 
CVPR.2016.170 

[20] ✱ Alexander Arntz, Agostino Di Dia, Tim Riebner, and Sabrina C. Eimler. 2021. 
Machine Learning Concepts for Dual-Arm Robots within Virtual Reality. In 2021 

https://doi.org/10.1007/s12650-017-0442-6
https://doi.org/10.1145/3230648
https://doi.org/10.1145/3230648
https://doi.org/10.1109/TAFFC.2020.3038137
https://doi.org/10.1109/AIVR46125.2019.00012
https://doi.org/10.1109/TVCG.2019.2898781
https://doi.org/10.1109/TVCG.2019.2898781
https://doi.org/10.1109/IC3D.2017.8251913
https://doi.org/10.1145/3290605.3300578
https://doi.org/10.1109/VR.2019.8797816
https://doi.org/10.1109/VR.2019.8797816
https://doi.org/10.1109/CVPR.2018.00875
https://doi.org/10.1109/SVR.2019.00044
https://doi.org/10.1145/3025453.3026033
https://doi.org/10.1016/j.pec.2022.06.006
https://doi.org/10.1109/VR50410.2021.00081
https://doi.org/10.1145/3313831.3376712
https://doi.org/10.1080/1364557032000119616
https://arxiv.org/abs/https://doi.org/10.1080/1364557032000119616
https://arxiv.org/abs/1702.01105
https://doi.org/10.1109/CVPR.2016.170
https://doi.org/10.1109/CVPR.2016.170


CHI ’23, April 23–28, 2023, Hamburg, Germany 

IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 168–172. https://doi.org/10.1109/AIVR52153. 
2021.00038 

[21] Edoardo Aromataris and Zachary Munn. 2020. JBI Manual for Evidence Synthe-
sis. https://doi.org/10.46658/JBIMES-20-01 

[22] ✱ Doris Aschenbrenner, Danielle van Tol, Zoltan Rusak, and Claudia Werker. 
2020. Using Virtual Reality for scenario-based Responsible Research and Inno-
vation approach for Human Robot Co-production. In 2020 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 146–150. https://doi.org/10.1109/AIVR50618.2020.00033 

[23] Ronald T. Azuma. 1997. A Survey of Augmented Reality. Presence: 
Teleoperators and Virtual Environments 6, 4 (08 1997), 355–385. https: 
//doi.org/10.1162/pres.1997.6.4.355 arXiv:https://direct.mit.edu/pvar/article-
pdf/6/4/355/1623026/pres.1997.6.4.355.pdf 

[24] ✱ Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabián Prada, Takaaki 
Shiratori, Shih-En Wei, Weipeng Xu, Yaser Sheikh, and Jason Saragih. 2021. 
Driving-Signal Aware Full-Body Avatars. ACM Trans. Graph. 40, 4, Article 143 
(jul 2021), 17 pages. https://doi.org/10.1145/3450626.3459850 

[25] ✱ Suprith Balasubramanian and Rajiv Soundararajan. 2019. Prediction of Dis-
comfort due to Egomotion in Immersive Videos for Virtual Reality. In 2019 IEEE 
International Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, 
New York, NY, USA, 169–177. https://doi.org/10.1109/ISMAR.2019.000-7 

[26] ✱ Catherine Ball, Eric Novotny, Sun Joo Ahn, Lindsay Hahn, Michael D. Schmidt, 
Stephen L. Rathbun, and Kyle Johnsen. 2022. Scaling the Virtual Fitness Buddy 
Ecosystem as a School-Based Physical Activity Intervention for Children. IEEE 
Computer Graphics and Applications 42 (2022), 105–115. https://doi.org/10.1109/ 
MCG.2021.3130555 

[27] ✱ Giuliana Barrios Dell’Olio and Misha Sra. 2021. FaraPy: An Augmented Reality 
Feedback System for Facial Paralysis Using Action Unit Intensity Estimation. 
In The 34th Annual ACM Symposium on User Interface Software and Technology 
(Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New 
York, NY, USA, 1027–1038. https://doi.org/10.1145/3472749.3474803 

[28] ✱ Martin Bellgardt, Christian Scheiderer, and Torsten W. Kuhlen. 2020. An 
Immersive Node-Link Visualization of Artifcial Neural Networks for Machine 
Learning Experts. In 2020 IEEE International Conference on Artifcial Intelligence 
and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 33–36. https: 
//doi.org/10.1109/AIVR50618.2020.00015 

[29] ✱ Aniket Bera, Tanmay Randhavane, Emily Kubin, Husam Shaik, Kurt Gray, and 
Dinesh Manocha. 2018. Data-Driven Modeling of Group Entitativity in Virtual 
Environments. In Proceedings of the 24th ACM Symposium on Virtual Reality 
Software and Technology (Tokyo, Japan) (VRST ’18). Association for Computing 
Machinery, New York, NY, USA, Article 31, 10 pages. https://doi.org/10.1145/ 
3281505.3281524 

[30] Kirsten Bergmann, Friederike Eyssel, and Stefan Kopp. 2012. A Second Chance 
to Make a First Impression? How Appearance and Nonverbal Behavior Afect 
Perceived Warmth and Competence of Virtual Agents over Time. In Intelligent 
Virtual Agents, Yukiko Nakano, Michael Nef, Ana Paiva, and Marilyn Walker 
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 126–138. 

[31] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 
2011. The million song dataset. - -, - (2011), –. 

[32] ✱ Andrew Best, Sahil Narang, and Dinesh Manocha. 2020. SPA: Verbal In-
teractions between Agents and Avatars in Shared Virtual Environments us-
ing Propositional Planning. In 2020 IEEE Conference on Virtual Reality and 
3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 117–126. https: 
//doi.org/10.1109/VR46266.2020.00030 

[33] ✱ Uttaran Bhattacharya, Nicholas Rewkowski, Abhishek Banerjee, Pooja Guhan, 
Aniket Bera, and Dinesh Manocha. 2021. Text2Gestures: A Transformer-Based 
Network for Generating Emotive Body Gestures for Virtual Agents. In 2021 IEEE 
Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 
1–10. https://doi.org/10.1109/VR50410.2021.00037 

[34] ✱ Uttaran Bhattacharya, Nicholas Rewkowski, Pooja Guhan, Niall L. Williams, 
Trisha Mittal, Aniket Bera, and Dinesh Manocha. 2020. Generating Emotive Gaits 
for Virtual Agents Using Afect-Based Autoregression. In 2020 IEEE International 
Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, 
NY, USA, 24–35. https://doi.org/10.1109/ISMAR50242.2020.00020 

[35] ✱ Manish Bhattarai, Aura Rose Jensen-Curtis, and Manel Martínez-Ramón. 
2020. An embedded deep learning system for augmented reality in frefghting 
applications. In 2020 19th IEEE International Conference on Machine Learning 
and Applications (ICMLA), Vol. 1. IEEE, New York, NY, USA, 1224–1230. https: 
//doi.org/10.1109/ICMLA51294.2020.00193 

[36] Mark Billinghurst. 2021. Grand Challenges for Augmented Reality. Frontiers in 
Virtual Reality 2 (2021), –. https://doi.org/10.3389/frvir.2021.578080 

[37] Mark Billinghurst and Michael Nebeling. 2021. Rapid Prototyping of XR Ex-
periences. In Extended Abstracts of the 2021 CHI Conference on Human Fac-
tors in Computing Systems (Yokohama, Japan) (CHI EA ’21). Association for 
Computing Machinery, New York, NY, USA, Article 132, 3 pages. https: 
//doi.org/10.1145/3411763.3445002 

Hirzle, et al. 

[38] ✱ Andrea Bönsch, Alexander R. Bluhm, Jonathan Ehret, and Torsten W. Kuhlen. 
2020. Inferring a User’s Intent on Joining or Passing by Social Groups. In 
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents
(Virtual Event, Scotland, UK) (IVA ’20). Association for Computing Machinery, 
New York, NY, USA, Article 10, 8 pages. https://doi.org/10.1145/3383652.3423862 

[39] ✱ Andrea Bönsch, David Hashem, Jonathan Ehret, and Torsten W. Kuhlen. 
2021. Being Guided or Having Exploratory Freedom: User Preferences of 
a Virtual Agent’s Behavior in a Museum. In Proceedings of the 21st ACM 
International Conference on Intelligent Virtual Agents (Virtual Event, Japan) 
(IVA ’21). Association for Computing Machinery, New York, NY, USA, 33–40. 
https://doi.org/10.1145/3472306.3478339 

[40] ✱ Andrea Bönsch, Sina Radke, Jonathan Ehret, Ute Habel, and Torsten W. Kuhlen. 
2020. The Impact of a Virtual Agent’s Non-Verbal Emotional Expression on a 
User’s Personal Space Preferences. In Proceedings of the 20th ACM International 
Conference on Intelligent Virtual Agents (Virtual Event, Scotland, UK) (IVA ’20). 
Association for Computing Machinery, New York, NY, USA, Article 12, 8 pages. 
https://doi.org/10.1145/3383652.3423888 

[41] ✱ Andrea Bönsch, Sina Radke, Heiko Overath, Laura M. Asché, Jonathan Wendt, 
Tom Vierjahn, Ute Habel, and Torsten W. Kuhlen. 2018. Social VR: How Personal 
Space is Afected by Virtual Agents’ Emotions. In 2018 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 199–206. 
https://doi.org/10.1109/VR.2018.8446480 

[42] Kim Bosman, Tibor Bosse, and Daniel Formolo. 2019. Virtual Agents for Profes-
sional Social Skills Training: An Overview of the State-of-the-Art. In Intelligent 
Technologies for Interactive Entertainment, Paulo Cortez, Luís Magalhães, Pedro 
Branco, Carlos Filipe Portela, and Telmo Adão (Eds.). Springer International 
Publishing, Cham, 75–84. 

[43] ✱ Tibor Bosse, Tilo Hartmann, Romy A.M. Blankendaal, Nienke Dokter, Marco 
Otte, and Linford Goedschalk. 2018. Virtually Bad: A Study on Virtual Agents 
That Physically Threaten Human Beings. In Proceedings of the 17th International 
Conference on Autonomous Agents and MultiAgent Systems (Stockholm, Sweden) 
(AAMAS ’18). International Foundation for Autonomous Agents and Multiagent 
Systems, Richland, SC, 1258–1266. 

[44] ✱ Fabien Boucaud, Catherine Pelachaud, and Indira Thouvenin. 2021. Decision 
Model for a Virtual Agent that can Touch and be Touched. In 20th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2021). 
HAL open science, Londres (virtual), United Kingdom, –. https://hal.archives-
ouvertes.fr/hal-03428918 

[45] ✱ Efe Bozkir, David Geisler, and Enkelejda Kasneci. 2019. Person Independent, 
Privacy Preserving, and Real Time Assessment of Cognitive Load using Eye 
Tracking in a Virtual Reality Setup. In 2019 IEEE Conference on Virtual Reality 
and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 1834–1837. https: 
//doi.org/10.1109/VR.2019.8797758 

[46] ✱ Gianni Bremer, Niklas Stein, and Markus Lappe. 2021. Predicting Future Posi-
tion From Natural Walking and Eye Movements with Machine Learning. In 2021 
IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 19–28. https://doi.org/10.1109/AIVR52153. 
2021.00013 

[47] ✱ Hugo Brument, Gerd Bruder, Maud Marchal, Anne Hélène Olivier, and Ferran 
Argelaguet. 2021. Understanding, Modeling and Simulating Unintended Posi-
tional Drift during Repetitive Steering Navigation Tasks in Virtual Reality. IEEE 
Transactions on Visualization and Computer Graphics 27, 11 (2021), 4300–4310. 
https://doi.org/10.1109/TVCG.2021.3106504 

[48] ✱ Lauren E. Buck, Sohee Park, and Bobby Bodenheimer. 2020. Determining 
Peripersonal Space Boundaries and Their Plasticity in Relation to Object and 
Agent Characteristics in an Immersive Virtual Environment. In 2020 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 332–342. https://doi.org/10.1109/VR46266.2020.00053 

[49] ✱ Domenico Buongiorno, Cristian Camardella, Giacomo Donato Cascarano, 
Luis Pelaez Murciego, Michele Barsotti, Irio De Feudis, Antonio Frisoli, and 
Vitoantonio Bevilacqua. 2019. An undercomplete autoencoder to extract muscle 
synergies for motor intention detection. In 2019 International Joint Conference 
on Neural Networks (IJCNN), Vol. 1. IEEE, New York, NY, USA, 1–8. https: 
//doi.org/10.1109/IJCNN.2019.8851975 

[50] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In Proceedings of 
the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, 
California, USA) (CHI ’16). Association for Computing Machinery, New York, 
NY, USA, 981–992. https://doi.org/10.1145/2858036.2858498 

[51] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose: 
Realtime Multi-Person 2D Pose Estimation using Part Afnity Fields. IEEE 
Transactions on Pattern Analysis and Machine Intelligence -, - (2019), –. 

[52] ✱ Young-Woon Cha, Husam Shaik, Qian Zhang, Fan Feng, Andrei State, Adrian 
Ilie, and Henry Fuchs. 2021. Mobile. Egocentric Human Body Motion Reconstruc-
tion Using Only Eyeglasses-mounted Cameras and a Few Body-worn Inertial 
Sensors. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, 
New York, NY, USA, 616–625. https://doi.org/10.1109/VR50410.2021.00087 

[53] ✱ Jacob Chakareski. 2019. UAV-IoT for Next Generation Virtual Reality. IEEE 
Transactions on Image Processing 28, 12 (2019), 5977–5990. https://doi.org/10. 

https://doi.org/10.1109/AIVR52153.2021.00038
https://doi.org/10.1109/AIVR52153.2021.00038
https://doi.org/10.46658/JBIMES-20-01
https://doi.org/10.1109/AIVR50618.2020.00033
https://doi.org/10.1162/pres.1997.6.4.355
https://doi.org/10.1162/pres.1997.6.4.355
https://arxiv.org/abs/https://direct.mit.edu/pvar/article-pdf/6/4/355/1623026/pres.1997.6.4.355.pdf
https://arxiv.org/abs/https://direct.mit.edu/pvar/article-pdf/6/4/355/1623026/pres.1997.6.4.355.pdf
https://doi.org/10.1145/3450626.3459850
https://doi.org/10.1109/ISMAR.2019.000-7
https://doi.org/10.1109/MCG.2021.3130555
https://doi.org/10.1109/MCG.2021.3130555
https://doi.org/10.1145/3472749.3474803
https://doi.org/10.1109/AIVR50618.2020.00015
https://doi.org/10.1109/AIVR50618.2020.00015
https://doi.org/10.1145/3281505.3281524
https://doi.org/10.1145/3281505.3281524
https://doi.org/10.1109/VR46266.2020.00030
https://doi.org/10.1109/VR46266.2020.00030
https://doi.org/10.1109/VR50410.2021.00037
https://doi.org/10.1109/ISMAR50242.2020.00020
https://doi.org/10.1109/ICMLA51294.2020.00193
https://doi.org/10.1109/ICMLA51294.2020.00193
https://doi.org/10.3389/frvir.2021.578080
https://doi.org/10.1145/3411763.3445002
https://doi.org/10.1145/3411763.3445002
https://doi.org/10.1145/3383652.3423862
https://doi.org/10.1145/3472306.3478339
https://doi.org/10.1145/3383652.3423888
https://doi.org/10.1109/VR.2018.8446480
https://hal.archives-ouvertes.fr/hal-03428918
https://hal.archives-ouvertes.fr/hal-03428918
https://doi.org/10.1109/VR.2019.8797758
https://doi.org/10.1109/VR.2019.8797758
https://doi.org/10.1109/AIVR52153.2021.00013
https://doi.org/10.1109/AIVR52153.2021.00013
https://doi.org/10.1109/TVCG.2021.3106504
https://doi.org/10.1109/VR46266.2020.00053
https://doi.org/10.1109/IJCNN.2019.8851975
https://doi.org/10.1109/IJCNN.2019.8851975
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1109/VR50410.2021.00087
https://doi.org/10.1109/TIP.2019.2921869
https://doi.org/10.1109/TIP.2019.2921869


When XR and AI Meet - A Scoping Review on Extended Reality and Artificial Intelligence CHI ’23, April 23–28, 2023, Hamburg, Germany 

1109/TIP.2019.2921869 
[54] ✱ Praneeth Chakravarthula, Ethan Tseng, Tarun Srivastava, Henry Fuchs, and 

Felix Heide. 2020. Learned Hardware-in-the-Loop Phase Retrieval for Holo-
graphic near-Eye Displays. ACM Trans. Graph. 39, 6, Article 186 (nov 2020), 
18 pages. https://doi.org/10.1145/3414685.3417846 

[55] Liwei Chan, Yi-Chi Liao, George B Mo, John J Dudley, Chun-Lien Cheng, 
Per Ola Kristensson, and Antti Oulasvirta. 2022. Investigating Positive and 
Negative Qualities of Human-in-the-Loop Optimization for Designing In-
teraction Techniques. In Proceedings of the 2022 CHI Conference on Human 
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Associa-
tion for Computing Machinery, New York, NY, USA, Article 112, 14 pages. 
https://doi.org/10.1145/3491102.3501850 

[56] ✱ Minwook Chang, Youngwon Ryan Kim, and Gerard Jounghyun Kim. 2018. 
A Perceptual Evaluation of Generative Adversarial Network Real-Time Syn-
thesized Drum Sounds in a Virtual Environment. In 2018 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 144–148. https://doi.org/10.1109/AIVR.2018.00030 

[57] ✱ Taizhou Chen, Lantian Xu, Xianshan Xu, and Kening Zhu. 2021. GestOnHMD: 
Enabling Gesture-based Interaction on Low-cost VR Head-Mounted Display. 
IEEE Transactions on Visualization and Computer Graphics 27, 5 (2021), 2597– 
2607. https://doi.org/10.1109/TVCG.2021.3067689 

[58] ✱ Ze-Yin Chen, Yi-Jun Li, Miao Wang, Frank Steinicke, and Qinping Zhao. 2021. 
A Reinforcement Learning Approach to Redirected Walking with Passive Haptic 
Feedback. In 2021 IEEE International Symposium on Mixed and Augmented Reality 
(ISMAR), Vol. 1. IEEE, New York, NY, USA, 184–192. https://doi.org/10.1109/ 
ISMAR52148.2021.00033 

[59] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, 
Hartwig Adam, and Liang-Chieh Chen. 2020. Panoptic-DeepLab: A Simple, 
Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. In CVPR. IEEE, 
New York, NY, USA, –. 

[60] ✱ Yifei Cheng, Yukang Yan, Xin Yi, Yuanchun Shi, and David Lindlbauer. 
2021. SemanticAdapt: Optimization-Based Adaptation of Mixed Reality Lay-
outs Leveraging Virtual-Physical Semantic Connections. In The 34th Annual 
ACM Symposium on User Interface Software and Technology (Virtual Event, USA) 
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 282–297. 
https://doi.org/10.1145/3472749.3474750 

[61] ✱ Venkata Rami Reddy Chirra, Srinivasulu Reddy Uyyala, and Venkata Kr-
ishna Kishore Kolli. 2021. Virtual facial expression recognition using deep CNN 
with ensemble learning. Journal of Ambient Intelligence and Humanized Comput-
ing 12, 12 (Dec. 2021), 10581–10599. https://doi.org/10.1007/s12652-020-02866-3 

[62] ✱ Yong-Hun Cho, Dong-Yong Lee, and In-Kwon Lee. 2018. Path Prediction 
Using LSTM Network for Redirected Walking. In 2018 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 527–528. 
https://doi.org/10.1109/VR.2018.8446442 

[63] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and 
Jaegul Choo. 2018. StarGAN: Unifed Generative Adversarial Networks for Multi-
Domain Image-to-Image Translation. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. IEEE, New York, NY, USA, –. 

[64] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. StarGAN 
v2: Diverse Image Synthesis for Multiple Domains. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. IEEE, New York, NY, 
USA, –. 

[65] ✱ Athanasios Christopoulos, Marc Conrad, and Mitul Shukla. 2019. What Does 
the Pedagogical Agent Say?. In 2019 10th International Conference on Information, 
Intelligence, Systems and Applications (IISA), Vol. 1. IEEE, New York, NY, USA, 
1–7. https://doi.org/10.1109/IISA.2019.8900767 

[66] ✱ Aldrich Clarence, Jarrod Knibbe, Maxime Cordeil, and Michael Wybrow. 2021. 
Unscripted Retargeting: Reach Prediction for Haptic Retargeting in Virtual 
Reality. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, 
New York, NY, USA, 150–159. https://doi.org/10.1109/VR50410.2021.00036 

[67] ✱ Mark Colley, Benjamin Eder, Jan Ole Rixen, and Enrico Rukzio. 2021. Efects 
of Semantic Segmentation Visualization on Trust, Situation Awareness, and 
Cognitive Load in Highly Automated Vehicles. In Proceedings of the 2021 CHI 
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI 
’21). Association for Computing Machinery, New York, NY, USA, Article 155, 
11 pages. https://doi.org/10.1145/3411764.3445351 

[68] Simon Cooper, Robyn Cant, Michelle Kelly, Tracy Levett-Jones, Lisa McKenna, 
Philippa Seaton, and Fiona Bogossian. 2021. An Evidence-Based Checklist for 
Improving Scoping Review Quality. Clinical Nursing Research 30, 3 (March 
2021), 230–240. https://doi.org/10.1177/1054773819846024 

[69] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus 
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 
2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. CoRR 
abs/1604.01685 (2016), –. arXiv:1604.01685 http://arxiv.org/abs/1604.01685 

[70] ✱ Edmanuel Cruz, Sergio Orts-Escolano, Francisco Gomez-Donoso, Carlos Rizo, 
Jose Carlos Rangel, Higinio Mora, and Miguel Cazorla. 2019. An augmented 
reality application for improving shopping experience in large retail stores. 
Virtual Reality 23, 3 (Sept. 2019), 281–291. https://doi.org/10.1007/s10055-018-

0338-3 
[71] ✱ János Czentye, Balázs Péter Gerő, and Balázs Sonkoly. 2021. Manag-

ing Localization Delay for Cloud-assisted AR Applications Via LSTM-driven 
Overload Control. In 2021 IEEE International Conference on Artifcial Intelli-
gence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 92–101. 
https://doi.org/10.1109/AIVR52153.2021.00023 

[72] ✱ Tor-Salve Dalsgaard, Jarrod Knibbe, and Joanna Bergström. 2021. Modeling 
Pointing for 3D Target Selection in VR. In Proceedings of the 27th ACM Sym-
posium on Virtual Reality Software and Technology (Osaka, Japan) (VRST ’21). 
Association for Computing Machinery, New York, NY, USA, Article 42, 10 pages. 
https://doi.org/10.1145/3489849.3489853 

[73] Tor-Salve Dalsgaard, Joanna Bergström, Marianna Obrist, and Kasper Hornbæk. 
2022. A user-derived mapping for mid-air haptic experiences. International 
Journal of Human-Computer Studies 168 (2022), 102920. https://doi.org/10.1016/ 
j.ijhcs.2022.102920 

[74] ✱ Ferdinand de Coninck, Zerrin Yumak, Guntur Sandino, and Remco Veltkamp. 
2019. Non-Verbal Behavior Generation for Virtual Characters in Group Con-
versations. In 2019 IEEE International Conference on Artifcial Intelligence and 
Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 41–418. https: 
//doi.org/10.1109/AIVR46125.2019.00016 

[75] Gilles Degottex, John Kane, Thomas Drugman, Tuomo Raitio, and Stefan 
Scherer. 2014. COVAREP — A collaborative voice analysis repository for 
speech technologies. In 2014 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), Vol. 1. IEEE, New York, NY, USA, 960–964. 
https://doi.org/10.1109/ICASSP.2014.6853739 

[76] ✱ Javier Dehesa, Andrew Vidler, Christof Lutteroth, and Julian Padget. 2020. 
Touché: Data-Driven Interactive Sword Fighting in Virtual Reality. In Proceedings 
of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, 
HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 
1–14. https://doi.org/10.1145/3313831.3376714 

[77] ✱ Victor Delvigne, Hazem Wannous, Jean-Philippe Vandeborre, Laurence Ris, 
and Thierry Dutoit. 2020. Attention Estimation in Virtual Reality with EEG 
based Image Regression. In 2020 IEEE International Conference on Artifcial 
Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 10–16. 
https://doi.org/10.1109/AIVR50618.2020.00012 

[78] David DeVault, Ron Artstein, Grace Benn, Teresa Dey, Ed Fast, Alesia Gainer, 
Kallirroi Georgila, Jon Gratch, Arno Hartholt, Margaux Lhommet, Gale Lu-
cas, Stacy Marsella, Fabrizio Morbini, Angela Nazarian, Stefan Scherer, Giota 
Stratou, Apar Suri, David Traum, Rachel Wood, Yuyu Xu, Albert Rizzo, and 
Louis-Philippe Morency. 2014. SimSensei Kiosk: A Virtual Human Interviewer 
for Healthcare Decision Support. In Proceedings of the 2014 International Confer-
ence on Autonomous Agents and Multi-Agent Systems (Paris, France) (AAMAS 
’14). International Foundation for Autonomous Agents and Multiagent Systems, 
Richland, SC, 1061–1068. 

[79] ✱ Patrick Dickinson, Kathrin Gerling, Kieran Hicks, John Murray, John Shearer, 
and Jacob Greenwood. 2019. Virtual reality crowd simulation: efects of agent 
density on user experience and behaviour. Virtual Reality 23, 1 (March 2019), 
19–32. https://doi.org/10.1007/s10055-018-0365-0 

[80] ✱ Zhi-Chao Dong, Xiao-Ming Fu, Chi Zhang, Kang Wu, and Ligang Liu. 2017. 
Smooth Assembled Mappings for Large-Scale Real Walking. ACM Trans. Graph.
36, 6, Article 211 (nov 2017), 13 pages. https://doi.org/10.1145/3130800.3130893 

[81] ✱ Panagiotis Drakopoulos, George-alex Koulieris, and Katerina Mania. 2021. 
Eye Tracking Interaction on Unmodifed Mobile VR Headsets Using the Selfe 
Camera. ACM Trans. Appl. Percept. 18, 3, Article 11 (may 2021), 20 pages. 
https://doi.org/10.1145/3456875 

[82] ✱ Minghan Du, Hui Cui, Yuan Wang, and Henry Duh. 2021. Learning from Deep 
Stereoscopic Attention for Simulator Sickness Prediction. IEEE Transactions 
on Visualization and Computer Graphics 1 (2021), 1–1. https://doi.org/10.1109/ 
TVCG.2021.3115901 

[83] ✱ Tinglin Duan, Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. 2018. 
FlyingHand: Extending the Range of Haptic Feedback on Virtual Hand Us-
ing Drone-Based Object Recognition. In SIGGRAPH Asia 2018 Technical Briefs 
(Tokyo, Japan) (SA ’18). Association for Computing Machinery, New York, NY, 
USA, Article 28, 4 pages. https://doi.org/10.1145/3283254.3283258 

[84] ✱ Tinglin Duan, Parinya Punpongsanon, Sheng Jia, Daisuke Iwai, Kosuke Sato, 
and Konstantinos N. Plataniotis. 2019. Remote Environment Exploration with 
Drone Agent and Haptic Force Feedback. In 2019 IEEE International Conference 
on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 167–1673. https://doi.org/10.1109/AIVR46125.2019.00034 

[85] John J. Dudley, Jason T. Jacques, and Per Ola Kristensson. 2019. Crowdsourcing 
Interface Feature Design with Bayesian Optimization. In Proceedings of the 2019 
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland 
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. 
https://doi.org/10.1145/3290605.3300482 

[86] ✱ Colm O Fearghail, Sebastian Knorr, and Aljosa Smolic. 2019. Analysis of 
Intended Viewing Area vs Estimated Saliency on Narrative Plot Structures in 
VR Film. In 2019 International Conference on 3D Immersion (IC3D), Vol. 1. IEEE, 
New York, NY, USA, 1–8. https://doi.org/10.1109/IC3D48390.2019.8975990 

https://doi.org/10.1109/TIP.2019.2921869
https://doi.org/10.1145/3414685.3417846
https://doi.org/10.1145/3491102.3501850
https://doi.org/10.1109/AIVR.2018.00030
https://doi.org/10.1109/TVCG.2021.3067689
https://doi.org/10.1109/ISMAR52148.2021.00033
https://doi.org/10.1109/ISMAR52148.2021.00033
https://doi.org/10.1145/3472749.3474750
https://doi.org/10.1007/s12652-020-02866-3
https://doi.org/10.1109/VR.2018.8446442
https://doi.org/10.1109/IISA.2019.8900767
https://doi.org/10.1109/VR50410.2021.00036
https://doi.org/10.1145/3411764.3445351
https://doi.org/10.1177/1054773819846024
https://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685
https://doi.org/10.1007/s10055-018-0338-3
https://doi.org/10.1007/s10055-018-0338-3
https://doi.org/10.1109/AIVR52153.2021.00023
https://doi.org/10.1145/3489849.3489853
https://doi.org/10.1016/j.ijhcs.2022.102920
https://doi.org/10.1016/j.ijhcs.2022.102920
https://doi.org/10.1109/AIVR46125.2019.00016
https://doi.org/10.1109/AIVR46125.2019.00016
https://doi.org/10.1109/ICASSP.2014.6853739
https://doi.org/10.1145/3313831.3376714
https://doi.org/10.1109/AIVR50618.2020.00012
https://doi.org/10.1007/s10055-018-0365-0
https://doi.org/10.1145/3130800.3130893
https://doi.org/10.1145/3456875
https://doi.org/10.1109/TVCG.2021.3115901
https://doi.org/10.1109/TVCG.2021.3115901
https://doi.org/10.1145/3283254.3283258
https://doi.org/10.1109/AIVR46125.2019.00034
https://doi.org/10.1145/3290605.3300482
https://doi.org/10.1109/IC3D48390.2019.8975990


CHI ’23, April 23–28, 2023, Hamburg, Germany 

[87] ✱ Tobias Feigl, Christopher Mutschler, and Michael Philippsen. 2018. Head-
to-Body-Pose Classifcation in No-Pose VR Tracking Systems. In 2018 IEEE 
Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 1–2. https://doi.org/10.1109/VR.2018.8446495 

[88] ✱ Tobias Feigl, Daniel Roth, Stefan Gradl, Markus Wirth, Marc Erich Latoschik, 
Bjoern M. Eskofer, Michael Philippsen, and Christopher Mutschler. 2019. Sick 
Moves! Motion Parameters as Indicators of Simulator Sickness. IEEE Transactions 
on Visualization and Computer Graphics 25, 11 (2019), 3146–3157. https://doi. 
org/10.1109/TVCG.2019.2932224 

[89] ✱ Benjamin Felbrich, Gwyllim Jahn, Cameron Newnham, and Achim Menges. 
2018. Self-Organizing Maps for Intuitive Gesture-Based Geometric Modelling in 
Augmented Reality. In 2018 IEEE International Conference on Artifcial Intelligence 
and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 61–67. https: 
//doi.org/10.1109/AIVR.2018.00016 

[90] ✱ Xianglong Feng, Zeyang Bao, and Sheng Wei. 2019. Exploring CNN-Based 
Viewport Prediction for Live Virtual Reality Streaming. In 2019 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 183–1833. https://doi.org/10.1109/AIVR46125.2019.00038 

[91] ✱ Xianglong Feng, Yao Liu, and Sheng Wei. 2020. LiveDeep: Online Viewport 
Prediction for Live Virtual Reality Streaming Using Lifelong Deep Learning. In 
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, 
New York, NY, USA, 800–808. https://doi.org/10.1109/VR46266.2020.00104 

[92] David B. Fogel. 2022. Defning Artifcial Intelligence. John Wiley & 
Sons, Ltd, -, Chapter 5, 91–120. https://doi.org/10.1002/9781119815075.ch7 
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119815075.ch7 

[93] ✱ Rita Francese, Maria Frasca, Michele Risi, and Genovefa Tortora. 2021. A mo-
bile augmented reality application for supporting real-time skin lesion analysis 
based on deep learning. Journal of Real-Time Image Processing 18, 4 (Aug. 2021), 
1247–1259. https://doi.org/10.1007/s11554-021-01109-8 

[94] ✱ Valerio Franchi and Evridiki Ntagiou. 2021. Augmentation of a Virtual Reality 
Environment Using Generative Adversarial Networks. In 2021 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 219–223. https://doi.org/10.1109/AIVR52153.2021.00050 

[95] ✱ Timothée Fréville, Charles Hamesse, Benoit Pairet, Rihab Lahouli, and Rob 
Haelterman. 2021. From Floor Plans to Virtual Reality. In 2021 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 129–133. https://doi.org/10.1109/AIVR52153.2021.00030 

[96] ✱ Eisuke Fujinawa, Shigeo Yoshida, Yuki Koyama, Takuji Narumi, Tomohiro 
Tanikawa, and Michitaka Hirose. 2017. Computational Design of Hand-Held 
VR Controllers Using Haptic Shape Illusion. In Proceedings of the 23rd ACM 
Symposium on Virtual Reality Software and Technology (Gothenburg, Sweden) 
(VRST ’17). Association for Computing Machinery, New York, NY, USA, Article 
28, 10 pages. https://doi.org/10.1145/3139131.3139160 

[97] ✱ Thomas L. Fuller and Amir Sadovnik. 2017. Image level color classifcation for 
colorblind assistance. In 2017 IEEE International Conference on Image Processing 
(ICIP), Vol. 1. IEEE, New York, NY, USA, 1985–1989. https://doi.org/10.1109/ 
ICIP.2017.8296629 

[98] ✱ Nisal Menuka Gamage, Deepana Ishtaweera, Martin Weigel, and Anusha 
Withana. 2021. So Predictable! Continuous 3D Hand Trajectory Prediction in 
Virtual Reality. In The 34th Annual ACM Symposium on User Interface Software 
and Technology (Virtual Event, USA) (UIST ’21). Association for Computing 
Machinery, New York, NY, USA, 332–343. https://doi.org/10.1145/3472749. 
3474753 

[99] Narayan H. Gandedkar, Matthew T. Wong, and M. Ali Darendeliler. 2021. Role 
of virtual reality (VR), augmented reality (AR) and artifcial intelligence (AI) 
in tertiary education and research of orthodontics: An insight. Seminars in 
Orthodontics 27, 2 (2021), 69–77. https://doi.org/10.1053/j.sodo.2021.05.003 

[100] ✱ Peizhong Gao, Keigo Matsumoto, Takuji Narumi, and Michitaka Hirose. 2020. 
Visual-Auditory Redirection: Multimodal Integration of Incongruent Visual and 
Auditory Cues for Redirected Walking. In 2020 IEEE International Symposium 
on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 
639–648. https://doi.org/10.1109/ISMAR50242.2020.00092 

[101] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano 
Gambaretto, Christian Gagné, and Jean-François Lalonde. 2017. Learning to 
Predict Indoor Illumination from a Single Image. CoRR abs/1704.00090 (2017), –. 
arXiv:1704.00090 http://arxiv.org/abs/1704.00090 

[102] ✱ Pu Ge, Junjun Pan, Fanghong Li, Weiyun Shi, and Hong Qin. 2019. Real-Time 
Tracking of Corneal Contour in Dalk Surgical Navigation Using Deep Neural 
Networks. In 2019 IEEE International Conference on Image Processing (ICIP), Vol. 1. 
IEEE, New York, NY, USA, 1356–1360. https://doi.org/10.1109/ICIP.2019.8803779 

[103] ✱ Christoph Gebhardt, Brian Hecox, Bas van Opheusden, Daniel Wigdor, James 
Hillis, Otmar Hilliges, and Hrvoje Benko. 2019. Learning Cooperative Per-
sonalized Policies from Gaze Data. In Proceedings of the 32nd Annual ACM 
Symposium on User Interface Software and Technology (New Orleans, LA, USA) 
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 197–208. 
https://doi.org/10.1145/3332165.3347933 

[104] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision 
meets robotics: The kitti dataset. The International Journal of Robotics Research 

Hirzle, et al. 

32, 11 (2013), 1231–1237. 
[105] ✱ Daniele Giunchi, Stuart James, and Anthony Steed. 2018. 3D Sketching for 

Interactive Model Retrieval in Virtual Reality. In Proceedings of the Joint Sym-
posium on Computational Aesthetics and Sketch-Based Interfaces and Modeling 
and Non-Photorealistic Animation and Rendering (Victoria, British Columbia, 
Canada) (Expressive ’18). Association for Computing Machinery, New York, NY, 
USA, Article 1, 12 pages. https://doi.org/10.1145/3229147.3229166 

[106] ✱ Gilzamir Gomes, Creto A. Vidal, Joaquim B. Cavalcante Neto, and Yuri L. B. 
Nogueira. 2019. An Emotional Virtual Character: A Deep Learning Approach 
with Reinforcement Learning. In 2019 21st Symposium on Virtual and Augmented 
Reality (SVR), Vol. 1. -, -, 223–231. https://doi.org/10.1109/SVR.2019.00047 

[107] ✱ Ester González-Sosa, Pablo Perez-Garcia, Diego Gonzalez-Morin, and Alvaro 
Villegas. 2021. Subjective Evaluation of Egocentric Human Segmentation for 
Mixed Reality. In 2021 IEEE International Conference on Artifcial Intelligence 
and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 232–236. https: 
//doi.org/10.1109/AIVR52153.2021.00053 

[108] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, 
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial 
Networks. Commun. ACM 63, 11 (oct 2020), 139–144. https://doi.org/10.1145/ 
3422622 

[109] ✱ Jeremy Rabof Gordon, Max T. Curran, John Chuang, and Coye Cheshire. 
2021. Covert Embodied Choice: Decision-Making and the Limits of Privacy 
Under Biometric Surveillance. In Proceedings of the 2021 CHI Conference on 
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association 
for Computing Machinery, New York, NY, USA, Article 551, 12 pages. https: 
//doi.org/10.1145/3411764.3445309 

[110] ✱ Lysa Gramoli, Jérémy Lacoche, Anthony Foulonneau, Valérie Gouranton, and 
Bruno Arnaldi. 2021. Needs Model for an Autonomous Agent during Long-
term Simulations. In 2021 IEEE International Conference on Artifcial Intelligence 
and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 134–138. https: 
//doi.org/10.1109/AIVR52153.2021.00031 

[111] Jan Gugenheimer, Christian Mai, Mark McGill, Julie Williamson, Frank Steinicke, 
and Ken Perlin. 2019. Challenges Using Head-Mounted Displays in Shared and 
Social Spaces. In Extended Abstracts of the 2019 CHI Conference on Human 
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association 
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/ 
3290607.3299028 

[112] Jan Gugenheimer, Wen-Jie Tseng, Abraham Hani Mhaidli, Jan Ole Rixen, Mark 
McGill, Michael Nebeling, Mohamed Khamis, Florian Schaub, and Sanchari Das. 
2022. Novel Challenges of Safety, Security and Privacy in Extended Reality. In 
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing 
Systems (New Orleans, LA, USA) (CHI EA ’22). Association for Computing 
Machinery, New York, NY, USA, Article 108, 5 pages. https://doi.org/10.1145/ 
3491101.3503741 

[113] ✱ Manuel Guimarães, Rui Prada, Pedro A. Santos, João Dias, Arnav Jhala, and 
Samuel Mascarenhas. 2020. The Impact of Virtual Reality in the Social Presence 
of a Virtual Agent. In Proceedings of the 20th ACM International Conference on 
Intelligent Virtual Agents (Virtual Event, Scotland, UK) (IVA ’20). Association 
for Computing Machinery, New York, NY, USA, Article 23, 8 pages. https: 
//doi.org/10.1145/3383652.3423879 

[114] ✱ Kunal Gupta, Ryo Hajika, Yun Suen Pai, Andreas Duenser, Martin Lochner, 
and Mark Billinghurst. 2019. In AI We Trust: Investigating the Relationship 
between Biosignals, Trust and Cognitive Load in VR. In 25th ACM Symposium 
on Virtual Reality Software and Technology (Parramatta, NSW, Australia) (VRST 
’19). Association for Computing Machinery, New York, NY, USA, Article 33, 
10 pages. https://doi.org/10.1145/3359996.3364276 

[115] ✱ Kunal Gupta, Ryo Hajika, Yun Suen Pai, Andreas Duenser, Martin Lochner, 
and Mark Billinghurst. 2020. Measuring Human Trust in a Virtual Assistant 
using Physiological Sensing in Virtual Reality. In 2020 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 756–765. 
https://doi.org/10.1109/VR46266.2020.00099 

[116] ✱ Feyza Merve Hafızoğlu and Sandip Sen. 2018. The Efects of Past Experience 
on Trust in Repeated Human-Agent Teamwork. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (Stockholm, 
Sweden) (AAMAS ’18). International Foundation for Autonomous Agents and 
Multiagent Systems, Richland, SC, 514–522. 

[117] ✱ Lei Han, Tian Zheng, Yinheng Zhu, Lan Xu, and Lu Fang. 2020. Live 
Semantic 3D Perception for Immersive Augmented Reality. IEEE Transac-
tions on Visualization and Computer Graphics 26, 5 (2020), 2012–2022. https: 
//doi.org/10.1109/TVCG.2020.2973477 

[118] ✱ Sara Hanson, Richard A. Paris, Haley A. Adams, and Bobby Bodenheimer. 2019. 
Improving Walking in Place Methods with Individualization and Deep Networks. 
In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. 
IEEE, New York, NY, USA, 367–376. https://doi.org/10.1109/VR.2019.8797751 

[119] Joanne Harmon, Victoria Pitt, Peter Summons, and Kerry J. Inder. 2021. Use of 
artifcial intelligence and virtual reality within clinical simulation for nursing 
pain education: A scoping review. Nurse Education Today 97 (2021), 104700. 
https://doi.org/10.1016/j.nedt.2020.104700 

https://doi.org/10.1109/VR.2018.8446495
https://doi.org/10.1109/TVCG.2019.2932224
https://doi.org/10.1109/TVCG.2019.2932224
https://doi.org/10.1109/AIVR.2018.00016
https://doi.org/10.1109/AIVR.2018.00016
https://doi.org/10.1109/AIVR46125.2019.00038
https://doi.org/10.1109/VR46266.2020.00104
https://doi.org/10.1002/9781119815075.ch7
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119815075.ch7
https://doi.org/10.1007/s11554-021-01109-8
https://doi.org/10.1109/AIVR52153.2021.00050
https://doi.org/10.1109/AIVR52153.2021.00030
https://doi.org/10.1145/3139131.3139160
https://doi.org/10.1109/ICIP.2017.8296629
https://doi.org/10.1109/ICIP.2017.8296629
https://doi.org/10.1145/3472749.3474753
https://doi.org/10.1145/3472749.3474753
https://doi.org/10.1053/j.sodo.2021.05.003
https://doi.org/10.1109/ISMAR50242.2020.00092
https://arxiv.org/abs/1704.00090
http://arxiv.org/abs/1704.00090
https://doi.org/10.1109/ICIP.2019.8803779
https://doi.org/10.1145/3332165.3347933
https://doi.org/10.1145/3229147.3229166
https://doi.org/10.1109/SVR.2019.00047
https://doi.org/10.1109/AIVR52153.2021.00053
https://doi.org/10.1109/AIVR52153.2021.00053
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3411764.3445309
https://doi.org/10.1145/3411764.3445309
https://doi.org/10.1109/AIVR52153.2021.00031
https://doi.org/10.1109/AIVR52153.2021.00031
https://doi.org/10.1145/3290607.3299028
https://doi.org/10.1145/3290607.3299028
https://doi.org/10.1145/3491101.3503741
https://doi.org/10.1145/3491101.3503741
https://doi.org/10.1145/3383652.3423879
https://doi.org/10.1145/3383652.3423879
https://doi.org/10.1145/3359996.3364276
https://doi.org/10.1109/VR46266.2020.00099
https://doi.org/10.1109/TVCG.2020.2973477
https://doi.org/10.1109/TVCG.2020.2973477
https://doi.org/10.1109/VR.2019.8797751
https://doi.org/10.1016/j.nedt.2020.104700


When XR and AI Meet - A Scoping Review on Extended Reality and Artificial Intelligence CHI ’23, April 23–28, 2023, Hamburg, Germany 

[120] ✱ Arno Hartholt, Ed Fast, Adam Reilly, Wendy Whitcup, Matt Liewer, and 
Sharon Mozgai. 2019. Ubiquitous Virtual Humans: A Multi-platform Framework 
for Embodied AI Agents in XR. In 2019 IEEE International Conference on Artifcial 
Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 308– 
3084. https://doi.org/10.1109/AIVR46125.2019.00072 

[121] ✱ Jeremy Hartmann, Aakar Gupta, and Daniel Vogel. 2020. Extend, Push, 
Pull: Smartphone Mediated Interaction in Spatial Augmented Reality via Intu-
itive Mode Switching. In Symposium on Spatial User Interaction (Virtual Event, 
Canada) (SUI ’20). Association for Computing Machinery, New York, NY, USA, 
Article 2, 10 pages. https://doi.org/10.1145/3385959.3418456 

[122] ✱ Yu He, Yingtian Liu, Yihan Jin, Song-Hai Zhang, Yu-Kun Lai, and Shi-Min Hu. 
2021. Context-Consistent Generation of Indoor Virtual Environments based 
on Geometry Constraints. IEEE Transactions on Visualization and Computer 
Graphics 1 (2021), 1–1. https://doi.org/10.1109/TVCG.2021.3111729 

[123] ✱ Lorenz Hetzel, John Dudley, Anna Maria Feit, and Per Ola Kristensson. 2021. 
Complex Interaction as Emergent Behaviour: Simulating Mid-Air Virtual Key-
board Typing using Reinforcement Learning. IEEE Transactions on Visualization 
and Computer Graphics 27, 11 (2021), 4140–4149. https://doi.org/10.1109/TVCG. 
2021.3106494 

[124] ✱ Joris Heyse, Maria Torres Vega, Femke de Backere, and Filip de Turck. 2019. 
Contextual Bandit Learning-Based Viewport Prediction for 360 Video. In 2019 
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New 
York, NY, USA, 972–973. https://doi.org/10.1109/VR.2019.8797830 

[125] ✱ Clarice Hilton, Nicola Plant, Carlos González Díaz, Phoenix Perry, Ruth Gib-
son, Bruno Martelli, Michael Zbyszynski, Rebecca Fiebrink, and Marco Gillies. 
2021. InteractML: Making Machine Learning Accessible for Creative Practition-
ers Working with Movement Interaction in Immersive Media. In Proceedings of 
the 27th ACM Symposium on Virtual Reality Software and Technology (Osaka, 
Japan) (VRST ’21). Association for Computing Machinery, New York, NY, USA, 
Article 23, 10 pages. https://doi.org/10.1145/3489849.3489879 

[126] ✱ Koki Hirota and Takashi Komuro. 2019. Situation-Adaptive Object Grasping 
Recognition in VR Environment. In 2019 IEEE International Conference on Arti-
fcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 
171–1713. https://doi.org/10.1109/AIVR46125.2019.00035 

[127] ✱ Simon M. Hofmann, Felix Klotzsche, Alberto Mariola, Vadim V. Nikulin, Arno 
Villringer, and Michael Gaebler. 2018. Decoding Subjective Emotional Arousal 
during a Naturalistic VR Experience from EEG Using LSTMs. In 2018 IEEE 
International Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. 
IEEE, New York, NY, USA, 128–131. https://doi.org/10.1109/AIVR.2018.00026 

[128] ✱ Valentin Holzwarth, Johannes Schneider, Joshua Handali, Joy Gisler, Christian 
Hirt, Andreas Kunz, and Jan vom Brocke. 2021. Towards estimating afective 
states in Virtual Reality based on behavioral data. Virtual Reality 25, 4 (Dec. 
2021), 1139–1152. https://doi.org/10.1007/s10055-021-00518-1 

[129] ✱ Matthias Hoppe, Beat Rossmy, Daniel Peter Neumann, Stephan Streuber, 
Albrecht Schmidt, and Tonja-Katrin Machulla. 2020. A Human Touch: Social 
Touch Increases the Perceived Human-Likeness of Agents in Virtual Reality. In 
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 
(Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, 
NY, USA, 1–11. https://doi.org/10.1145/3313831.3376719 

[130] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Chris-
tian Igel. 2013. Detection of Trafc Signs in Real-World Images: The German 
Trafc Sign Detection Benchmark. In International Joint Conference on Neural 
Networks. -, -. 

[131] ✱ Kai-Wen Hsiao, Jheng-Wei Su, Yu-Chih Hung, Kuo-Wei Chen, Chih-Yuan 
Yao, and Hung-Kuo Chu. 2021. A Large-Scale Indoor Layout Reconstruction 
and Localization System for Spatial-Aware Mobile AR Applications. In 2021 
IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 237–241. https://doi.org/10.1109/AIVR52153. 
2021.00054 

[132] ✱ Ping Hu, Qi Sun, Piotr Didyk, Li-Yi Wei, and Arie E. Kaufman. 2019. Reducing 
Simulator Sickness with Perceptual Camera Control. ACM Trans. Graph. 38, 6, 
Article 210 (nov 2019), 12 pages. https://doi.org/10.1145/3355089.3356490 

[133] ✱ Zhiming Hu, Andreas Bulling, Sheng Li, and Guoping Wang. 2021. EHTask: 
Recognizing User Tasks from Eye and Head Movements in Immersive Virtual 
Reality. IEEE Transactions on Visualization and Computer Graphics 1 (2021), 1–1. 
https://doi.org/10.1109/TVCG.2021.3138902 

[134] ✱ Zhiming Hu, Andreas Bulling, Sheng Li, and Guoping Wang. 2021. Fixation-
Net: Forecasting Eye Fixations in Task-Oriented Virtual Environments. IEEE 
Transactions on Visualization and Computer Graphics 27, 5 (2021), 2681–2690. 
https://doi.org/10.1109/TVCG.2021.3067779 

[135] ✱ Zhiming Hu, Sheng Li, Congyi Zhang, Kangrui Yi, Guoping Wang, and Dinesh 
Manocha. 2020. DGaze: CNN-Based Gaze Prediction in Dynamic Scenes. IEEE 
Transactions on Visualization and Computer Graphics 26, 5 (2020), 1902–1911. 
https://doi.org/10.1109/TVCG.2020.2973473 

[136] ✱ Zhiming Hu, Congyi Zhang, Sheng Li, Guoping Wang, and Dinesh Manocha. 
2019. SGaze: A Data-Driven Eye-Head Coordination Model for Realtime Gaze 
Prediction. IEEE Transactions on Visualization and Computer Graphics 25, 5 
(2019), 2002–2010. https://doi.org/10.1109/TVCG.2019.2899187 

[137] ✱ Bingyao Huang and Haibin Ling. 2021. DeProCams: Simultaneous Relighting, 
Compensation and Shape Reconstruction for Projector-Camera Systems. IEEE 
Transactions on Visualization and Computer Graphics 27, 5 (2021), 2725–2735. 
https://doi.org/10.1109/TVCG.2021.3067771 

[138] ✱ Tobias Huber, Silvan Mertes, Stanislava Rangelova, Simon Flutura, and Elisa-
beth André. 2021. Dynamic Difculty Adjustment in Virtual Reality Exergames 
through Experience-driven Procedural Content Generation. In 2021 IEEE Sym-
posium Series on Computational Intelligence (SSCI), Vol. 1. IEEE, New York, NY, 
USA, 1–8. https://doi.org/10.1109/SSCI50451.2021.9660086 

[139] ✱ Brandon Huynh, Adam Ibrahim, Yun Suk Chang, Tobias Höllerer, and John 
O’Donovan. 2018. A Study of Situated Product Recommendations in Augmented 
Reality. In 2018 IEEE International Conference on Artifcial Intelligence and Virtual 
Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 35–43. https://doi.org/10.1109/ 
AIVR.2018.00013 

[140] ✱ Brandon Huynh, Jason Orlosky, and Tobias Höllerer. 2019. In-Situ Labeling 
for Augmented Reality Language Learning. In 2019 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 1606–1611. 
https://doi.org/10.1109/VR.2019.8798358 

[141] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2014. 
Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sens-
ing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 36, 7 (jul 2014), 1325–1339. 

[142] ✱ Rifatul Islam, Kevin Desai, and John Quarles. 2021. Cybersickness Prediction 
from Integrated HMD’s Sensors: A Multimodal Deep Fusion Approach using 
Eye-tracking and Head-tracking Data. In 2021 IEEE International Symposium on 
Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 31–40. 
https://doi.org/10.1109/ISMAR52148.2021.00017 

[143] ✱ Rifatul Islam, Yonggun Lee, Mehrad Jaloli, Imtiaz Muhammad, Dakai Zhu, Paul 
Rad, Yufei Huang, and John Quarles. 2020. Automatic Detection and Prediction of 
Cybersickness Severity using Deep Neural Networks from user’s Physiological 
Signals. In 2020 IEEE International Symposium on Mixed and Augmented Reality 
(ISMAR), Vol. 1. IEEE, New York, NY, USA, 400–411. https://doi.org/10.1109/ 
ISMAR50242.2020.00066 

[144] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2016. Image-to-
Image Translation with Conditional Adversarial Networks. CoRR abs/1611.07004 
(2016), –. arXiv:1611.07004 http://arxiv.org/abs/1611.07004 

[145] ✱ Juan Izquierdo-Domenech, Jordi Linares-Pellicer, and Jorge Orta-Lopez. 2020. 
Supporting interaction in augmented reality assisted industrial processes using 
a CNN-based semantic layer. In 2020 IEEE International Conference on Artifcial 
Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 27–32. 
https://doi.org/10.1109/AIVR50618.2020.00014 

[146] ✱ Daekyo Jeong, Sangbong Yoo, and Jang Yun. 2019. Cybersickness Analysis 
with EEG Using Deep Learning Algorithms. In 2019 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 827–835. 
https://doi.org/10.1109/VR.2019.8798334 

[147] ✱ Jianqing Jia, Semir Elezovikj, Heng Fan, Shuojin Yang, Jing Liu, Wei Guo, 
Chiu C. Tan, and Haibin Ling. 2021. Semantic-aware label placement for aug-
mented reality in street view. The Visual Computer 37, 7 (July 2021), 1805–1819. 
https://doi.org/10.1007/s00371-020-01939-w 

[148] ✱ Xianta Jiang, Zhen Gang Xiao, and Carlo Menon. 2018. Virtual grasps recog-
nition using fusion of Leap Motion and force myography. Virtual Reality 22, 4 
(Nov. 2018), 297–308. https://doi.org/10.1007/s10055-018-0339-2 

[149] Yue Jiang, Yuwen Lu, Jefrey Nichols, Wolfgang Stuerzlinger, Chun Yu, Christof 
Lutteroth, Yang Li, Ranjitha Kumar, and Toby Jia-Jun Li. 2022. Computational 
Approaches for Understanding, Generating, and Adapting User Interfaces. In 
Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing 
Systems (New Orleans, LA, USA) (CHI EA ’22). Association for Computing 
Machinery, New York, NY, USA, Article 74, 6 pages. https://doi.org/10.1145/ 
3491101.3504030 

[150] ✱ Brendan John, Pallavi Raiturkar, Arunava Banerjee, and Eakta Jain. 2018. An 
Evaluation of Pupillary Light Response Models for 2D Screens and VR HMDs. 
In Proceedings of the 24th ACM Symposium on Virtual Reality Software and 
Technology (Tokyo, Japan) (VRST ’18). Association for Computing Machinery, 
New York, NY, USA, Article 19, 11 pages. https://doi.org/10.1145/3281505. 
3281538 

[151] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, 
Timothy Scott Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei 
Nobuhara, and Yaser Sheikh. 2017. Panoptic Studio: A Massively Multiview 
System for Social Interaction Capture. IEEE Transactions on Pattern Analysis 
and Machine Intelligence 1 (2017), - pages. 

[152] ✱ Jinki Jung, Hyeopwoo Lee, Jeehye Choi, Abhilasha Nanda, Uwe Gruenefeld, 
Tim Stratmann, and Wilko Heuten. 2018. Ensuring Safety in Augmented Reality 
from Trade-of Between Immersion and Situation Awareness. In 2018 IEEE 
International Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, 
New York, NY, USA, 70–79. https://doi.org/10.1109/ISMAR.2018.00032 

[153] ✱ Raehyuk Jung, Aiden Seung Joon Lee, Amirsaman Ashtari, and Jean-Charles 
Bazin. 2019. Deep360Up: A Deep Learning-Based Approach for Automatic VR 
Image Upright Adjustment. In 2019 IEEE Conference on Virtual Reality and 3D 

https://doi.org/10.1109/AIVR46125.2019.00072
https://doi.org/10.1145/3385959.3418456
https://doi.org/10.1109/TVCG.2021.3111729
https://doi.org/10.1109/TVCG.2021.3106494
https://doi.org/10.1109/TVCG.2021.3106494
https://doi.org/10.1109/VR.2019.8797830
https://doi.org/10.1145/3489849.3489879
https://doi.org/10.1109/AIVR46125.2019.00035
https://doi.org/10.1109/AIVR.2018.00026
https://doi.org/10.1007/s10055-021-00518-1
https://doi.org/10.1145/3313831.3376719
https://doi.org/10.1109/AIVR52153.2021.00054
https://doi.org/10.1109/AIVR52153.2021.00054
https://doi.org/10.1145/3355089.3356490
https://doi.org/10.1109/TVCG.2021.3138902
https://doi.org/10.1109/TVCG.2021.3067779
https://doi.org/10.1109/TVCG.2020.2973473
https://doi.org/10.1109/TVCG.2019.2899187
https://doi.org/10.1109/TVCG.2021.3067771
https://doi.org/10.1109/SSCI50451.2021.9660086
https://doi.org/10.1109/AIVR.2018.00013
https://doi.org/10.1109/AIVR.2018.00013
https://doi.org/10.1109/VR.2019.8798358
https://doi.org/10.1109/ISMAR52148.2021.00017
https://doi.org/10.1109/ISMAR50242.2020.00066
https://doi.org/10.1109/ISMAR50242.2020.00066
https://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://doi.org/10.1109/AIVR50618.2020.00014
https://doi.org/10.1109/VR.2019.8798334
https://doi.org/10.1007/s00371-020-01939-w
https://doi.org/10.1007/s10055-018-0339-2
https://doi.org/10.1145/3491101.3504030
https://doi.org/10.1145/3491101.3504030
https://doi.org/10.1145/3281505.3281538
https://doi.org/10.1145/3281505.3281538
https://doi.org/10.1109/ISMAR.2018.00032
https://Human3.6M


CHI ’23, April 23–28, 2023, Hamburg, Germany 

User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 1–8. https://doi.org/10. 
1109/VR.2019.8798326 

[154] ✱ Apostolos Kalatzis, Laura Stanley, and Vishnunarayan Girishan Prabhu. 2021. 
Afective State Classifcation in Virtual Reality Environments Using Electro-
cardiogram and Respiration Signals. In 2021 IEEE International Conference on 
Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 160–167. https://doi.org/10.1109/AIVR52153.2021.00037 

[155] ✱ Seokbin Kang, Ekta Shokeen, Virginia L. Byrne, Leyla Norooz, Elizabeth 
Bonsignore, Caro Williams-Pierce, and Jon E. Froehlich. 2020. ARMath: Aug-
menting Everyday Life with Math Learning. In Proceedings of the 2020 CHI 
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) 
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–15. 
https://doi.org/10.1145/3313831.3376252 

[156] ✱ Yuna Kano and Junya Morita. 2020. The Efect of Experience and Embod-
iment on Empathetic Behavior toward Virtual Agents. In Proceedings of the 
8th International Conference on Human-Agent Interaction (Virtual Event, USA) 
(HAI ’20). Association for Computing Machinery, New York, NY, USA, 112–120. 
https://doi.org/10.1145/3406499.3415074 

[157] ✱ Tamás Karácsony, John Paulin Hansen, Helle Klingenberg Iversen, and Sada-
sivan Puthusserypady. 2019. Brain Computer Interface for Neuro-Rehabilitation 
With Deep Learning Classifcation and Virtual Reality Feedback. In Proceedings 
of the 10th Augmented Human International Conference 2019 (Reims, France) 
(AH2019). Association for Computing Machinery, New York, NY, USA, Article 
22, 8 pages. https://doi.org/10.1145/3311823.3311864 

[158] ✱ Pinachuan Ke and Kenina Zhu. 2021. Larger Step Faster Speed: Investigating 
Gesture-Amplitude-based Locomotion in Place with Diferent Virtual Walking 
Speed in Virtual Reality. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), 
Vol. 1. IEEE, New York, NY, USA, 438–447. https://doi.org/10.1109/VR50410. 
2021.00067 

[159] Hanan Khalil, Micah Peters, Christina M. Godfrey, Patricia McInerney, Cas-
sia Baldini Soares, and Deborah Parker. 2016. An Evidence-Based Approach to 
Scoping Reviews. Worldviews on Evidence-Based Nursing 13, 2 (2016), 118–123. 
https://doi.org/10.1111/wvn.12144 

[160] ✱ Adil Khokhar, Andrew Yoshimura, and Christoph W. Borst. 2019. Pedagogical 
Agent Responsive to Eye Tracking in Educational VR. In 2019 IEEE Conference 
on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 
1018–1019. https://doi.org/10.1109/VR.2019.8797896 

[161] ✱ Hansung Kim, Luca Remaggi, Aloisio Dourado, Teoflo de Campos, Philip J. B. 
Jackson, and Adrian Hilton. 2022. Immersive audio-visual scene reproduction 
using semantic scene reconstruction from 360 cameras. Virtual Reality 26, 3 
(Sept. 2022), 823–838. https://doi.org/10.1007/s10055-021-00594-3 

[162] ✱ Hansung Kim, Luca Remaggi, Philip J.B. Jackson, and Adrian Hilton. 2019. 
Immersive Spatial Audio Reproduction for VR/AR Using Room Acoustic Mod-
elling from 360° Images. In 2019 IEEE Conference on Virtual Reality and 3D User 
Interfaces (VR). IEEE, New York, NY, USA, 120–126. https://doi.org/10.1109/VR. 
2019.8798247 

[163] ✱ Hak Gu Kim, Wissam J. Baddar, Heoun-taek Lim, Hyunwook Jeong, and 
Yong Man Ro. 2017. Measurement of Exceptional Motion in VR Video Contents 
for VR Sickness Assessment Using Deep Convolutional Autoencoder. In Pro-
ceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology 
(Gothenburg, Sweden) (VRST ’17). Association for Computing Machinery, New 
York, NY, USA, Article 36, 7 pages. https://doi.org/10.1145/3139131.3139137 

[164] ✱ Hak Gu Kim, Heoun-Taek Lim, Sangmin Lee, and Yong Man Ro. 2019. VRSA 
Net: VR Sickness Assessment Considering Exceptional Motion for 360° VR 
Video. IEEE Transactions on Image Processing 28, 4 (2019), 1646–1660. https: 
//doi.org/10.1109/TIP.2018.2880509 

[165] ✱ Jinwoo Kim, Woojae Kim, Heeseok Oh, Seongmin Lee, and Sanghoon Lee. 
2019. A Deep Cybersickness Predictor Based on Brain Signal Analysis for Virtual 
Reality Contents. In 2019 IEEE/CVF International Conference on Computer Vision 
(ICCV), Vol. 1. IEEE, New York, NY, USA, 10579–10588. https://doi.org/10.1109/ 
ICCV.2019.01068 

[166] ✱ Jinwoo Kim, Heeseok Oh, Woojae Kim, Seonghwa Choi, Wookho Son, and 
Sanghoon Lee. 2022. A Deep Motion Sickness Predictor Induced by Visual 
Stimuli in Virtual Reality. IEEE Transactions on Neural Networks and Learning 
Systems 33, 2 (2022), 554–566. https://doi.org/10.1109/TNNLS.2020.3028080 

[167] ✱ Kangsoo Kim, Luke Boelling, Stefen Haesler, Jeremy Bailenson, Gerd Bruder, 
and Greg F. Welch. 2018. Does a Digital Assistant Need a Body? The Infuence 
of Visual Embodiment and Social Behavior on the Perception of Intelligent 
Virtual Agents in AR. In 2018 IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 105–114. https: 
//doi.org/10.1109/ISMAR.2018.00039 

[168] ✱ Kihyun Kim, Sangmin Lee, Hak GU Kim, Minho Park, and Yong Man Ro. 
2019. Deep Objective Assessment Model Based on Spatio-Temporal Perception 
of 360-Degree Video for VR Sickness Prediction. In 2019 IEEE International 
Conference on Image Processing (ICIP), Vol. 1. IEEE, New York, NY, USA, 3192– 
3196. https://doi.org/10.1109/ICIP.2019.8803257 

[169] ✱ Kangsoo Kim, Nahal Norouzi, Tifany Losekamp, Gerd Bruder, Mindi Ander-
son, and Gregory Welch. 2019. Efects of Patient Care Assistant Embodiment 

Hirzle, et al. 

and Computer Mediation on User Experience. In 2019 IEEE International Confer-
ence on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, 
NY, USA, 17–177. https://doi.org/10.1109/AIVR46125.2019.00013 

[170] ✱ Seongyeop Kim, Sangmin Lee, and Yong Man Ro. 2020. Estimating VR 
Sickness Caused By Camera Shake in VR Videography. In 2020 IEEE International 
Conference on Image Processing (ICIP), Vol. 1. IEEE, New York, NY, USA, 3433– 
3437. https://doi.org/10.1109/ICIP40778.2020.9190721 

[171] ✱ Woojae Kim, Sanghoon Lee, and Alan Conrad Bovik. 2021. VR Sickness 
Versus VR Presence: A Statistical Prediction Model. IEEE Transactions on Image 
Processing 30 (2021), 559–571. https://doi.org/10.1109/TIP.2020.3036782 

[172] Hak Gu Kim, Heoun-Taek Lim, Sangmin Lee, and Yong Man Ro. 2019. VRSA 
Net: VR Sickness Assessment Considering Exceptional Motion for 360° VR 
Video. IEEE Transactions on Image Processing 28, 4 (2019), 1646–1660. https: 
//doi.org/10.1109/TIP.2018.2880509 

[173] Kangsoo Kim, Mark Billinghurst, Gerd Bruder, Henry Been-Lirn Duh, and 
Gregory F. Welch. 2018. Revisiting Trends in Augmented Reality Research: 
A Review of the 2nd Decade of ISMAR (2008–2017). IEEE Transactions on 
Visualization and Computer Graphics 24, 11 (2018), 2947–2962. https://doi.org/ 
10.1109/TVCG.2018.2868591 

[174] ✱ Naoki Kimura and Jun Rekimoto. 2018. ExtVision: Augmentation of Visual 
Experiences with Generation of Context Images for a Peripheral Vision Using 
Deep Neural Network. In Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association 
for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/ 
3173574.3174001 

[175] ✱ F. Klotzsche, A. Mariola, S. Hofmann, V. V. Nikulin, A. Villringer, and M. 
Gaebler. 2018. Using EEG to Decode Subjective Levels of Emotional Arousal 
During an Immersive VR Roller Coaster Ride. In 2018 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 605–606. 
https://doi.org/10.1109/VR.2018.8446275 

[176] ✱ Benjamin Knopp, Dmytro Velychko, Johannes Dreibrodt, Alexander C. 
Schütz, and Dominik Endres. 2020. Evaluating Perceptual Predictions Based 
on Movement Primitive Models in VR- and Online-Experiments. In ACM 
Symposium on Applied Perception 2020 (Virtual Event, USA) (SAP ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 1, 9 pages. 
https://doi.org/10.1145/3385955.3407940 

[177] Sebastian Knorr, Cagri Ozcinar, Colm O Fearghail, and Aljosa Smolic. 2018. 
Director’s Cut - A Combined Dataset for Visual Attention Analysis in Cinematic 
VR Content. In The 15th ACM SIGGRAPH European Conference on Visual Media 
Production. ACM, New York, NY, USA, –. 

[178] ✱ Brooke Krajancich, Petr Kellnhofer, and Gordon Wetzstein. 2021. A Percep-
tual Model for Eccentricity-Dependent Spatio-Temporal Flicker Fusion and Its 
Applications to Foveated Graphics. ACM Trans. Graph. 40, 4, Article 47 (jul 
2021), 11 pages. https://doi.org/10.1145/3450626.3459784 

[179] ✱ Po-Chen Kuo, Li-Chung Chuang, Dong-Yi Lin, and Ming-Sui Lee. 2021. VR 
Sickness Assessment with Perception Prior and Hybrid Temporal Features. In 
2020 25th International Conference on Pattern Recognition (ICPR), Vol. 1. IEEE, New 
York, NY, USA, 5558–5564. https://doi.org/10.1109/ICPR48806.2021.9412423 

[180] ✱ Peter Kán and Hannes Kafumann. 2019. DeepLight: light source estimation 
for augmented reality using deep learning. The Visual Computer 35, 6 (June 
2019), 873–883. https://doi.org/10.1007/s00371-019-01666-x 

[181] ✱ Philipp Ladwig, Alexander Pech, Ralf Dörner, and Christian Geiger. 2020. 
Unmasking Communication Partners: A Low-Cost AI Solution for Digitally 
Removing Head-Mounted Displays in VR-Based Telepresence. In 2020 IEEE 
International Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. 
IEEE, New York, NY, USA, 82–90. https://doi.org/10.1109/AIVR50618.2020.00025 

[182] ✱ Po Kong Lai, Shuang Xie, Jochen Lang, and Robert Laganière. 2019. Real-
Time Panoramic Depth Maps from Omni-directional Stereo Images for 6 DoF 
Videos in Virtual Reality. In 2019 IEEE Conference on Virtual Reality and 3D User 
Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 405–412. https://doi.org/10. 
1109/VR.2019.8798016 

[183] ✱ Divesh Lala and Toyoaki Nishida. 2015. A data-driven passing interaction 
model for embodied basketball agents. Journal of Intelligent Information Systems 
48 (2015), 27–60. 

[184] ✱ Puneet Lall, Silviu Borac, Dave Richardson, Matt Pharr, and Manfred Ernst. 
2018. View-Region Optimized Image-Based Scene Simplifcation. Proc. ACM 
Comput. Graph. Interact. Tech. 1, 2, Article 26 (aug 2018), 22 pages. https: 
//doi.org/10.1145/3233311 

[185] ✱ Maurice Lamb, Tamara Lorenz, Stephen J. Harrison, Rachel Kallen, Ali Minai, 
and Michael J. Richardson. 2017. PAPAc: A Pick and Place Agent Based on 
Human Behavioral Dynamics. In Proceedings of the 5th International Conference 
on Human Agent Interaction (Bielefeld, Germany) (HAI ’17). Association for 
Computing Machinery, New York, NY, USA, 131–141. https://doi.org/10.1145/ 
3125739.3125771 

[186] Georgios Lampropoulos, Euclid Keramopoulos, and Konstantinos Diamantaras. 
2020. Enhancing the functionality of augmented reality using deep learning, 
semantic web and knowledge graphs: A review. Visual Informatics 4, 1 (2020), 
32–42. https://doi.org/10.1016/j.visinf.2020.01.001 

https://doi.org/10.1109/VR.2019.8798326
https://doi.org/10.1109/VR.2019.8798326
https://doi.org/10.1109/AIVR52153.2021.00037
https://doi.org/10.1145/3313831.3376252
https://doi.org/10.1145/3406499.3415074
https://doi.org/10.1145/3311823.3311864
https://doi.org/10.1109/VR50410.2021.00067
https://doi.org/10.1109/VR50410.2021.00067
https://doi.org/10.1111/wvn.12144
https://doi.org/10.1109/VR.2019.8797896
https://doi.org/10.1007/s10055-021-00594-3
https://doi.org/10.1109/VR.2019.8798247
https://doi.org/10.1109/VR.2019.8798247
https://doi.org/10.1145/3139131.3139137
https://doi.org/10.1109/TIP.2018.2880509
https://doi.org/10.1109/TIP.2018.2880509
https://doi.org/10.1109/ICCV.2019.01068
https://doi.org/10.1109/ICCV.2019.01068
https://doi.org/10.1109/TNNLS.2020.3028080
https://doi.org/10.1109/ISMAR.2018.00039
https://doi.org/10.1109/ISMAR.2018.00039
https://doi.org/10.1109/ICIP.2019.8803257
https://doi.org/10.1109/AIVR46125.2019.00013
https://doi.org/10.1109/ICIP40778.2020.9190721
https://doi.org/10.1109/TIP.2020.3036782
https://doi.org/10.1109/TIP.2018.2880509
https://doi.org/10.1109/TIP.2018.2880509
https://doi.org/10.1109/TVCG.2018.2868591
https://doi.org/10.1109/TVCG.2018.2868591
https://doi.org/10.1145/3173574.3174001
https://doi.org/10.1145/3173574.3174001
https://doi.org/10.1109/VR.2018.8446275
https://doi.org/10.1145/3385955.3407940
https://doi.org/10.1145/3450626.3459784
https://doi.org/10.1109/ICPR48806.2021.9412423
https://doi.org/10.1007/s00371-019-01666-x
https://doi.org/10.1109/AIVR50618.2020.00025
https://doi.org/10.1109/VR.2019.8798016
https://doi.org/10.1109/VR.2019.8798016
https://doi.org/10.1145/3233311
https://doi.org/10.1145/3233311
https://doi.org/10.1145/3125739.3125771
https://doi.org/10.1145/3125739.3125771
https://doi.org/10.1016/j.visinf.2020.01.001


When XR and AI Meet - A Scoping Review on Extended Reality and Artificial Intelligence 

[187] ✱ Yining Lang, Wei Liang, and Lap-Fai Yu. 2019. Virtual Agent Positioning 
Driven by Scene Semantics in Mixed Reality. In 2019 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 767–775. 
https://doi.org/10.1109/VR.2019.8798018 

[188] ✱ Marc Erich Latoschik, Florian Kern, Jan-Philipp Staufert, Andrea Bartl, Mario 
Botsch, and Jean-Luc Lugrin. 2019. Not Alone Here?! Scalability and User 
Experience of Embodied Ambient Crowds in Distributed Social Virtual Reality. 
IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 2134– 
2144. https://doi.org/10.1109/TVCG.2019.2899250 

[189] Marc Erich Latoschik, Daniel Roth, Dominik Gall, Jascha Achenbach, Thomas 
Waltemate, and Mario Botsch. 2017. The Efect of Avatar Realism in Immersive 
Social Virtual Realities. In Proceedings of the 23rd ACM Symposium on Virtual 
Reality Software and Technology (Gothenburg, Sweden) (VRST ’17). Association 
for Computing Machinery, New York, NY, USA, Article 39, 10 pages. https: 
//doi.org/10.1145/3139131.3139156 

[190] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, 
Chou P Hung, and Brent J Lance. 2018. EEGNet: a compact convolutional 
neural network for EEG-based brain–computer interfaces. Journal of Neural 
Engineering 15, 5 (2018), 056013. http://stacks.iop.org/1741-2552/15/i=5/a= 
056013 

[191] ✱ Dong-Yong Lee, Yong-Hun Cho, and In-Kwon Lee. 2019. Real-time Optimal 
Planning for Redirected Walking Using Deep Q-Learning. In 2019 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, 
USA, 63–71. https://doi.org/10.1109/VR.2019.8798121 

[192] ✱ Dong-Yong Lee, Yong-Hun Cho, Dae-Hong Min, and In-Kwon Lee. 2020. 
Optimal Planning for Redirected Walking Based on Reinforcement Learning in 
Multi-user Environment with Irregularly Shaped Physical Space. In 2020 IEEE 
Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 155–163. https://doi.org/10.1109/VR46266.2020.00034 

[193] ✱ Juyoung Lee, Myungho Lee, Gerard Jounghyun Kim, and Jae-In Hwang. 2020. 
Efects of Synchronized Leg Motion in Walk-in-Place Utilizing Deep Neural 
Networks for Enhanced Body Ownership and Sense of Presence in VR. In 26th 
ACM Symposium on Virtual Reality Software and Technology (Virtual Event, 
Canada) (VRST ’20). Association for Computing Machinery, New York, NY, USA, 
Article 12, 10 pages. https://doi.org/10.1145/3385956.3418959 

[194] ✱ Sangmin Lee, Seongyeop Kim, Hak Gu Kim, Min Seob Kim, Seokho Yun, 
Bumseok Jeong, and Yong Man Ro. 2019. Physiological Fusion Net: Quantifying 
Individual VR Sickness with Content Stimulus and Physiological Response. In 
2019 IEEE International Conference on Image Processing (ICIP), Vol. 1. IEEE, New 
York, NY, USA, 440–444. https://doi.org/10.1109/ICIP.2019.8802983 

[195] ✱ Tae Min Lee, Jong-Chul Yoon, and In-Kwon Lee. 2019. Motion Sickness 
Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks. 
IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 1919– 
1927. https://doi.org/10.1109/TVCG.2019.2899186 

[196] ✱ Teesid Leelasawassuk, Dima Damen, and Walterio Mayol-Cuevas. 2017. 
Automated Capture and Delivery of Assistive Task Guidance with an Eye-
wear Computer: The GlaciAR System. In Proceedings of the 8th Augmented 
Human International Conference (Silicon Valley, California, USA) (AH ’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 16, 9 pages. 
https://doi.org/10.1145/3041164.3041185 

[197] Danielle Levac, Heather Colquhoun, and Kelly K. O’Brien. 2010. Scoping studies: 
advancing the methodology. Implementation Science 5, 1 (Sept. 2010), 69. https: 
//doi.org/10.1186/1748-5908-5-69 

[198] ✱ Gang Li and Muhammad Adeel Khan. 2019. Deep Learning on VR-Induced 
Attention. In 2019 IEEE International Conference on Artifcial Intelligence and 
Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 163–1633. https: 
//doi.org/10.1109/AIVR46125.2019.00033 

[199] ✱ Gang Li, Ogechi Onuoha, Mark McGill, Stephen Brewster, Chao Ping Chen, 
and Frank Pollick. 2021. Comparing Autonomic Physiological and Electroen-
cephalography Features for VR Sickness Detection Using Predictive Models. In 
2021 IEEE Symposium Series on Computational Intelligence (SSCI), Vol. 1. IEEE, 
New York, NY, USA, 01–08. https://doi.org/10.1109/SSCI50451.2021.9660126 

[200] ✱ Jisheng Li, Yuze He, Yubin Hu, Yuxing Han, and Jiangtao Wen. 2021. Learning 
To Compose 6-DOF Omnidirectional Videos Using Multi-Sphere Images. In 2021 
IEEE International Conference on Image Processing (ICIP), Vol. 1. IEEE, New York, 
NY, USA, 3298–3302. https://doi.org/10.1109/ICIP42928.2021.9506127 

[201] ✱ Xiangdong Li, Yifei Shan, Wenqian Chen, Yue Wu, Praben Hansen, and 
Simon Perrault. 2021. Predicting User Visual Attention in Virtual Reality with 
a Deep Learning Model. Virtual Real. 25, 4 (dec 2021), 1123–1136. https: 
//doi.org/10.1007/s10055-021-00512-7 

[202] ✱ Xiang Li, Yuan Tian, Fuyao Zhang, Shuxue Quan, and Yi Xu. 2020. Object 
Detection in the Context of Mobile Augmented Reality. In 2020 IEEE International 
Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, 
NY, USA, 156–163. https://doi.org/10.1109/ISMAR50242.2020.00037 

[203] ✱ Yuwei Li, Xi Luo, Youyi Zheng, Pengfei Xu, and Hongbo Fu. 2017. Sweep-
Canvas: Sketch-Based 3D Prototyping on an RGB-D Image. In Proceedings of the 
30th Annual ACM Symposium on User Interface Software and Technology (Québec 
City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York, 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

NY, USA, 387–399. https://doi.org/10.1145/3126594.3126611 
[204] ✱ Yi-Jun Li, Miao Wang, Frank Steinicke, and Qinping Zhao. 2021. OpenRDW: 

A Redirected Walking Library and Benchmark with Multi-User, Learning-based 
Functionalities and State-of-the-art Algorithms. In 2021 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, 
USA, 21–30. https://doi.org/10.1109/ISMAR52148.2021.00016 

[205] ✱ Zhong Li, Lele Chen, Celong Liu, Yu Gao, Yuanzhou Ha, Chenliang Xu, 
Shuxue Quan, and Yi Xu. 2019. 3D Human Avatar Digitization from a Single 
Image. In The 17th International Conference on Virtual-Reality Continuum and 
Its Applications in Industry (Brisbane, QLD, Australia) (VRCAI ’19). Association 
for Computing Machinery, New York, NY, USA, Article 12, 8 pages. https: 
//doi.org/10.1145/3359997.3365707 

[206] ✱ Wei Liang, Jingjing Liu, Yining Lang, Bing Ning, and Lap-Fai Yu. 2019. Func-
tional Workspace Optimization via Learning Personal Preferences from Virtual 
Experiences. IEEE Transactions on Visualization and Computer Graphics 25, 5 
(2019), 1836–1845. https://doi.org/10.1109/TVCG.2019.2898721 

[207] ✱ Haodong Liao, Ning Xie, Huiyuan Li, Yuhang Li, Jianping Su, Feng Jiang, 
Weipeng Huang, and Heng Tao Shen. 2020. Data-Driven Spatio-Temporal 
Analysis via Multi-Modal Zeitgebers and Cognitive Load in VR. In 2020 IEEE 
Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 473–482. https://doi.org/10.1109/VR46266.2020.00068 

[208] ✱ Jonathan Liebers, Patrick Horn, Christian Burschik, Uwe Gruenefeld, and 
Stefan Schneegass. 2021. Using Gaze Behavior and Head Orientation for Implicit 
Identifcation in Virtual Reality. In Proceedings of the 27th ACM Symposium on 
Virtual Reality Software and Technology (Osaka, Japan) (VRST ’21). Association 
for Computing Machinery, New York, NY, USA, Article 22, 9 pages. https: 
//doi.org/10.1145/3489849.3489880 

[209] ✱ Heaun-Taek Lim, Hak Gu Kim, and Yang Man Ra. 2018. VR IQA NET: Deep 
Virtual Reality Image Quality Assessment Using Adversarial Learning. In 2018 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 
Vol. 1. IEEE, New York, NY, USA, 6737–6741. https://doi.org/10.1109/ICASSP. 
2018.8461317 

[210] ✱ Kyungmin Lim, Jaesung Lee, Kwanghyun Won, Nupur Kala, and Tammy Lee. 
2021. A novel method for VR sickness reduction based on dynamic feld of view 
processing. Virtual Reality 25, 2 (June 2021), 331–340. https://doi.org/10.1007/ 
s10055-020-00457-3 

[211] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, 
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr 
Dollár. 2014. Microsoft COCO: Common Objects in Context. https://doi.org/10. 
48550/ARXIV.1405.0312 

[212] Sebastian Linxen, Christian Sturm, Florian Brühlmann, Vincent Cassau, Klaus 
Opwis, and Katharina Reinecke. 2021. How WEIRD is CHI?. In Proceedings of 
the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, 
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, 
Article 143, 14 pages. https://doi.org/10.1145/3411764.3445488 

[213] Gwen Littlewort, Jacob Whitehill, Tingfan Wu, Ian Fasel, Mark Frank, Javier 
Movellan, and Marian Bartlett. 2011. The computer expression recognition 
toolbox (CERT). In 2011 IEEE International Conference on Automatic Face & 
Gesture Recognition (FG), Vol. 1. IEEE, New York, NY, USA, 298–305. https: 
//doi.org/10.1109/FG.2011.5771414 

[214] Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, 
and Chunxia Xiao. 2020. ARShadowGAN: Shadow Generative Adversarial 
Network for Augmented Reality in Single Light Scenes. In The IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). IEEE, New York, NY, USA, 
–. 

[215] ✱ Chang Liu, Alexander Plopski, Kiyoshi Kiyokawa, Photchara Ratsamee, and 
Jason Orlosky. 2018. IntelliPupil: Pupillometric Light Modulation for Optical 
See-Through Head-Mounted Displays. In 2018 IEEE International Symposium 
on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 
98–104. https://doi.org/10.1109/ISMAR.2018.00037 

[216] ✱ Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning Yu, Xinzhi Dong, 
and Chunxia Xiao. 2020. ARShadowGAN: Shadow Generative Adversarial Net-
work for Augmented Reality in Single Light Scenes. In 2020 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR), Vol. 1. IEEE, New York, NY, 
USA, 8136–8145. https://doi.org/10.1109/CVPR42600.2020.00816 

[217] ✱ Huimin Liu, Zhiquan Wang, Christos Mousas, and Dominic Kao. 2020. Virtual 
Reality Racket Sports: Virtual Drills for Exercise and Training. In 2020 IEEE 
International Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, 
New York, NY, USA, 566–576. https://doi.org/10.1109/ISMAR50242.2020.00084 

[218] ✱ Jingjing Liu, Wei Liane, Bing Ning, and Ting Mao. 2021. Work Surface 
Arrangement Optimization Driven by Human Activity. In 2021 IEEE Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 270–278. 
https://doi.org/10.1109/VR50410.2021.00049 

[219] ✱ Zhihao Liu, Fanxing Zhang, and Zhanglin Cheng. 2021. BuildingSketch: 
Freehand Mid-Air Sketching for Building Modeling. In 2021 IEEE International 
Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, 
NY, USA, 329–338. https://doi.org/10.1109/ISMAR52148.2021.00049 

https://doi.org/10.1109/VR.2019.8798018
https://doi.org/10.1109/TVCG.2019.2899250
https://doi.org/10.1145/3139131.3139156
https://doi.org/10.1145/3139131.3139156
http://stacks.iop.org/1741-2552/15/i=5/a=056013
http://stacks.iop.org/1741-2552/15/i=5/a=056013
https://doi.org/10.1109/VR.2019.8798121
https://doi.org/10.1109/VR46266.2020.00034
https://doi.org/10.1145/3385956.3418959
https://doi.org/10.1109/ICIP.2019.8802983
https://doi.org/10.1109/TVCG.2019.2899186
https://doi.org/10.1145/3041164.3041185
https://doi.org/10.1186/1748-5908-5-69
https://doi.org/10.1186/1748-5908-5-69
https://doi.org/10.1109/AIVR46125.2019.00033
https://doi.org/10.1109/AIVR46125.2019.00033
https://doi.org/10.1109/SSCI50451.2021.9660126
https://doi.org/10.1109/ICIP42928.2021.9506127
https://doi.org/10.1007/s10055-021-00512-7
https://doi.org/10.1007/s10055-021-00512-7
https://doi.org/10.1109/ISMAR50242.2020.00037
https://doi.org/10.1145/3126594.3126611
https://doi.org/10.1109/ISMAR52148.2021.00016
https://doi.org/10.1145/3359997.3365707
https://doi.org/10.1145/3359997.3365707
https://doi.org/10.1109/TVCG.2019.2898721
https://doi.org/10.1109/VR46266.2020.00068
https://doi.org/10.1145/3489849.3489880
https://doi.org/10.1145/3489849.3489880
https://doi.org/10.1109/ICASSP.2018.8461317
https://doi.org/10.1109/ICASSP.2018.8461317
https://doi.org/10.1007/s10055-020-00457-3
https://doi.org/10.1007/s10055-020-00457-3
https://doi.org/10.48550/ARXIV.1405.0312
https://doi.org/10.48550/ARXIV.1405.0312
https://doi.org/10.1145/3411764.3445488
https://doi.org/10.1109/FG.2011.5771414
https://doi.org/10.1109/FG.2011.5771414
https://doi.org/10.1109/ISMAR.2018.00037
https://doi.org/10.1109/CVPR42600.2020.00816
https://doi.org/10.1109/ISMAR50242.2020.00084
https://doi.org/10.1109/VR50410.2021.00049
https://doi.org/10.1109/ISMAR52148.2021.00049


CHI ’23, April 23–28, 2023, Hamburg, Germany 

[220] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. 2016. DeepFash-
ion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations. 
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR). IEEE, New York, NY, USA, –. 

[221] ✱ Conny Lu, Praneeth Chakravarthula, Yujie Tao, Steven Chen, and Henry Fuchs. 
2020. Improved vergence and accommodation via Purkinje Image tracking with 
multiple cameras for AR glasses. In 2020 IEEE International Symposium on Mixed 
and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 320–331. 
https://doi.org/10.1109/ISMAR50242.2020.00058 

[222] Andrés Lucero. 2015. Using Afnity Diagrams to Evaluate Interactive Proto-
types. In Human-Computer Interaction – INTERACT 2015, Julio Abascal, Simone 
Barbosa, Mirko Fetter, Tom Gross, Philippe Palanque, and Marco Winckler (Eds.). 
Springer International Publishing, Cham, 231–248. 

[223] Patrick Lucey, Jefrey F. Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and 
Iain Matthews. 2010. The Extended Cohn-Kanade Dataset (CK+): A complete 
dataset for action unit and emotion-specifed expression. In 2010 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition -Workshops, Vol. 1. 
IEEE, New York, NY, USA, 94–101. https://doi.org/10.1109/CVPRW.2010.5543262 

[224] Michael Luck and Ruth Aylett. 2000. Applying artifcial intelligence to virtual 
reality: Intelligent virtual environments. Applied Artifcial Intelligence 14, 1 
(2000), 3–32. https://doi.org/10.1080/088395100117142 

[225] Martin H. Luerssen and Tim Hawke. 2018. Virtual Agents as a Service: Ap-
plications in Healthcare. In Proceedings of the 18th International Conference on 
Intelligent Virtual Agents (Sydney, NSW, Australia) (IVA ’18). Association for 
Computing Machinery, New York, NY, USA, 107–112. https://doi.org/10.1145/ 
3267851.3267858 

[226] ✱ Tifany Luong, Nicolas Martin, Anaïs Raison, Ferran Argelaguet, Jean-Marc 
Diverrez, and Anatole Lécuyer. 2020. Towards Real-Time Recognition of Users 
Mental Workload Using Integrated Physiological Sensors Into a VR HMD. In 
2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 
Vol. 1. IEEE, New York, NY, USA, 425–437. https://doi.org/10.1109/ISMAR50242. 
2020.00068 

[227] Michael J. Lyons. 2021. "Excavating AI" Re-excavated: Debunking a Fallacious 
Account of the JAFFE Dataset. CoRR abs/2107.13998 (2021). arXiv:2107.13998 
https://arxiv.org/abs/2107.13998 

[228] ✱ Zhuoyue Lyu, Jiannan Li, and Bryan Wang. 2021. AIive: Interactive Visualiza-
tion and Sonifcation of Neural Networks in Virtual Reality. In 2021 IEEE Interna-
tional Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, 
New York, NY, USA, 251–255. https://doi.org/10.1109/AIVR52153.2021.00057 

[229] ✱ Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando 
De la Torre, and Yaser Sheikh. 2021. Pixel Codec Avatars. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 
New York, NY, USA, 64–73. 

[230] ✱ Ochs Magalie, Jain Sameer, and Blache Philippe. 2018. Toward an Automatic 
Prediction of the Sense of Presence in Virtual Reality Environment. In Proceed-
ings of the 6th International Conference on Human-Agent Interaction (Southamp-
ton, United Kingdom) (HAI ’18). Association for Computing Machinery, New 
York, NY, USA, 161–166. https://doi.org/10.1145/3284432.3284452 

[231] ✱ David Mandl, Kwang Moo Yi, Peter Mohr, Peter M. Roth, Pascal Fua, Vincent 
Lepetit, Dieter Schmalstieg, and Denis Kalkofen. 2017. Learning Lightprobes 
for Mixed Reality Illumination. In 2017 IEEE International Symposium on Mixed 
and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 82–89. https: 
//doi.org/10.1109/ISMAR.2017.25 

[232] ✱ Nicolas Martin, Nicolas Mathieu, Nico Pallamin, Martin Ragot, and Jean-Marc 
Diverrez. 2020. Virtual reality sickness detection: an approach based on physi-
ological signals and machine learning. In 2020 IEEE International Symposium 
on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 
387–399. https://doi.org/10.1109/ISMAR50242.2020.00065 

[233] ✱ Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-Garcia, Alvaro Jover-
Alvarez, Sergio Orts-Escolano, and Jose Garcia-Rodriguez. 2020. UnrealROX: an 
extremely photorealistic virtual reality environment for robotics simulations 
and synthetic data generation. Virtual Reality 24, 2 (June 2020), 271–288. https: 
//doi.org/10.1007/s10055-019-00399-5 

[234] ✱ Katsutoshi Masai, Kai Kunze, Daisuke Sakamoto, Yuta Sugiura, and Maki 
Sugimoto. 2020. Face Commands - User-Defned Facial Gestures for Smart 
Glasses. In 2020 IEEE International Symposium on Mixed and Augmented Reality 
(ISMAR), Vol. 1. IEEE, New York, NY, USA, 374–386. https://doi.org/10.1109/ 
ISMAR50242.2020.00064 

[235] Y. Matsuda, H. Hoashi, and K. Yanai. 2012. Recognition of Multiple-Food Images 
by Detecting Candidate Regions. In Proc. of IEEE International Conference on 
Multimedia and Expo (ICME). IEEE, New York, NY, USA. 

[236] ✱ Fabrice Matulic, Aditya Ganeshan, Hiroshi Fujiwara, and Daniel Vogel. 2021. 
Phonetroller: Visual Representations of Fingers for Precise Touch Input with 
Mobile Phones in VR. In Proceedings of the 2021 CHI Conference on Human 
Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for 
Computing Machinery, New York, NY, USA, Article 129, 13 pages. https: 
//doi.org/10.1145/3411764.3445583 

Hirzle, et al. 

[237] S. Mohammad Mavadati, Mohammad H. Mahoor, Kevin Bartlett, Philip Trinh, 
and Jefrey F. Cohn. 2013. DISFA: A Spontaneous Facial Action Intensity 
Database. IEEE Transactions on Afective Computing 4, 2 (2013), 151–160. 
https://doi.org/10.1109/T-AFFC.2013.4 

[238] ✱ Sven Mayer, Jens Reinhardt, Robin Schweigert, Brighten Jelke, Valentin 
Schwind, Katrin Wolf, and Niels Henze. 2020. Improving Humans’ Ability 
to Interpret Deictic Gestures in Virtual Reality. In Proceedings of the 2020 
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) 
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–14. 
https://doi.org/10.1145/3313831.3376340 

[239] ✱ Sven Mayer, Valentin Schwind, Robin Schweigert, and Niels Henze. 2018. The 
Efect of Ofset Correction and Cursor on Mid-Air Pointing in Real and Virtual 
Environments. In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing 
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174227 

[240] ✱ Eric J. McDermott, Johanna Metsomaa, Paolo Belardinelli, Moritz Grosse-
Wentrup, Ulf Ziemann, and Christoph Zrenner. 2021. Predicting motor behavior: 
an efcient EEG signal processing pipeline to detect brain states with potential 
therapeutic relevance for VR-based neurorehabilitation. Virtual Reality 1 (Sept. 
2021). https://doi.org/10.1007/s10055-021-00538-x 

[241] ✱ Jess McIntosh, Hubert Dariusz Zajac, Andreea Nicoleta Stefan, Joanna 
Bergström, and Kasper Hornbæk. 2020. Iteratively Adapting Avatars Using 
Task-Integrated Optimisation. In Proceedings of the 33rd Annual ACM Sympo-
sium on User Interface Software and Technology (Virtual Event, USA) (UIST 
’20). Association for Computing Machinery, New York, NY, USA, 709–721. 
https://doi.org/10.1145/3379337.3415832 

[242] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotny-
chenko, Weipeng Xu, and Christian Theobalt. 2017. Monocular 3D Human 
Pose Estimation In The Wild Using Improved CNN Supervision. In 3D Vision 
(3DV), 2017 Fifth International Conference on. IEEE, IEEE, New York, NY, USA. 
https://doi.org/10.1109/3dv.2017.00064 

[243] ✱ Nadine Meissler, Annika Wohlan, Nico Hochgeschwender, and Andreas 
Schreiber. 2019. Using Visualization of Convolutional Neural Networks in 
Virtual Reality for Machine Learning Newcomers. In 2019 IEEE International 
Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New 
York, NY, USA, 152–1526. https://doi.org/10.1109/AIVR46125.2019.00031 

[244] ✱ Ben Meuleman and David Rudrauf. 2021. Induction and Profling of Strong 
Multi-Componential Emotions in Virtual Reality. IEEE Transactions on Afective 
Computing 12 (2021), 189–202. https://doi.org/10.1109/TAFFC.2018.2864730 

[245] Abraham Hani Mhaidli and Florian Schaub. 2021. Identifying Manipulative 
Advertising Techniques in XR Through Scenario Construction. In Proceedings 
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, 
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, 
Article 296, 18 pages. https://doi.org/10.1145/3411764.3445253 

[246] Paul Milgram and Fumio Kishino. 1994. A Taxonomy of Mixed Reality Visual 
Displays. IEICE TRANSACTIONS on Information and Systems E77-D, 12 (1994), 
1321–1329. https://search.ieice.org/bin/summary.php?id=e77-d_12_1321 

[247] ✱ Robert Miller, Natasha Kholgade Banerjee, and Sean Banerjee. 2021. Using 
Siamese Neural Networks to Perform Cross-System Behavioral Authentication 
in Virtual Reality. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Vol. 1. 
IEEE, New York, NY, USA, 140–149. https://doi.org/10.1109/VR50410.2021.00035 

[248] ✱ Xin Min, Wenqiao Zhang, Shouqian Sun, Nan Zhao, Siliang Tang, and Yueting 
Zhuang. 2019. VPModel: High-Fidelity Product Simulation in a Virtual-Physical 
Environment. IEEE Transactions on Visualization and Computer Graphics 25, 11 
(2019), 3083–3093. https://doi.org/10.1109/TVCG.2019.2932276 

[249] Marvin Minsky. 1988. The Society of Mind. Simon & Schuster, -. 
[250] ✱ George B. Mo, John J Dudley, and Per Ola Kristensson. 2021. Gesture Knitter: 

A Hand Gesture Design Tool for Head-Mounted Mixed Reality Applications. In 
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems 
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, 
NY, USA, Article 291, 13 pages. https://doi.org/10.1145/3411764.3445766 

[251] ✱ Diego Monteiro, Hai-Ning Liang, Xiaohang Tang, and Pourang Irani. 2021. 
Using Trajectory Compression Rate to Predict Changes in Cybersickness in 
Virtual Reality Games. In 2021 IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 138–146. https: 
//doi.org/10.1109/ISMAR52148.2021.00028 

[252] ✱ Alec G. Moore, Ryan P. McMahan, Hailiang Dong, and Nicholas Ruozzi. 2020. 
Extracting Velocity-Based User-Tracking Features to Predict Learning Gains in 
a Virtual Reality Training Application. In 2020 IEEE International Symposium 
on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 
694–703. https://doi.org/10.1109/ISMAR50242.2020.00099 

[253] ✱ Fariba Mostajeran, Frank Steinicke, Oscar Javier Ariza Nunez, Dimitrios 
Gatsios, and Dimitrios Fotiadis. 2020. Augmented Reality for Older Adults: 
Exploring Acceptability of Virtual Coaches for Home-Based Balance Training in 
an Aging Population. In Proceedings of the 2020 CHI Conference on Human Factors 
in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing 
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376565 

https://doi.org/10.1109/ISMAR50242.2020.00058
https://doi.org/10.1109/CVPRW.2010.5543262
https://doi.org/10.1080/088395100117142
https://doi.org/10.1145/3267851.3267858
https://doi.org/10.1145/3267851.3267858
https://doi.org/10.1109/ISMAR50242.2020.00068
https://doi.org/10.1109/ISMAR50242.2020.00068
https://arxiv.org/abs/2107.13998
https://arxiv.org/abs/2107.13998
https://doi.org/10.1109/AIVR52153.2021.00057
https://doi.org/10.1145/3284432.3284452
https://doi.org/10.1109/ISMAR.2017.25
https://doi.org/10.1109/ISMAR.2017.25
https://doi.org/10.1109/ISMAR50242.2020.00065
https://doi.org/10.1007/s10055-019-00399-5
https://doi.org/10.1007/s10055-019-00399-5
https://doi.org/10.1109/ISMAR50242.2020.00064
https://doi.org/10.1109/ISMAR50242.2020.00064
https://doi.org/10.1145/3411764.3445583
https://doi.org/10.1145/3411764.3445583
https://doi.org/10.1109/T-AFFC.2013.4
https://doi.org/10.1145/3313831.3376340
https://doi.org/10.1145/3173574.3174227
https://doi.org/10.1007/s10055-021-00538-x
https://doi.org/10.1145/3379337.3415832
https://doi.org/10.1109/3dv.2017.00064
https://doi.org/10.1109/AIVR46125.2019.00031
https://doi.org/10.1109/TAFFC.2018.2864730
https://doi.org/10.1145/3411764.3445253
https://search.ieice.org/bin/summary.php?id=e77-d_12_1321
https://doi.org/10.1109/VR50410.2021.00035
https://doi.org/10.1109/TVCG.2019.2932276
https://doi.org/10.1145/3411764.3445766
https://doi.org/10.1109/ISMAR52148.2021.00028
https://doi.org/10.1109/ISMAR52148.2021.00028
https://doi.org/10.1109/ISMAR50242.2020.00099
https://doi.org/10.1145/3313831.3376565


When XR and AI Meet - A Scoping Review on Extended Reality and Artificial Intelligence 

[254] ✱ Christos Mousas. 2018. Performance-Driven Dance Motion Control of a 
Virtual Partner Character. In 2018 IEEE Conference on Virtual Reality and 3D 
User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 57–64. https://doi.org/10. 
1109/VR.2018.8446498 

[255] ✱ Moritz Mühlhausen, Moritz Kappel, Marc Kassubeck, Paul M. Bittner, Susana 
Castillo, and Marcus Magnor. 2020. Temporal Consistent Motion Parallax for 
Omnidirectional Stereo Panorama Video. In 26th ACM Symposium on Virtual 
Reality Software and Technology (Virtual Event, Canada) (VRST ’20). Association 
for Computing Machinery, New York, NY, USA, Article 21, 9 pages. https: 
//doi.org/10.1145/3385956.3418965 

[256] Zachary Munn, Micah D. J. Peters, Cindy Stern, Catalin Tufanaru, Alexa 
McArthur, and Edoardo Aromataris. 2018. Systematic review or scoping re-
view? Guidance for authors when choosing between a systematic or scoping 
review approach. BMC Medical Research Methodology 18, 1 (Nov. 2018), 143. 
https://doi.org/10.1186/s12874-018-0611-x 

[257] ✱ Kizashi Nakano, Daichi Horita, Nobuchika Sakata, Kiyoshi Kiyokawa, Keiji 
Yanai, and Takuji Narumi. 2019. DeepTaste: Augmented Reality Gustatory 
Manipulation with GAN-Based Real-Time Food-to-Food Translation. In 2019 
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Vol. 1. 
IEEE, New York, NY, USA, 212–223. https://doi.org/10.1109/ISMAR.2019.000-1 

[258] ✱ Sahil Narang, Andrew Best, and Dinesh Manocha. 2018. Simulating Movement 
Interactions Between Avatars & Agents in Virtual Worlds Using Human Motion 
Constraints. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces 
(VR), Vol. 1. IEEE, New York, NY, USA, 9–16. https://doi.org/10.1109/VR.2018. 
8446152 

[259] ✱ Sahil Narang, Andrew Best, and Dinesh Manocha. 2019. Inferring User Intent 
using Bayesian Theory of Mind in Shared Avatar-Agent Virtual Environments. 
IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 2113– 
2122. https://doi.org/10.1109/TVCG.2019.2898800 

[260] Ryota Natsume, Shunsuke Saito, Zeng Huang, Weikai Chen, Chongyang Ma, 
Hao Li, and Shigeo Morishima. 2019. SiCloPe: Silhouette-Based Clothed Peo-
ple. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). IEEE, New York, NY, USA. 

[261] Allen Newell and Herbert A. Simon. 1976. Computer Science as Empirical 
Inquiry: Symbols and Search. Commun. ACM 19, 3 (mar 1976), 113–126. https: 
//doi.org/10.1145/360018.360022 

[262] Nahal Norouzi, Kangsoo Kim, Gerd Bruder, Austin Erickson, Zubin Choudhary, 
Yifan Li, and Greg Welch. 2020. A Systematic Literature Review of Embodied 
Augmented Reality Agents in Head-Mounted Display Environments. In ICAT-
EGVE 2020 - International Conference on Artifcial Reality and Telexistence and 
Eurographics Symposium on Virtual Environments, Ferran Argelaguet, Ryan 
McMahan, and Maki Sugimoto (Eds.). The Eurographics Association, -, –. https: 
//doi.org/10.2312/egve.20201264 

[263] Nahal Norouzi, Kangsoo Kim, Jason Hochreiter, Myungho Lee, Salam Daher, 
Gerd Bruder, and Greg Welch. 2018. A Systematic Survey of 15 Years of User 
Studies Published in the Intelligent Virtual Agents Conference. In Proceedings 
of the 18th International Conference on Intelligent Virtual Agents (Sydney, NSW, 
Australia) (IVA ’18). Association for Computing Machinery, New York, NY, USA, 
17–22. https://doi.org/10.1145/3267851.3267901 

[264] Ariel Noyman and Kent Larson. 2020. DeepScope: HCI Platform for Gen-
erative Cityscape Visualization. In Extended Abstracts of the 2020 CHI Con-
ference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI 
EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9. 
https://doi.org/10.1145/3334480.3382809 

[265] Miquel Mascaró Oliver and Esperança Amengual Alcover. 2020. UIBVFED: 
Virtual facial expression dataset. PLOS ONE 15, 4 (04 2020), 1–10. https: 
//doi.org/10.1371/journal.pone.0231266 

[266] ✱ Jason Orlosky, Brandon Huynh, and Tobias Hollerer. 2019. Using Eye Tracked 
Virtual Reality to Classify Understanding of Vocabulary in Recall Tasks. In 2019 
IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 66–667. https://doi.org/10.1109/AIVR46125. 
2019.00019 

[267] ✱ Nitish Padmanaban, Timon Ruban, Vincent Sitzmann, Anthony M. Norcia, and 
Gordon Wetzstein. 2018. Towards a Machine-Learning Approach for Sickness 
Prediction in 360 Stereoscopic Videos. IEEE Transactions on Visualization and 
Computer Graphics 24, 4 (2018), 1594–1603. https://doi.org/10.1109/TVCG.2018. 
2793560 

[268] ✱ Wolfgang Paier, Anna Hilsmann, and Peter Eisert. 2021. Example-Based 
Facial Animation of Virtual Reality Avatars Using Auto-Regressive Neural 
Networks. IEEE Computer Graphics and Applications 41, 4 (2021), 52–63. https: 
//doi.org/10.1109/MCG.2021.3068035 

[269] ✱ Seungwon Paik, Youngseung Jeon, Patrick C. Shih, and Kyungsik Han. 2021. 
I Feel More Engaged When I Move!: Deep Learning-based Backward Movement 
Detection and its Application. In 2021 IEEE Virtual Reality and 3D User Interfaces 
(VR), Vol. 1. IEEE, New York, NY, USA, 483–492. https://doi.org/10.1109/VR50410. 
2021.00072 

[270] Ana Paiva, Iolanda Leite, Hana Boukricha, and Ipke Wachsmuth. 2017. Empathy 
in Virtual Agents and Robots: A Survey. ACM Trans. Interact. Intell. Syst. 7, 3, 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

Article 11 (sep 2017), 40 pages. https://doi.org/10.1145/2912150 
[271] ✱ Robin Palmberg, Christopher Peters, and Adam Qureshi. 2017. When facial 

expressions dominate emotion perception in groups of virtual characters. In 2017 
9th International Conference on Virtual Worlds and Games for Serious Applications 
(VS-Games), Vol. 1. IEEE, New York, NY, USA, 157–160. https://doi.org/10.1109/ 
VS-GAMES.2017.8056588 

[272] ✱ Mathias Parger, Chengcheng Tang, Yuanlu Xu, Christopher David Twigg, 
Lingling Tao, Yijing Li, Robert Wang, and Markus Steinberger. 2021. UNOC: 
Understanding Occlusion for Embodied Presence in Virtual Reality. IEEE 
Transactions on Visualization and Computer Graphics 1 (2021), 1–1. https: 
//doi.org/10.1109/TVCG.2021.3085407 

[273] ✱ Sangin Park, Laehyun Kim, Jangho Kwon, Soo Ji Choi, and Mincheol Whang. 
2022. Evaluation of visual-induced motion sickness from head-mounted display 
using heartbeat evoked potential: a cognitive load-focused approach. Virtual 
Reality 26, 3 (Sept. 2022), 979–1000. https://doi.org/10.1007/s10055-021-00600-8 

[274] Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. 2020. Con-
trastive Learning for Unpaired Image-to-Image Translation. In European Con-
ference on Computer Vision. Springer, -. 

[275] Mark Paterson. 2006. Feel the presence: technologies of touch and distance. 
Environment and Planning D: Society and Space 24, 5 (2006), 691–708. 

[276] ✱ Tabitha C. Peck, Jessica J. Good, and Katharina Seitz. 2021. Evidence of Racial 
Bias Using Immersive Virtual Reality: Analysis of Head and Hand Motions 
During Shooting Decisions. IEEE Transactions on Visualization and Computer 
Graphics 27, 5 (2021), 2502–2512. https://doi.org/10.1109/TVCG.2021.3067767 

[277] Micah D. J. Peters, Christina M. Godfrey, Hanan Khalil, Patricia McInerney, 
Deborah Parker, and Cassia Baldini Soares. 2015. Guidance for conducting 
systematic scoping reviews. JBI Evidence Implementation 13, 3 (2015), 141–146. 
https://doi.org/10.1097/XEB.0000000000000050 

[278] ✱ Gustav Bøg Petersen, Aske Mottelson, and Guido Makransky. 2021. Peda-
gogical Agents in Educational VR: An in the Wild Study. In Proceedings of the 
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) 
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 
482, 12 pages. https://doi.org/10.1145/3411764.3445760 

[279] ✱ Stefano Petrangeli, Gwendal Simon, and Viswanathan Swaminathan. 2018. 
Trajectory-Based Viewport Prediction for 360-Degree Virtual Reality Videos. In 
2018 IEEE International Conference on Artifcial Intelligence and Virtual Reality 
(AIVR), Vol. 1. IEEE, New York, NY, USA, 157–160. https://doi.org/10.1109/AIVR. 
2018.00033 

[280] ✱ Ken Pfeufer, Matthias J. Geiger, Sarah Prange, Lukas Mecke, Daniel Buschek, 
and Florian Alt. 2019. Behavioural Biometrics in VR: Identifying People from 
Body Motion and Relations in Virtual Reality. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) 
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. 
https://doi.org/10.1145/3290605.3300340 

[281] ✱ Duc-Minh Pham. 2018. Human Identifcation Using Neural Network-Based 
Classifcation of Periodic Behaviors in Virtual Reality. In 2018 IEEE Conference 
on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 
657–658. https://doi.org/10.1109/VR.2018.8446529 

[282] Mai T. Pham, Andrijana Rajić, Judy D. Greig, Jan M. Sargeant, Andrew Pa-
padopoulos, and Scott A. McEwen. 2014. A scoping review of scoping reviews: 
advancing the approach and enhancing the consistency. Research Synthesis 
Methods 5, 4 (2014), 371–385. https://doi.org/10.1002/jrsm.1123 

[283] ✱ Pierre-Olivier Pigny and Lionel Dominjon. 2019. Using CNNs For Users 
Segmentation In Video See-Through Augmented Virtuality. In 2019 IEEE Interna-
tional Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, 
New York, NY, USA, 229–2295. https://doi.org/10.1109/AIVR46125.2019.00048 

[284] ✱ Thibault Porssut, Yawen Hou, Olaf Blanke, Bruno Herbelin, and Ronan Boulic. 
2022. Adapting Virtual Embodiment Through Reinforcement Learning. IEEE 
Transactions on Visualization and Computer Graphics 28, 9 (2022), 3193–3205. 
https://doi.org/10.1109/TVCG.2021.3057797 

[285] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. 2014. Realtime 
and Robust Hand Tracking from Depth. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). IEEE, New York, NY, USA. 

[286] ✱ Muhammad Raees and Sehat Ullah. 2021. RUN: rational ubiquitous navigation, 
a model for automated navigation and searching in virtual environments. Virtual 
Reality 25, 2 (June 2021), 511–521. https://doi.org/10.1007/s10055-020-00468-0 

[287] ✱ Pierluigi Zama Ramirez, Claudio Paternesi, Luca De Luigi, Luigi Lella, 
Daniele De Gregorio, and Luigi Di Stefano. 2020. Shooting Labels: 3D Se-
mantic Labeling by Virtual Reality. In 2020 IEEE International Conference on 
Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 99–106. https://doi.org/10.1109/AIVR50618.2020.00027 

[288] ✱ Tanmay Randhavane, Aniket Bera, Kyra Kapsaskis, Kurt Gray, and Dinesh 
Manocha. 2019. FVA: Modeling Perceived Friendliness of Virtual Agents Using 
Movement Characteristics. IEEE Transactions on Visualization and Computer 
Graphics 25, 11 (2019), 3135–3145. https://doi.org/10.1109/TVCG.2019.2932235 

[289] ✱ Tanmay Randhavane, Aniket Bera, Kyra Kapsaskis, Rahul Sheth, Kurt Gray, 
and Dinesh Manocha. 2019. EVA: Generating Emotional Behavior of Virtual 
Agents Using Expressive Features of Gait and Gaze. In ACM Symposium on 

https://doi.org/10.1109/VR.2018.8446498
https://doi.org/10.1109/VR.2018.8446498
https://doi.org/10.1145/3385956.3418965
https://doi.org/10.1145/3385956.3418965
https://doi.org/10.1186/s12874-018-0611-x
https://doi.org/10.1109/ISMAR.2019.000-1
https://doi.org/10.1109/VR.2018.8446152
https://doi.org/10.1109/VR.2018.8446152
https://doi.org/10.1109/TVCG.2019.2898800
https://doi.org/10.1145/360018.360022
https://doi.org/10.1145/360018.360022
https://doi.org/10.2312/egve.20201264
https://doi.org/10.2312/egve.20201264
https://doi.org/10.1145/3267851.3267901
https://doi.org/10.1145/3334480.3382809
https://doi.org/10.1371/journal.pone.0231266
https://doi.org/10.1371/journal.pone.0231266
https://doi.org/10.1109/AIVR46125.2019.00019
https://doi.org/10.1109/AIVR46125.2019.00019
https://doi.org/10.1109/TVCG.2018.2793560
https://doi.org/10.1109/TVCG.2018.2793560
https://doi.org/10.1109/MCG.2021.3068035
https://doi.org/10.1109/MCG.2021.3068035
https://doi.org/10.1109/VR50410.2021.00072
https://doi.org/10.1109/VR50410.2021.00072
https://doi.org/10.1145/2912150
https://doi.org/10.1109/VS-GAMES.2017.8056588
https://doi.org/10.1109/VS-GAMES.2017.8056588
https://doi.org/10.1109/TVCG.2021.3085407
https://doi.org/10.1109/TVCG.2021.3085407
https://doi.org/10.1007/s10055-021-00600-8
https://doi.org/10.1109/TVCG.2021.3067767
https://doi.org/10.1097/XEB.0000000000000050
https://doi.org/10.1145/3411764.3445760
https://doi.org/10.1109/AIVR.2018.00033
https://doi.org/10.1109/AIVR.2018.00033
https://doi.org/10.1145/3290605.3300340
https://doi.org/10.1109/VR.2018.8446529
https://doi.org/10.1002/jrsm.1123
https://doi.org/10.1109/AIVR46125.2019.00048
https://doi.org/10.1109/TVCG.2021.3057797
https://doi.org/10.1007/s10055-020-00468-0
https://doi.org/10.1109/AIVR50618.2020.00027
https://doi.org/10.1109/TVCG.2019.2932235


CHI ’23, April 23–28, 2023, Hamburg, Germany 

Applied Perception 2019 (Barcelona, Spain) (SAP ’19). Association for Computing 
Machinery, New York, NY, USA, Article 6, 10 pages. https://doi.org/10.1145/ 
3343036.3343129 

[290] ✱ Tanmay Randhavane, Aniket Bera, Emily Kubin, Kurt Gray, and Dinesh 
Manocha. 2021. Modeling Data-Driven Dominance Traits for Virtual Characters 
Using Gait Analysis. IEEE Transactions on Visualization and Computer Graphics 
27, 6 (2021), 2967–2979. https://doi.org/10.1109/TVCG.2019.2953063 

[291] ✱ Hedieh Ranjbartabar, Deborah Richards, Ayse Aysin Bilgin, and Cat Kutay. 
2021. First Impressions Count! The Role of the Human’s Emotional State on 
Rapport Established with an Empathic versus Neutral Virtual Therapist. IEEE 
Transactions on Afective Computing 12, 3 (2021), 788–800. https://doi.org/10. 
1109/TAFFC.2019.2899305 

[292] ✱ Joshua Ratclif, Alexey Supikov, Santiago Alfaro, and Ronald Azuma. 2020. 
ThinVR: Heterogeneous microlens arrays for compact, 180 degree FOV VR 
near-eye displays. IEEE Transactions on Visualization and Computer Graphics 
26, 5 (2020), 1981–1990. https://doi.org/10.1109/TVCG.2020.2973064 

[293] Jack Ratclife, Francesco Soave, Nick Bryan-Kinns, Laurissa Tokarchuk, and 
Ildar Farkhatdinov. 2021. Extended Reality (XR) Remote Research: A Survey 
of Drawbacks and Opportunities. In Proceedings of the 2021 CHI Conference on 
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association 
for Computing Machinery, New York, NY, USA, Article 527, 13 pages. https: 
//doi.org/10.1145/3411764.3445170 

[294] ✱ Lisa Rebenitsch and Charles Owen. 2021. Estimating cybersickness from 
virtual reality applications. Virtual Reality 25, 1 (March 2021), 165–174. https: 
//doi.org/10.1007/s10055-020-00446-6 

[295] ✱ Manuel Rebol, Christian Güti, and Krzysztof Pietroszek. 2021. Passing a Non-
verbal Turing Test: Evaluating Gesture Animations Generated from Speech. In 
2021 IEEE Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 573–581. https://doi.org/10.1109/VR50410.2021.00082 

[296] Dirk Reiners, Mohammad Reza Davahli, Waldemar Karwowski, and Carolina 
Cruz-Neira. 2021. The Combination of Artifcial Intelligence and Extended 
Reality: A Systematic Review. Frontiers in Virtual Reality 2 (2021). https: 
//www.frontiersin.org/articles/10.3389/frvir.2021.721933 

[297] ✱ Jens Reinhardt, Luca Hillen, and Katrin Wolf. 2020. Embedding Conversational 
Agents into AR: Invisible or with a Realistic Human Body?. In Proceedings of the 
Fourteenth International Conference on Tangible, Embedded, and Embodied Inter-
action (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, 
New York, NY, USA, 299–310. https://doi.org/10.1145/3374920.3374956 

[298] Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad 
Shafei, Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. 2016. EgoCap: 
Egocentric Marker-Less Motion Capture with Two Fisheye Cameras. ACM 
Trans. Graph. 35, 6, Article 162 (nov 2016), 11 pages. https://doi.org/10.1145/ 
2980179.2980235 

[299] Taina Ribeiro de Oliveira, Matheus Moura da Silva, Rafael Antonio Nepo-
muceno Spinasse, Gabriel Giesen Ludke, Mateus Ruy Soares Gaudio, Guil-
herme Iglesias Rocha Gomes, Luan Guio Cotini, Daniel Vargens, MARCELO 
QUEIROZ SCHIMIDT, Rodrigo Varejao Andreao, and Mario Mestria. 2021. 
Systematic Review of Virtual Reality Solutions Employing Artifcial Intelli-
gence Methods. In Symposium on Virtual and Augmented Reality (SVR’21). 
Association for Computing Machinery, New York, NY, USA, 42–55. https: 
//doi.org/10.1145/3488162.3488209 

[300] Jef Rickel. 2001. Intelligent Virtual Agents for Education and Training: Oppor-
tunities and Challenges. In Intelligent Virtual Agents, Angélica de Antonio, Ruth 
Aylett, and Daniel Ballin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 
15–22. 

[301] ✱ Andrés Ovidio Restrepo Rodríguez, Maddyzeth Ariza Riaño, Paulo 
Alonso Gaona García, Carlos Enrique Montenegro Marín, Rubén González 
Crespo, and Xing Wu. 2020. Emotional characterization of children through 
a learning environment using learning analytics and AR-Sandbox. Journal of 
Ambient Intelligence and Humanized Computing 11, 11 (Nov. 2020), 5353–5367. 
https://doi.org/10.1007/s12652-020-01887-2 

[302] Katja Rogers, Sukran Karaosmanoglu, Maximilian Altmeyer, Ally Suarez, and 
Lennart E. Nacke. 2022. Much Realistic, Such Wow! A Systematic Literature 
Review of Realism in Digital Games. In Proceedings of the 2022 CHI Conference 
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). 
Association for Computing Machinery, New York, NY, USA, Article 190, 21 pages. 
https://doi.org/10.1145/3491102.3501875 

[303] ✱ Robert A. Rolin, Jolande Fooken, Miriam Spering, and Dinesh K. Pai. 2019. 
Perception of Looming Motion in Virtual Reality Egocentric Interception Tasks. 
IEEE Transactions on Visualization and Computer Graphics 25, 10 (2019), 3042– 
3048. https://doi.org/10.1109/TVCG.2018.2859987 

[304] ✱ Miguel Fabian Romero Rondon, Dario Zanca, Stefano Melacci, Marco Gori, 
and Lucile Sassatelli. 2021. HeMoG: A White-Box Model to Unveil the Con-
nection between Saliency Information and Human Head Motion in Virtual 
Reality. In 2021 IEEE International Conference on Artifcial Intelligence and 
Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 10–18. https: 
//doi.org/10.1109/AIVR52153.2021.00012 

Hirzle, et al. 

[305] ✱ Miguel Fabián Romero Rondón, Lucile Sassatelli, Ramón Aparicio-Pardo, and 
Frédéric Precioso. 2022. TRACK: A New Method From a Re-Examination of 
Deep Architectures for Head Motion Prediction in 360 Videos. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 44, 9 (2022), 5681–5699. https: 
//doi.org/10.1109/TPAMI.2021.3070520 

[306] ✱ Daniel Roth, Gary Bente, Peter Kullmann, David Mal, Chris Felix Purps, Kai 
Vogeley, and Marc Erich Latoschik. 2019. Technologies for Social Augmentations 
in User-Embodied Virtual Reality. In 25th ACM Symposium on Virtual Reality 
Software and Technology (Parramatta, NSW, Australia) (VRST ’19). Association 
for Computing Machinery, New York, NY, USA, Article 5, 12 pages. https: 
//doi.org/10.1145/3359996.3364269 

[307] ✱ Menandro Roxas, Tomoki Hori, Taiki Fukiage, Yasuhide Okamoto, and Takeshi 
Oishi. 2018. Occlusion Handling Using Semantic Segmentation and Visibility-
Based Rendering for Mixed Reality. In Proceedings of the 24th ACM Symposium on 
Virtual Reality Software and Technology (Tokyo, Japan) (VRST ’18). Association 
for Computing Machinery, New York, NY, USA, Article 20, 8 pages. https: 
//doi.org/10.1145/3281505.3281546 

[308] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, 
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, 
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 
211–252. https://doi.org/10.1007/s11263-015-0816-y 

[309] ✱ Pejman Sajjadi, Laura Hofmann, Philipp Cimiano, and Stefan Kopp. 2018. On 
the Efect of a Personality-Driven ECA on Perceived Social Presence and Game 
Experience in VR. In 2018 10th International Conference on Virtual Worlds and 
Games for Serious Applications (VS-Games), Vol. 1. IEEE, New York, NY, USA, 
1–8. https://doi.org/10.1109/VS-Games.2018.8493436 

[310] ✱ Lucas H. Sallaberry, Romero Tori, and Fatima L S Nunes. 2021. Comparison 
of Machine Learning Algorithms for Automatic Assessment of Performance 
in a Virtual Reality Dental Simulator. In Symposium on Virtual and Augmented 
Reality (Virtual Event, Brazil) (SVR’21). Association for Computing Machinery, 
New York, NY, USA, 14–23. https://doi.org/10.1145/3488162.3488207 

[311] ✱ Wallas Santos, Isabela Chambers, Emilio Vital Brazil, and Marcio Moreno. 
2019. Structuring and Inspecting 3D Anchors for Seismic Volume into Hyper-
knowledge Base in Virtual Reality. In 2019 IEEE International Conference on 
Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 271–2713. https://doi.org/10.1109/AIVR46125.2019.00063 

[312] ✱ Koya Sato, Yuji Sano, Mai Otsuki, Mizuki Oka, and Kazuhiko Kato. 2019. 
Augmented Recreational Volleyball Court: Supporting the Beginners’ Landing 
Position Prediction Skill by Providing Peripheral Visual Feedback. In Proceedings 
of the 10th Augmented Human International Conference 2019 (Reims, France) 
(AH2019). Association for Computing Machinery, New York, NY, USA, Article 
15, 9 pages. https://doi.org/10.1145/3311823.3311843 

[313] ✱ Batuhan Sayis, Ciera Crowell, Juan Benitez, Rafael Ramirez, and Narcis Pares. 
2019. Computational Modeling of Psycho-physiological Arousal and Social 
Initiation of children with Autism in Interventions through Full-Body Inter-
action. In 2019 8th International Conference on Afective Computing and Intel-
ligent Interaction (ACII), Vol. 1. IEEE, New York, NY, USA, 573–579. https: 
//doi.org/10.1109/ACII.2019.8925474 

[314] ✱ David Scherfgen and Jonas Schild. 2021. Estimating the Pose of a Medical 
Manikin for Haptic Augmentation of a Virtual Patient in Mixed Reality Training. 
In Symposium on Virtual and Augmented Reality (Virtual Event, Brazil) (SVR’21). 
Association for Computing Machinery, New York, NY, USA, 33–41. https: 
//doi.org/10.1145/3488162.3488166 

[315] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2021. Ninja Hands: 
Using Many Hands to Improve Target Selection in VR. In Proceedings of the 
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) 
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 
130, 14 pages. https://doi.org/10.1145/3411764.3445759 

[316] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2022. OVRlap: 
Perceiving Multiple Locations Simultaneously to Improve Interaction in VR. In 
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems 
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New 
York, NY, USA, Article 355, 13 pages. https://doi.org/10.1145/3491102.3501873 

[317] ✱ Susanne Schmidt, Oscar Javier Ariza Nunez, and Frank Steinicke. 2019. 
Blended Agents: Manipulation of Physical Objects within Mixed Reality Envi-
ronments and Beyond. In Symposium on Spatial User Interaction (New Orleans, 
LA, USA) (SUI ’19). Association for Computing Machinery, New York, NY, USA, 
Article 6, 10 pages. https://doi.org/10.1145/3357251.3357591 

[318] ✱ Anderson Schrader, Isabella Gebhart, Drew Garrison, Andrew Duchowski, 
Martian Lapadatescu, Weiyu Feng, Mahmoud Thabit, Fang Wang, Krzysztof 
Krejtz, and Daniel D. Petty. 2021. Toward Eye-Tracked Sideline Concussion 
Assessment in EXtended Reality. In ACM Symposium on Eye Tracking Research 
and Applications (Virtual Event, Germany) (ETRA ’21 Full Papers). Association 
for Computing Machinery, New York, NY, USA, Article 7, 11 pages. https: 
//doi.org/10.1145/3448017.3457378 

[319] ✱ Maximilian Schrapel, Thilo Schulz, and Michael Rohs. 2020. Augmenting 
Public Bookcases to Support Book Sharing. In 22nd International Conference 

https://doi.org/10.1145/3343036.3343129
https://doi.org/10.1145/3343036.3343129
https://doi.org/10.1109/TVCG.2019.2953063
https://doi.org/10.1109/TAFFC.2019.2899305
https://doi.org/10.1109/TAFFC.2019.2899305
https://doi.org/10.1109/TVCG.2020.2973064
https://doi.org/10.1145/3411764.3445170
https://doi.org/10.1145/3411764.3445170
https://doi.org/10.1007/s10055-020-00446-6
https://doi.org/10.1007/s10055-020-00446-6
https://doi.org/10.1109/VR50410.2021.00082
https://www.frontiersin.org/articles/10.3389/frvir.2021.721933
https://www.frontiersin.org/articles/10.3389/frvir.2021.721933
https://doi.org/10.1145/3374920.3374956
https://doi.org/10.1145/2980179.2980235
https://doi.org/10.1145/2980179.2980235
https://doi.org/10.1145/3488162.3488209
https://doi.org/10.1145/3488162.3488209
https://doi.org/10.1007/s12652-020-01887-2
https://doi.org/10.1145/3491102.3501875
https://doi.org/10.1109/TVCG.2018.2859987
https://doi.org/10.1109/AIVR52153.2021.00012
https://doi.org/10.1109/AIVR52153.2021.00012
https://doi.org/10.1109/TPAMI.2021.3070520
https://doi.org/10.1109/TPAMI.2021.3070520
https://doi.org/10.1145/3359996.3364269
https://doi.org/10.1145/3359996.3364269
https://doi.org/10.1145/3281505.3281546
https://doi.org/10.1145/3281505.3281546
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/VS-Games.2018.8493436
https://doi.org/10.1145/3488162.3488207
https://doi.org/10.1109/AIVR46125.2019.00063
https://doi.org/10.1145/3311823.3311843
https://doi.org/10.1109/ACII.2019.8925474
https://doi.org/10.1109/ACII.2019.8925474
https://doi.org/10.1145/3488162.3488166
https://doi.org/10.1145/3488162.3488166
https://doi.org/10.1145/3411764.3445759
https://doi.org/10.1145/3491102.3501873
https://doi.org/10.1145/3357251.3357591
https://doi.org/10.1145/3448017.3457378
https://doi.org/10.1145/3448017.3457378


When XR and AI Meet - A Scoping Review on Extended Reality and Artificial Intelligence 

on Human-Computer Interaction with Mobile Devices and Services (Oldenburg, 
Germany) (MobileHCI ’20). Association for Computing Machinery, New York, 
NY, USA, Article 11, 11 pages. https://doi.org/10.1145/3379503.3403542 

[320] ✱ Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lombardi, Tomas Simon, 
Jason Saragih, and Yaser Sheikh. 2020. The Eyes Have It: An Integrated Eye 
and Face Model for Photorealistic Facial Animation. ACM Trans. Graph. 39, 4, 
Article 91 (aug 2020), 15 pages. https://doi.org/10.1145/3386569.3392493 

[321] ✱ Valentin Schwind, David Halbhuber, Jakob Fehle, Jonathan Sasse, Andreas 
Pfafelhuber, Christoph Tögel, Julian Dietz, and Niels Henze. 2020. The Efects 
of Full-Body Avatar Movement Predictions in Virtual Reality Using Neural 
Networks. In 26th ACM Symposium on Virtual Reality Software and Technology 
(Virtual Event, Canada) (VRST ’20). Association for Computing Machinery, New 
York, NY, USA, Article 28, 11 pages. https://doi.org/10.1145/3385956.3418941 

[322] ✱ Valentin Schwind, Sven Mayer, Alexandre Comeau-Vermeersch, Robin 
Schweigert, and Niels Henze. 2018. Up to the Finger Tip: The Efect of Avatars 
on Mid-Air Pointing Accuracy in Virtual Reality. In Proceedings of the 2018 
Annual Symposium on Computer-Human Interaction in Play (Melbourne, VIC, 
Australia) (CHI PLAY ’18). Association for Computing Machinery, New York, 
NY, USA, 477–488. https://doi.org/10.1145/3242671.3242675 

[323] ✱ Sven Seele, Sebastian Misztal, Helmut Buhler, Rainer Herpers, and Jonas 
Schild. 2017. Here’s Looking At You Anyway! How Important is Realistic Gaze 
Behavior in Co-Located Social Virtual Reality Games?. In Proceedings of the 
Annual Symposium on Computer-Human Interaction in Play (Amsterdam, The 
Netherlands) (CHI PLAY ’17). Association for Computing Machinery, New York, 
NY, USA, 531–540. https://doi.org/10.1145/3116595.3116619 

[324] ✱ Nathan Semertzidis, Michaela Scary, Josh Andres, Brahmi Dwivedi, Yu-
tika Chandrashekhar Kulwe, Fabio Zambetta, and Florian Floyd Mueller. 2020. 
Neo-Noumena: Augmenting Emotion Communication. In Proceedings of the 
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, 
USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 
1–13. https://doi.org/10.1145/3313831.3376599 

[325] ✱ Xinyu Shi, Junjun Pan, Zeyong Hu, Juncong Lin, Shihui Guo, Minghong 
Liao, Ye Pan, and Ligang Liu. 2019. Accurate and Fast Classifcation of Foot 
Gestures for Virtual Locomotion. In 2019 IEEE International Symposium on Mixed 
and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 178–189. 
https://doi.org/10.1109/ISMAR.2019.000-6 

[326] ✱ Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Takuji Narumi, Tomo-
hiro Tanikawa, and Michitaka Hirose. 2019. Transcalibur: A Weight Shifting 
Virtual Reality Controller for 2D Shape Rendering Based on Computational 
Perception Model. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing 
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300241 

[327] ✱ Deeksha Shravani, Prajwal Y R, Prajwal V Atreyas, and Shobha G. 2021. 
VR Supermarket: a Virtual Reality Online Shopping Platform with a Dynamic 
Recommendation System. In 2021 IEEE International Conference on Artifcial 
Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 119–123. 
https://doi.org/10.1109/AIVR52153.2021.00028 

[328] ✱ Ilia Shumailov and Hatice Gunes. 2017. Computational analysis of valence 
and arousal in virtual reality gaming using lower arm electromyograms. In 
2017 Seventh International Conference on Afective Computing and Intelligent 
Interaction (ACII), Vol. 1. IEEE, New York, NY, USA, 164–169. https://doi.org/10. 
1109/ACII.2017.8273595 

[329] Mel Slater. 2014. Grand Challenges in Virtual Environments. Frontiers in Robotics 
and AI 1 (2014), –. https://doi.org/10.3389/frobt.2014.00003 

[330] ✱ Agata Marta Soccini and Federica Cena. 2021. The Ethics of Rehabilitation 
in Virtual Reality: the role of Self-Avatars and Deep Learning. In 2021 IEEE 
International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 324–328. https://doi.org/10.1109/AIVR52153. 
2021.00068 

[331] ✱ Gowri Somanath and Daniel Kurz. 2021. HDR Environment Map Estimation 
for Real-Time Augmented Reality. In 2021 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), Vol. 1. IEEE, New York, NY, USA, 11293– 
11301. https://doi.org/10.1109/CVPR46437.2021.01114 

[332] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas 
Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. 
Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition 
1 (2017). 

[333] Maximilian Speicher, Brian D. Hall, and Michael Nebeling. 2019. What is Mixed 
Reality?. In Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing 
Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3290605.3300767 

[334] ✱ Misha Sra, Pattie Maes, Prashanth Vijayaraghavan, and Deb Roy. 2017. Auris: 
Creating Afective Virtual Spaces from Music. In Proceedings of the 23rd ACM 
Symposium on Virtual Reality Software and Technology (Gothenburg, Sweden) 
(VRST ’17). Association for Computing Machinery, New York, NY, USA, Article 
26, 11 pages. https://doi.org/10.1145/3139131.3139139 

[335] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2012. Man vs. computer: 
Benchmarking machine learning algorithms for trafc sign recognition. Neural 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

Networks 32 (2012), 323–332. https://doi.org/10.1016/j.neunet.2012.02.016 
[336] ✱ Ryan R. Strauss, Raghuram Ramanujan, Andrew Becker, and Tabitha C. Peck. 

2020. A Steering Algorithm for Redirected Walking Using Reinforcement Learn-
ing. IEEE Transactions on Visualization and Computer Graphics 26, 5 (2020), 
1955–1963. https://doi.org/10.1109/TVCG.2020.2973060 

[337] ✱ Lena Stubbemann, Dominik Dürrschnabel, and Robert Refinghaus. 2021. 
Neural Networks for Semantic Gaze Analysis in XR Settings. In ACM Symposium 
on Eye Tracking Research and Applications (Virtual Event, Germany) (ETRA ’21 
Full Papers). Association for Computing Machinery, New York, NY, USA, Article 
5, 11 pages. https://doi.org/10.1145/3448017.3457380 

[338] ✱ Yongbin Sun, Alexandre Armengol-Urpi, Sai Nithin Reddy Kantareddy, Joshua 
Siegel, and Sanjay Sarma. 2019. MagicHand: Interact with IoT Devices in 
Augmented Reality Environment. In 2019 IEEE Conference on Virtual Reality and 
3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 1738–1743. https: 
//doi.org/10.1109/VR.2019.8798053 

[339] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian Sun. 2015. Cascaded 
Hand Pose Regression. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR). IEEE, New York, NY, USA, –. 

[340] Anthea Sutton, Mark Clowes, Louise Preston, and Andrew Booth. 2019. Meeting 
the review family: exploring review types and associated information retrieval 
requirements. Health Information & Libraries Journal 36, 3 (2019), 202–222. 
https://doi.org/10.1111/hir.12276 

[341] ✱ Katsuhiro Suzuki, Fumihiko Nakamura, Jiu Otsuka, Katsutoshi Masai, Yuta 
Itoh, Yuta Sugiura, and Maki Sugimoto. 2017. Recognition and mapping of facial 
expressions to avatar by embedded photo refective sensors in head mounted 
display. In 2017 IEEE Virtual Reality (VR), Vol. 1. IEEE, New York, NY, USA, 
177–185. https://doi.org/10.1109/VR.2017.7892245 

[342] ✱ Justyna Swidrak and Grzegorz Pochwatko. 2019. Being Touched by a Virtual 
Human.: Relationships Between Heart Rate, Gender, Social Status, and Com-
pliance.. In Proceedings of the 19th ACM International Conference on Intelligent 
Virtual Agents (Paris, France) (IVA ’19). Association for Computing Machinery, 
New York, NY, USA, 49–55. https://doi.org/10.1145/3308532.3329467 

[343] ✱ Sławomir K. Tadeja, Patrick Langdon, and Per Ola Kristensson. 2021. Sup-
porting Iterative Virtual Reality Analytics Design and Evaluation by Systematic 
Generation of Surrogate Clustered Datasets. In 2021 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, 
USA, 376–385. https://doi.org/10.1109/ISMAR52148.2021.00054 

[344] ✱ Xiao Tang, Xiaowei Hu, Chi-Wing Fu, and Daniel Cohen-Or. 2020. GrabAR: 
Occlusion-Aware Grabbing Virtual Objects in AR. In Proceedings of the 33rd 
Annual ACM Symposium on User Interface Software and Technology (Virtual 
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, 
USA, 697–708. https://doi.org/10.1145/3379337.3415835 

[345] Xiao Tang, Xiaowei Hu, Chi-Wing Fu, and Daniel Cohen-Or. 2020. GrabAR: 
Occlusion-Aware Grabbing Virtual Objects in AR. In Proceedings of the 33rd 
Annual ACM Symposium on User Interface Software and Technology (Virtual 
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, 
USA, 697–708. https://doi.org/10.1145/3379337.3415835 

[346] ✱ Catherine Taylor, Chris Mullany, Robin McNicholas, and Darren Cosker. 
2019. VR Props: An End-to-End Pipeline for Transporting Real Objects Into 
Virtual and Augmented Environments. In 2019 IEEE International Symposium on 
Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 83–92. 
https://doi.org/10.1109/ISMAR.2019.00-22 

[347] ✱ Kevin Kennard Thiel, Florian Naumann, Eduard Jundt, Stephan Guennemann, 
and Gudrun J. Klinker. 2021. C.DOT - Convolutional Deep Object Tracker 
for Augmented Reality Based Purely on Synthetic Data. IEEE Transactions on 
Visualization and Computer Graphics 1 (2021), 1–1. https://doi.org/10.1109/ 
TVCG.2021.3089096 

[348] ✱ Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and 
Matthias Nießner. 2018. FaceVR: Real-Time Gaze-Aware Facial Reenactment 
in Virtual Reality. ACM Trans. Graph. 37, 2, Article 25 (jun 2018), 15 pages. 
https://doi.org/10.1145/3182644 

[349] ✱ Fuhui Tian, Shogo Okada, and Katsumi Nitta. 2019. Analyzing Eye Movements 
in Interview Communication with Virtual Reality Agents. In Proceedings of 
the 7th International Conference on Human-Agent Interaction (Kyoto, Japan) 
(HAI ’19). Association for Computing Machinery, New York, NY, USA, 3–10. 
https://doi.org/10.1145/3349537.3351889 

[350] ✱ Hao Tian, Changbo Wang, Dinesh Manocha, and Xinyu Zhang. 2019. Realtime 
Hand-Object Interaction Using Learned Grasp Space for Virtual Environments. 
IEEE Transactions on Visualization and Computer Graphics 25, 8 (2019), 2623– 
2635. https://doi.org/10.1109/TVCG.2018.2849381 

[351] Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. 2019. xR-
EgoPose: Egocentric 3D Human Pose from an HMD Camera. In Proceedings of 
the IEEE International Conference on Computer Vision. IEEE, New York, NY, USA, 
7728–7738. 

[352] ✱ Denis Tome, Thiemo Alldieck, Patrick Peluse, Gerard Pons-Moll, Lourdes 
Agapito, Hernan Badino, and Fernando De la Torre. 2020. SelfPose: 3D Egocentric 
Pose Estimation from a Headset Mounted Camera. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 1 (2020), 1–1. https://doi.org/10.1109/TPAMI. 

https://doi.org/10.1145/3379503.3403542
https://doi.org/10.1145/3386569.3392493
https://doi.org/10.1145/3385956.3418941
https://doi.org/10.1145/3242671.3242675
https://doi.org/10.1145/3116595.3116619
https://doi.org/10.1145/3313831.3376599
https://doi.org/10.1109/ISMAR.2019.000-6
https://doi.org/10.1145/3290605.3300241
https://doi.org/10.1109/AIVR52153.2021.00028
https://doi.org/10.1109/ACII.2017.8273595
https://doi.org/10.1109/ACII.2017.8273595
https://doi.org/10.3389/frobt.2014.00003
https://doi.org/10.1109/AIVR52153.2021.00068
https://doi.org/10.1109/AIVR52153.2021.00068
https://doi.org/10.1109/CVPR46437.2021.01114
https://doi.org/10.1145/3290605.3300767
https://doi.org/10.1145/3139131.3139139
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1109/TVCG.2020.2973060
https://doi.org/10.1145/3448017.3457380
https://doi.org/10.1109/VR.2019.8798053
https://doi.org/10.1109/VR.2019.8798053
https://doi.org/10.1111/hir.12276
https://doi.org/10.1109/VR.2017.7892245
https://doi.org/10.1145/3308532.3329467
https://doi.org/10.1109/ISMAR52148.2021.00054
https://doi.org/10.1145/3379337.3415835
https://doi.org/10.1145/3379337.3415835
https://doi.org/10.1109/ISMAR.2019.00-22
https://doi.org/10.1109/TVCG.2021.3089096
https://doi.org/10.1109/TVCG.2021.3089096
https://doi.org/10.1145/3182644
https://doi.org/10.1145/3349537.3351889
https://doi.org/10.1109/TVCG.2018.2849381
https://doi.org/10.1109/TPAMI.2020.3029700
https://doi.org/10.1109/TPAMI.2020.3029700


CHI ’23, April 23–28, 2023, Hamburg, Germany 

2020.3029700 
[353] ✱ Daiki Tone, Daisuke Iwai, Shinsaku Hiura, and Kosuke Sato. 2020. FibAR: 

Embedding Optical Fibers in 3D Printed Objects for Active Markers in Dynamic 
Projection Mapping. IEEE Transactions on Visualization and Computer Graphics 
26, 5 (2020), 2030–2040. https://doi.org/10.1109/TVCG.2020.2973444 

[354] ✱ Miguel Torres-Ruiz, Felix Mata, Roberto Zagal, Giovanni Guzmán, Rolando 
Quintero, and Marco Moreno-Ibarra. 2020. A recommender system to generate 
museum itineraries applying augmented reality and social-sensor mining tech-
niques. Virtual Reality 24, 1 (March 2020), 175–189. https://doi.org/10.1007/ 
s10055-018-0366-z 

[355] ✱ Tomas Trescak and Anton Bogdanovych. 2017. Case-Based Planning for Large 
Virtual Agent Societies. In Proceedings of the 23rd ACM Symposium on Virtual 
Reality Software and Technology (Gothenburg, Sweden) (VRST ’17). Association 
for Computing Machinery, New York, NY, USA, Article 33, 10 pages. https: 
//doi.org/10.1145/3139131.3139155 

[356] Andrea C. Tricco, Erin Lillie, Wasifa Zarin, Kelly K. O’Brien, Heather Colquhoun, 
Danielle Levac, David Moher, Micah D.J. Peters, Tanya Horsley, Laura Weeks, 
Susanne Hempel, Elie A. Akl, Christine Chang, Jessie McGowan, Lesley Stewart, 
Lisa Hartling, Adrian Aldcroft, Michael G. Wilson, Chantelle Garritty, Simon 
Lewin, Christina M. Godfrey, Marilyn T. Macdonald, Etienne V. Langlois, Karla 
Soares-Weiser, Jo Moriarty, Tammy Cliford, özge Tunçalp, and Sharon E. Straus. 
2018. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and 
Explanation. Annals of Internal Medicine 169, 7 (Oct. 2018), 467–473. https: 
//doi.org/10.7326/M18-0850 

[357] ✱ Okan Tarhan Tursun, Elena Arabadzhiyska-Koleva, Marek Wernikowski, 
Radosław Mantiuk, Hans-Peter Seidel, Karol Myszkowski, and Piotr Didyk. 
2019. Luminance-Contrast-Aware Foveated Rendering. ACM Trans. Graph. 38, 
4, Article 98 (jul 2019), 14 pages. https://doi.org/10.1145/3306346.3322985 

[358] ✱ Junya Ueda and Katsunori Okajima. 2019. AR Food Changer using Deep 
Learning And Cross-Modal Efects. In 2019 IEEE International Conference on 
Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, 
USA, 110–1107. https://doi.org/10.1109/AIVR46125.2019.00025 

[359] ✱ Narumol Vannaprathip, Peter Haddawy, Holger Schultheis, and Siriwan 
Suebnukarn. 2022. Intelligent Tutoring for Surgical Decision Making: a Planning-
Based Approach. International Journal of Artifcial Intelligence in Education 32, 
2 (June 2022), 350–381. https://doi.org/10.1007/s40593-021-00261-3 

[360] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin Yumer, Ivan Laptev, 
and Cordelia Schmid. 2018. BodyNet: Volumetric Inference of 3D Human Body 
Shapes. In Proceedings of the European Conference on Computer Vision (ECCV). 
Springer, -, –. 

[361] ✱ Valentin Vasiliu and Gábor Sörös. 2019. Coherent Rendering of Virtual Smile 
Previews with Fast Neural Style Transfer. In 2019 IEEE International Symposium 
on Mixed and Augmented Reality (ISMAR), Vol. 1. IEEE, New York, NY, USA, 
66–73. https://doi.org/10.1109/ISMAR.2019.00-25 

[362] ✱ Harshita Ved and Caglar Yildirim. 2021. Detecting Mental Workload in 
Virtual Reality Using EEG Spectral Data: A Deep Learning Approach. In 2021 
IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR), 
Vol. 1. IEEE, New York, NY, USA, 173–178. https://doi.org/10.1109/AIVR52153. 
2021.00039 

[363] ✱ Rohith Venkatakrishnan, Roshan Venkatakrishnan, Reza Ghaiumy Anaraky, 
Matias Volonte, Bart Knijnenburg, and Sabarish V Babu. 2020. A Structural 
Equation Modeling Approach to Understand the Relationship between Control, 
Cybersickness and Presence in Virtual Reality. In 2020 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 682–691. 
https://doi.org/10.1109/VR46266.2020.00091 

[364] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text 
Entry Evaluations Based on Genuine Mobile Emails. In Proceedings of the 13th 
International Conference on Human Computer Interaction with Mobile Devices 
and Services (Stockholm, Sweden) (MobileHCI ’11). Association for Computing 
Machinery, New York, NY, USA, 295–298. https://doi.org/10.1145/2037373. 
2037418 

[365] ✱ Johanna Vielhaben, Hüseyin Camalan, Wojciech Samek, and Markus Wen-
zel. 2019. Viewport Forecasting in 360° Virtual Reality Videos with Machine 
Learning. 2019 IEEE International Conference on Artifcial Intelligence and Virtual 
Reality (AIVR) 1 (2019), 74–747. 

[366] ✱ Adam Viola, Sahil Sharma, Pankaj Bishnoi, Matheus Gadelha, Stefano Pe-
trangeli, Haoliang Wang, and Viswanathan Swaminathan. 2021. Trace Match & 
Merge: Long-Term Field-Of-View Prediction for AR Applications. In 2021 IEEE 
International Conference on Artifcial Intelligence and Virtual Reality (AIVR), Vol. 1. 
IEEE, New York, NY, USA, 1–9. https://doi.org/10.1109/AIVR52153.2021.00011 

[367] Ekaterina Volkova, Stephan de la Rosa, Heinrich H. Bülthof, and Betty Mohler. 
2014. The MPI Emotional Body Expressions Database for Narrative Scenarios. 
PLOS ONE 9, 12 (Dec. 2014), 1–28. https://doi.org/10.1371/journal.pone.0113647 

[368] ✱ Matias Volonte, Yu-Chun Hsu, Kuan-Yu Liu, Joe P. Mazer, Sai-Keung Wong, 
and Sabarish V. Babu. 2020. Efects of Interacting with a Crowd of Emotional 
Virtual Humans on Users’ Afective and Non-Verbal Behaviors. In 2020 IEEE 
Conference on Virtual Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, 
NY, USA, 293–302. https://doi.org/10.1109/VR46266.2020.00049 

Hirzle, et al. 

[369] ✱ Haoshuo Wang, Colm O’Fearghail, Emin Zerman, Karsten Braungart, Aljosa 
Smolic, and Sebastian Knorr. 2021. Visual Attention Analysis and User Guidance 
in Cinematic VR Film. In 2021 International Conference on 3D Immersion (IC3D), 
Vol. 1. IEEE, New York, NY, USA, 1–8. https://doi.org/10.1109/IC3D53758.2021. 
9687294 

[370] ✱ Isaac Wang, Jesse Smith, and Jaime Ruiz. 2019. Exploring Virtual Agents 
for Augmented Reality. In Proceedings of the 2019 CHI Conference on Human 
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association 
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/ 
3290605.3300511 

[371] ✱ Ker-Jiun Wang, Quanbo Liu, Yifan Zhao, Caroline Yan Zheng, Soumya Vha-
sure, Quanfeng Liu, Prakash Thakur, Mingui Sun, and Zhi-Hong Mao. 2018. 
Intelligent Wearable Virtual Reality (VR) Gaming Controller for People with 
Motor Disabilities. In 2018 IEEE International Conference on Artifcial Intelli-
gence and Virtual Reality (AIVR), Vol. 1. IEEE, New York, NY, USA, 161–164. 
https://doi.org/10.1109/AIVR.2018.00034 

[372] ✱ Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik 
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand In-
teractive Augmented Reality Applications. In The 34th Annual ACM Sympo-
sium on User Interface Software and Technology (Virtual Event, USA) (UIST 
’21). Association for Computing Machinery, New York, NY, USA, 552–567. 
https://doi.org/10.1145/3472749.3474769 

[373] ✱ Yuyang Wang, Jean-Rémy Chardonnet, and Frédéric Merienne. 2019. VR 
Sickness Prediction for Navigation in Immersive Virtual Environments using 
a Deep Long Short Term Memory Model. In 2019 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR), Vol. 1. IEEE, New York, NY, USA, 1874–1881. 
https://doi.org/10.1109/VR.2019.8798213 

[374] Na Wang, Haoliang Wang, Stefano Petrangeli, Viswanathan Swaminathan, Fei 
Li, and Songqing Chen. 2020. Towards Field-of-View Prediction for Augmented 
Reality Applications on Mobile Devices. In Proceedings of the 12th ACM Interna-
tional Workshop on Immersive Mixed and Virtual Environment Systems (Istanbul, 
Turkey) (MMVE ’20). Association for Computing Machinery, New York, NY, 
USA, 13–18. https://doi.org/10.1145/3386293.3397114 

[375] Pei Wang. 2019. On Defning Artifcial Intelligence. Journal of Artifcial General 
Intelligence 10, 2 (2019), 1–37. https://doi.org/10.2478/jagi-2019-0002 

[376] ✱ Philip Weber, Kevin Krings, Julia Nießner, Sabrina Brodesser, and Thomas 
Ludwig. 2021. FoodChattAR: Exploring the Design Space of Edible Virtual 
Agents for Human-Food Interaction. In Designing Interactive Systems Conference 
2021 (Virtual Event, USA) (DIS ’21). Association for Computing Machinery, New 
York, NY, USA, 638–650. https://doi.org/10.1145/3461778.3461998 

[377] ✱ Shih-En Wei, Jason Saragih, Tomas Simon, Adam W. Harley, Stephen Lom-
bardi, Michal Perdoch, Alexander Hypes, Dawei Wang, Hernan Badino, and 
Yaser Sheikh. 2019. VR Facial Animation via Multiview Image Translation. ACM 
Trans. Graph. 38, 4, Article 67 (jul 2019), 16 pages. https://doi.org/10.1145/ 
3306346.3323030 

[378] ✱ Wei Wei, Edmond S. L. Ho, Kevin D. McCay, Robertas Damaševičius, Rytis 
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A LIST OF DATASETS, SOFTWARE, LIBRARIES, AND MODELS 
Table 8: List of datasets. Part I. 

Name Short Description Link Source 

ACE 50 users exploring 5 diferent AR scences https://cs.gmu.edu/~sqchen/open- [374] 
access/ACE-Dataset.tgz 

BigHand2.2M Hand pose dataset https://sites.google.com/site/qiyeincv/ [404] 
home/bibtex_cvpr2017 

CASSIE Dataset VR sketch data https://gitlab.inria.fr/D3/cassie-data [403] 
Cityscape Street scenes from 50 diferent cities https://www.cityscapes-dataset.com/ [69] 
CMU Graphics Lab Mo- 49 gaits obtained from subjects walking with diferent http://mocap.cs.cmu.edu/ 
tion Capture Database styles 
CMU Panoptic Dataset 65 sequences and 1.5 millions of 3D skeletons http://domedb.perception.cs.cmu.edu/ [151] 
DeepFashion Large-scale clothes database including annotations of http://mmlab.ie.cuhk.edu.hk/projects/ [220] 

clothing items and cross-pose/cross-domain image pairs DeepFashion.html 
DGaze dataset Gaze data in dynamic virtual indoor and outdoor scenes http://zhiminghu.net/DGaze [135] 
Director’s Cut Includes the directional cues and plot points as well as https://v-sense.scss.tcd.ie/?p=2477 [177] 

the scan-paths of the test subjects watching flms in VR 
DISFA Spontaneous facial action intensity database http://www.engr.du.edu/mmahoor/ [237] 

DISFA.htm 
DIV2K Diverse 2K resolution high quality images with a large https://data.vision.ee.ethz.ch/cvl/ [3] 

diversity of contents DIV2K/ 
EgoCap 100.000 egocentric images of eight people in diferent https://vcai.mpi-inf.mpg.de/projects/ [298] 

clothing EgoCap/ 
EgoVIP Egocentric visual-inertial 3D human pose dataset https://sites.google.com/site/ [52] 

youngwooncha/egovip 
EHTaskDataset Eye and head movements of 30 participants performing http://zhiminghu.net/EHTask [133] 

four tasks, i.e. Free viewing, Visual search, Saliency, and 
Track, in 15 360-degree VR videos 

Enron Mobile Email Sentences written by Enron employees on BlackBerry http://www.keithv.com/software/ [364] 
Dataset mobile devices enronmobile/ 
Extended Cohn-Kanade Dataset for action unit and emotion-specifed emotion https://sites.pitt.edu/~emotion/ck- [223] 
Dataset (CK+) spread.htm 
FERG-DB 2D images of stylized characters with annotated facial http://grail.cs.washington.edu/ [13] 

expressions projects/deepexpr/ferg-2d-db.html 
GrabAR1 Oaired images of hand and objects link not found [345] 
GTSB German trafc sign detection benchmark, including 900 https://benchmark.ini.rub.de/gtsdb_ [130] 

images from three categories news.html 
GTSRB German trafc sign multi-category classifcation bench- https://benchmark.ini.rub.de/gtsrb_ [335] 

mark news.html 
Human 3.6M 3.6 million human poses and corresponding images of http://vision.imar.ro/human3.6m/ [141] 

11 professional actors and 17 scenarios description.php 
IISc Video Discomfort videos and discomfort scores https://github.com/rajiviisc/Video- [25] 
Dataste Discomfort 
ImageNet Image database https://www.image-net.org/ [308] 

challenges/LSVRC/ 
JAFFE Japanese female facial expression dataset https://zenodo.org/record/3451524 [227] 
KITTI Trafc scenarios https://www.cvlibs.net/datasets/kitti/ [104] 
Laval Indoor HDR 2100+ high resolution indoor panoramas http://indoor.hdrdb.com/ [101] 
Dataset 

https://cs.gmu.edu/~sqchen/open-access/ACE-Dataset.tgz
https://cs.gmu.edu/~sqchen/open-access/ACE-Dataset.tgz
https://sites.google.com/site/qiyeincv/home/bibtex_cvpr2017
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http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://zhiminghu.net/DGaze
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http://www.engr.du.edu/mmahoor/DISFA.htm
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https://data.vision.ee.ethz.ch/cvl/DIV2K/
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Table 9: List of datasets. Part II. 

Name Short Description Link Source 

Microsoft COCO: Com-
mon Objects in Context 
MPI Emotional Body 
Expressions Database 
for Narrative Scenarios 
MPI-INF-3DHP 

MSRA14 
MSRA15 
PanoContext 
People Snapshot Data-
base 
Places2 

Public-AR-Booksearch 

Stanford 2D-3D Seman-
tics Dataset 

SUNCG 
The Million Song 
Dataset 
UEC FOOD 100 
UIBVFEED 
UNOC dataset 

VR-EyeTracking 

VRSA 
XR-Ego-Pose 

-

-

-
-

-

-

-

-

-

Photos of 91 object types 

Emotional body expressions 

3D human body pose estimation dataset consisting of 
both constrained indoor and complex outdoor scenes 
Hand tracking dataset 
Hand gesture dataset 
Panorama dataset 
3D body models and texture of arbitrary people from a 
single, monocular video in which a person is moving 
Scene photographs of a diverse list of the types of envi-
ronments 
Images of book spines in diferent size and various con-
ditions 
Provides a variety of mutually registered modalities 
from 2D, 2.5D and 3D domains, with instance-level se-
mantic and geometric annotations 
Synthetic 3D scenes 
Collection of audio features and metadata for a million 
contemporary popular music tracks 
Food photos 
Virtual facial expressions 
Large-scale motion capture dataset with body and fnger 
motions 
Eye tracking data of videos captured in dynamic scenes, 
each video is viewed by at least 31 subjects 
Image and video database 
Photorealistic egocentric camera images in a varierty 
of indoot and outdoor space 
LDR environment maps 

Colored 3D scans/Collection of points with 3D coordi-
nates and RGB color values 
Stereoscopic 3D videos and their sickness ratings 
Speech and corresponding gestures in a 3D human pose 
format 
Visual-inertial input dataset for SLAM applications 

Various datasets for viewport prediction 

Dataset for improving humans’ ability to interpret deic-
tic gestures in VR 
Human body motion reconstructing using only 
eyeglasses-mounted cameras and few body-worn in-
ertial sensors 
Exploring user behaviors in spherical video streaming 

https://arxiv.org/abs/1405.0312 

http://fgshare.com/articles/MPI_ 
EMBM_Database_Mocap_Files/ 
1220428 
https://vcai.mpi-inf.mpg.de/3dhp-
dataset/ 
https://jimmysuen.github.io/ 
https://jimmysuen.github.io/ 
https://panocontext.cs.princeton.edu/ 
https://graphics.tu-bs.de/people-
snapshot 
http://places2.csail.mit.edu/ 

https://github.com/M-Schrapel/Public-
AR-Booksearch 
http://buildingparser.stanford.edu/ 
dataset.html 

https://sscnet.cs.princeton.edu 
https://github.com/tbertinmahieux/ 
MSongsDB 
http://foodcam.mobi/dataset100.html 
http://ugivia.uib.es/uibvfed/ 
https://github.com/facebookresearch/ 
UNOC 
https://github.com/xuyanyu-shh/VR-
EyeTracking 
https://ivylabdb.kaist.ac.kr/ 
https://github.com/facebookresearch/ 
xR-EgoPose 
http://www.jfalonde.ca/projects/ 
deepIndoorLight 
http://buildingparser.stanford.edu/ 
dataset.html 

no link found 

https://doi.org/10.5281/zenodo. 
5018311 
https://gitlab.com/miguelfromeror/ 
head-motion-prediction/tree/master 
https://github.com/interactionlab/ 
Deictic-Pointing-in-VR 
https://sites.google.com/site/ 
youngwooncha/egovip 

https://wuchlei-thu.github.io 

[211] 

[367] 

[242] 

[285] 
[339] 
[408] 
[10] 

[415] 

[319] 

[18] 

[332] 
[31] 

[235] 
[265] 
[272] 

[393] 

[172] 
[351] 

[101] 

[19] 

[267] 
[295] 

[305] 

[238] 

[52] 

[385] 
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Table 10: List of software toolkits and libraries. Part I. 

Name Short Description Link Paper 

CERT: The Computer "Fully automated facial expression recognition that op- https://inc.ucsd.edu/mplab/users/ [213] 
Expression Recognition erates in real-time" marni/Projects/CERT.htm 
Toolbox 
COVAREP Repository for speech processing algorithms http://covarep.github.io/covarep [75] 
Covert Embodied unity code for VR experimental setup https://github.com/onejgordon/cec_vr [109] 
Choice 
Daz-3D Studio Creation of 3D scenes and characters https://www.daz3d.com/ -
FAtiMA Toolkit "Collection of tools/assets designed for the creation of https://fatima-toolkit.eu/ -

characters and robots with social and emotional intelli-
gence." 

Googles ARCore plat- "With ARCore, build new augmented reality experi- https://developers.google.com/ar -
form ences that seamlessly blend the digital and physical 

worlds. Transform the way people play, shop, learn, 
create, and experience the world together—at Google 
scale" 

Google’s Dialogfow "Lifelike conversational AI with state-of-the-art virtual https://cloud.google.com/dialogfow -
service for dialogue agents. Available in two editions: Dialogfow CX (ad-
manager vanced), Dialogfow ES (standard)" 
HeMoG gravitational white-box model for head motion estima- https://gitlab.com/miguelfromeror/ [304] 

tion in 360 videos hemog 
HRV Python library "Heart Reate Variability analysis" https://pypi.org/project/hrv-analysis/ -
Keras "Keras is an API designed for human beings, not ma- https://keras.io/ -

chines. Keras follows best practices for reducing cog-
nitive load: it ofers consistent & simple APIs, it mini-
mizes the number of user actions required for common 
use cases, and it provides clear & actionable error mes-
sages. It also has extensive documentation and devel-
oper guides." 

Learning Gain Predic- contains code and featurized data https://github.com/LeonDong1993/ [252] 
tion learning-gain-prediction 
LIPSYNC Lip-syncing and facial animation tool for Unity https://lipsync.rogodigital.com/ -
Mixamo Animation tool for 3D character animation https://www.mixamo.com/ -
OpenPose "Real-time multi-person system to jointly detect human https://github.com/CMU-Perceptual- [51] 

body, hand, facial, and foot keypoints (in total 135 key- Computing-Lab/openpose 
points) on single images" 

https://inc.ucsd.edu/mplab/users/marni/Projects/CERT.htm
https://inc.ucsd.edu/mplab/users/marni/Projects/CERT.htm
http://covarep.github.io/covarep
https://github.com/onejgordon/cec_vr
https://www.daz3d.com/
https://fatima-toolkit.eu/
https://developers.google.com/ar
https://cloud.google.com/dialogflow
https://gitlab.com/miguelfromeror/hemog
https://gitlab.com/miguelfromeror/hemog
https://pypi.org/project/hrv-analysis/
https://keras.io/
https://github.com/LeonDong1993/learning-gain-prediction
https://github.com/LeonDong1993/learning-gain-prediction
https://lipsync.rogodigital.com/
https://www.mixamo.com/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Table 11: List of software toolkits and libraries. Part II. 

Name Short Description Link Paper 

OpenRDW Provides APIs to access the attributes of scenes, to cus-
tomize the RDW controllers, to simulate and visualize 
the navigation process, to export multiple formats of 
the results, and to evaluate RDW techniques 

Panoptic-DeepLab Image segmentation library 

PhysioNet "The Research Resource for Complex Physiologic Sig-
nals" 

Poly Haven 3D asset library 
PyTorch "An open source machine learning framework that accel-

erates the path from research prototyping to production 
deployment." 

ResonanceAudio "Resonance Audio is a multi-platform spatial audio SDK, 
delivering high fdelity at scale. This powerful spatial 
audio technology is critical to realistic experiences for 
AR, VR, gaming, and video." 

Scikit-learn "Simple and efcient tools for predictive data analy-
sis Accessible to everybody, and reusable in various 
contexts Built on NumPy, SciPy, and matplotlib Open 
source, commercially usable - BSD license" 

TensorFlow "Create production-grade machine learning models 
with TensorFlow" 

Shark library "Shark is a fast, modular, feature-rich open-source C++ 
machine learning library. It provides methods for linear 
and nonlinear optimization, kernel-based learning al-
gorithms, neural networks, and various other machine 
learning techniques. It serves as a powerful toolbox for 
real world applications as well as for research. Shark 
works on Windows, MacOS X, and Linux. It comes with 
extensive documentation. Shark is licensed under the 
GNU Lesser General Public License." 

Seurat system for image-based scene simplifcation for VR 
SimSensei Virtual interviewer for healthcare decision support 
VGG Image Annotator Image annotator tool 

Virtual Human Toolkit Toolkit for the creation of virtual human conversational 
characters 

https://github.com/yaoling1997/ [204] 
OpenRDW 

https://github.com/bowenc0221/ [59] 
panoptic-deeplab 
https://physionet.org/ -

https://hdrihaven.com/ -
https://pytorch.org/ -

https://resonance-audio.github.io/ -
resonance-audio/ 

https://scikit-learn.org/stable/ -

https://www.tensorfow.org/ -

https://www.shark-ml.org/ -

https://github.com/googlevr/seurat [184] 
http://simsensei.ict.usc.edu/ [78] 
https://www.robots.ox.ac.uk/~vgg/ -
software/via/via_demo.html 
https://vhtoolkit.ict.usc.edu/ -

https://github.com/yaoling1997/OpenRDW
https://github.com/yaoling1997/OpenRDW
https://github.com/bowenc0221/panoptic-deeplab
https://github.com/bowenc0221/panoptic-deeplab
https://physionet.org/
https://hdrihaven.com/
https://pytorch.org/
https://resonance-audio.github.io/resonance-audio/
https://resonance-audio.github.io/resonance-audio/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.shark-ml.org/
https://github.com/googlevr/seurat
http://simsensei.ict.usc.edu/
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html
https://vhtoolkit.ict.usc.edu/
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Table 12: List of ML models and neural networks. 

Name Short Description Link Paper 

ARShadowGAN Model for creating virtual shadows 

BodyNet Volumetric inference of 3D human body shapes 

Convolutional-Pose- Model for articulated pose estimation 
Machines 

CUT Contrastive unparied translation for image-to-image 
translation 

CycleGAN Image-to-image transaltion without input-output pairs 

EEGModels A Collection of Convolutional Neural Network (CNN) 
models for EEG signal processing and classifcation, 
written in Keras and Tensorfow. 

ICNet Model that creates segmentation masks for every pizel 
in an image 

Pix2Pix Image-to-image translation with conditional adversarial 
networks 

SiCloPe Silhouette-based representation for modeling clothed 
human bodies 

StarGAN Image-to-image translations for multiple domains 
StarGAN v2 Image-to-image translations for multiple domains 
- Neural network for predicting avatar movements in VR 

https://github.com/ldq9526/ [214] 
ARShadowGAN 
http://www.di.ens.fr/willow/research/ [360] 
bodynet/ 
https://github.com/CMU-Perceptual- [379] 
Computing-Lab/convolutional-pose-
machines-release 
https://github.com/taesungp/ [274] 
contrastive-unpaired-translation 
https://github.com/junyanz/ [417] 
CycleGAN 
https://github.com/vlawhern/arl- [190] 
eegmodels 

https://github.com/hellochick/ICNet- [414] 
tensorfow 
https://github.com/phillipi/pix2pix [144] 

https://vgl.ict.usc.edu/Research/ [260] 
SiCloPe/ 
https://github.com/yunjey/StarGAN [63] 
https://github.com/clovaai/stargan-v2 [64] 
https://github.com/david-halbhuber/ [321] 
motionprediction 

https://github.com/ldq9526/ARShadowGAN
https://github.com/ldq9526/ARShadowGAN
http://www.di.ens.fr/willow/research/bodynet/
http://www.di.ens.fr/willow/research/bodynet/
https://github.com/CMU-Perceptual-Computing-Lab/convolutional-pose-machines-release
https://github.com/CMU-Perceptual-Computing-Lab/convolutional-pose-machines-release
https://github.com/CMU-Perceptual-Computing-Lab/convolutional-pose-machines-release
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/taesungp/contrastive-unpaired-translation
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/hellochick/ICNet-tensorflow
https://github.com/hellochick/ICNet-tensorflow
https://github.com/phillipi/pix2pix
https://vgl.ict.usc.edu/Research/SiCloPe/
https://vgl.ict.usc.edu/Research/SiCloPe/
https://github.com/yunjey/StarGAN
https://github.com/clovaai/stargan-v2
https://github.com/david-halbhuber/motionprediction
https://github.com/david-halbhuber/motionprediction
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B SEARCH QUERIES 

B.1 Search for Venue-based Strategy 
• DATE: June 15, 2022 to June 24, 2022 
• QUERY: TITLE-ABSTRACT-KEYWORDS("augmented reality" 
OR "AR" OR "extended reality" OR "head-mounted 
display" OR "head-up display" OR "head-worn display" 
OR "headset" OR "HMD" OR "immersive environment" 
OR "mixed reality" OR "virtual environment" OR 
"virtual reality" OR "virtual space" OR "VR" OR 
"XR") AND TITLE-ABSTRACT-KEYWORDS("agent" OR 
"artificial intelligence" OR "bandit" OR "classif*" 
OR "cluster*" OR "computational" OR "computer vision" 
OR "dataset" OR "deep" OR "estimation" OR "generative" 
OR "intelligent" OR "learning" OR "machine learning" 
OR "markov" OR "model*" OR "natural language 
processing" OR "neural" OR "optimi*" OR "predict*" 
OR "reasoning" OR "recognition" OR "segmentation" 
OR "*supervised*" OR "tensor"). 

B.2 First Searches 
Scopus. 

• DATE: May 16, 2022 
• QUERY: TITLE-ABS-KEY("augmented reality" OR AR 
OR "extended reality" OR "head-mounted display" 
OR "head-up display" OR "head-worn display" OR 
"headset" OR HMD OR "immersive environment" OR 
"mixed reality" OR "virtual environment" OR "virtual 
reality" OR "virtual space" OR VR OR XR) AND 
TITLE-ABS-KEY(agent OR "artificial intelligence" 
OR bandit OR classif* OR cluster* OR computational 
OR "computer vision" OR dataset OR deep OR estimation 
OR generative OR intelligent OR learning OR "machine 
learning" OR markov OR model* OR "natural language 
processing" OR neural OR optimi* OR predict* OR 
reasoning OR recognition OR segmentation OR 
supervised* OR tensor), FILTER: years between 2017 and 
2021 

• number of results: 45031 
• LANGUAGE: English (43552), Chinese (620), Spanish (337), 
Portuguese (150), German (133), Russian (113), French (75), 
Korean (51), Turkish (37), Japanese (29), Italian (24), Slove-
nian (10), Hungarian (6), Czech (4), Ukrainian (4), Bosnian 
(3), Lithuanian (3), Polish (3), Arabic (2), Croatian (2), Danish 
(2), Dutch (2), Greek (2), Persian (2), Slovak (2), Afrikaans (1), 
Estonian (1) Indonesian (1), Malay (1), Undefned (1) 

• SUBJECT AREA: Computer Science (27587), Engineer-
ing (17,566), Mathematics (7,390), Social Sciences (6,190), 
Medicine (5,149), Physics and Astronomy (3,857), Materials 
Science (2,388), Decision Sciences (2,358), Biochemistry, Ge-
netics and Molecular Biology (1,579), Neuroscience (1,447), 
Psychology (1,383), Energy (1,300), Business, Management 
and Accounting (1,294), Environmental Science (1,170), Arts 
and Humanities (1,107), Earth and Planetary Sciences (905), 

Chemistry (826), Chemical Engineering (767), Health Pro-
fessions (553), Multidisciplinary (435), Pharmacology, Toxi-
cology and Pharmaceutics (378), Agricultural and Biological 
Sciences (367), Nursing (255), Economics, Econometrics and 
Finance (227), Immunology and Microbiology (142), Den-
tistry (125), Veterinary (30), Undefned 2) 

• DOCUMENT TYPE: Conference Paper (18216), Article 
7165), Conference Review (1,260), Book Chapter (533), Re-
view (313), Book (29), Editorial (26), Erratum (15), Note (6), 
Retracted (5), Short Survey (2), Data Paper(1), Letter (1), Un-
defned (15) 

• SOURCE TYPE: Conference Proceedings (14639), Journal 
(7292), Book Series (3431), Trade Journal (19) 

• SOURCE TITLE: excluded only: Workshop Proceedings (383), 
National Venues (255+97+51+45+31+28), Adjunct Proceed-
ings (104+63+59+57+42) 

• FINAL 8877 without abbreviations, 23979 including 
abbreviations 

• KEYWORD: human computer interaction (1356) 

Web of Science. 

• DATE: May 16, 2022 
• QUERY: (TI=("augmented reality" OR AR OR "extended 
reality" OR "head-mounted display" OR "head-up 
display" OR "head-worn display" OR "headset" OR 
HMD OR "immersive environment" OR "mixed reality" 
OR "virtual environment" OR "virtual reality" OR 
"virtual space" OR VR OR XR) OR AB=("augmented 
reality" OR AR OR "extended reality" OR "head-
mounted display" OR "head-up display" OR "head-worn 
display" OR "headset" OR HMD OR "immersive envi-
ronment" OR "mixed reality" OR "virtual environment" 
OR "virtual reality" OR "virtual space" OR VR OR 
XR) OR AK=("augmented reality" OR AR OR "extended 
reality" OR "head-mounted display" OR "head-up 
display" OR "head-worn display" OR "headset" OR 
HMD OR "immersive environment" OR "mixed reality" 
OR "virtual environment" OR "virtual reality" OR 
"virtual space" OR VR OR XR)) AND (TI=(agent OR 
"artificial intelligence" OR bandit OR classif* 
OR cluster* OR computational OR "computer vision" 
OR dataset OR deep OR estimation OR generative OR 
intelligent OR learning OR "machine learning" OR 
markov OR model* OR "natural language processing" 
OR neural OR optimi* OR predict* OR reasoning 
OR recognition OR segmentation OR *supervised* OR 
tensor) OR AB=(agent OR "artificial intelligence" 
OR bandit OR classif OR cluster OR computational 
OR "computer vision" OR dataset OR deep OR estimation 
OR generative OR intelligent OR learning OR "machine 
learning" OR markov OR model OR "natural language 
processing" OR neural OR optimi OR predict OR 
reasoning OR recognition OR segmentation OR super-
vised OR tensor) OR AK=(agent OR "artificial intel-
ligence" OR bandit OR classif OR cluster OR compu-
tational OR "computer vision" OR dataset OR deep 
OR estimation OR generative OR intelligent OR 
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learning OR "machine learning" OR markov OR model 
OR "natural language processing" OR neural OR 
optimi OR predict OR reasoning OR recognition OR 
segmentation OR supervised OR tensor)) 

• number of results: 39380 
• LANGUAGE: English(38,434), Spanish (293), Chinese (141), 
Portuguese (128), Russian (113), German (77), Turkish (48), 
French (41), Italian (24), Korean (19), Japanese (15), Ukrainian 
(11), Polish(7), Hungarian(6), Bulgarian(4), Catalan(3), Afri-
kaans(2), Arabic(2), Croatian(2), Czech(2), Malay(2), Slove-
nian(2), Estonian(1), Norwegian (1), Slovak(1), Unspecifed 
(1) 

• RESEARCH AREA: Computer Science (11379), 5 excluded 
with most papers: Engineering (9346), Education Educational 
Research (2869), Physics (2746), Chemistry (2559), Telecom-
munications (1822) 

• DOCUMENT TYPE: Proceedings Papers (7512), Articles 
(3858), Review Articles (127), Early Access (98), Book Chap-
ters (91), Editorial Materials (32), Corrections (5), Books (1), 
Data Papers (1), Retracted Publications (1) 

• PUBLICATION TITLES: excluded only: workshop (28+14+17), 
adjunct (27+25+59+56+50+43+31+31), regional (45+23+13+12), 
other winter conference (16), lecture notes (23) 

• FINAL 10713 

C CRITERIA FOR INCLUDING A VENUE 
• Venues that explicitly mention the name of one of the felds 
of interest (we include HCI here, because a lot of XR research 
is published in general HCI venues). An example for an XR 
venue is VRST5 and an example for an AI venue is ICML7. 

• Venues that include one of the following terms: computer 
vision, computer graphics, image processing. 

• Venues whose name includes the word “intelligent” com-
bined with “system”, “agent”, “user interface”, “computing”, 
“automation”, “fuzzy systems”, or “signal processing”. 

• Venues were excluded when their name contained the word 
“intelligent” without further specifcation that is of interest 
to us, such as “robots”, “vehicles”, “design”, “transportation 
system”, “engineering”, or “control”. 

D LIST OF INCLUDED VENUES 
ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYS-
TEMS 
ACM COMPUTING SURVEYS 
ACM CONFERENCE ON DESIGNING INTERACTIVE SYSTEMS 
ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS 
ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES 
ACM SIGGRAPH 
ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL-REALITY 
CONTINUUM AND ITS APPLICATIONS IN INDUSTRY 
ACM SYMPOSIUM ON APPLIED PERCEPTION 
ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS 
ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOL-
OGY 
ACM TRANSACTIONS ON APPLIED PERCEPTION 
ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION 

ACM TRANSACTIONS ON GRAPHICS 
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS 
ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND 
TECHNOLOGY 
AUGMENTED HUMAN INTERNATIONAL CONFERENCE 
COMPUTER GRAPHICS INTERNATIONAL CONFERENCE 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND 
INFORMATION SYSTEMS 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND 
VIRTUAL REALITY 
INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTI-
FICIAL INTELLIGENCE (CSAI) / INTERNATIONAL CONFERENCE ON 
INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT) 
INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL 
INTELLIGENCE 
INTERNATIONAL CONFERENCE ON COMPUTING AND PATTERN RECOG-
NITION 
INTERNATIONAL CONFERENCE ON HCI AND UX 
INTERNATIONAL CONFERENCE ON HUMAN-AGENT INTERACTION 
INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESS-
ING 
INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL IN-
TELLIGENCE 
INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES 
INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COM-
PUTING 
INTERNATIONAL CONFERENCE ON MATHEMATICS AND ARTIFICIAL 
INTELLIGENCE 
INTERNATIONAL CONFERENCE ON MOBILE HUMAN-COMPUTER IN-
TERACTION 
INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CON-
TROL AND ARTIFICIAL INTELLIGENCE 
INTERNATIONAL CONFERENCE ON VIRTUAL AND AUGMENTED RE-
ALITY SIMULATIONS 
INTERNATIONAL CONFERENCE ON VIRTUAL REALITY 
INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PRO-
CESSING 
PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE 
ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION 
SYMPOSIUM ON SPATIAL USER INTERACTION 
VIRTUAL REALITY INTERNATIONAL CONFERENCE 
AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE 
CSI INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE 
AND SIGNAL PROCESSING 
IEEE COMPUTER GRAPHICS AND APPLICATIONS 
IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINAN-
CIAL ENGINEERING AND ECONOMICS CIFER 
IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNI-
TION 
IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENCE 
SYSTEMS 
IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES 
IEEE INTELLIGENT SYSTEMS 
IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND 
SIGNAL PROCESSING 
IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE 
AND VIRTUAL REALITY 
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IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE 
CIRCUITS AND SYSTEMS 
IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND 
INTELLIGENT SYSTEMS 
IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLI-
GENCE & COMMUNICATION TECHNOLOGY 
IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLI-
GENCE AND APPLICATIONS 
IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLI-
GENCE AND COMPUTING RESEARCH 
IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLI-
GENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS 
AND APPLICATIONS 
IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION 
IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING ICIP 
IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND 
INTELLIGENCE SYSTEM 
IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND 
APPLICATIONS 
IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PRO-
CESSING APPLICATIONS 
IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS 
AND IMAGE PROCESSING 
IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 
IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYS-
TEMS 
IEEE SYMPOSIUM ON 3D USER INTERFACES 
IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE 
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 
IEEE TRANSACTIONS ON FUZZY SYSTEMS 
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 
IEEE TRANSACTIONS ON IMAGE PROCESSING 
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYS-
TEMS 
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTEL-
LIGENCE 
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 
IEEE VIRTUAL HUMANS AND CROWDS FOR IMMERSIVE ENVIRON-
MENTS 
IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DIS-
TRIBUTED COMPUTING 
IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTEL-
LIGENCE AND INTELLIGENT AGENT TECHNOLOGY 
INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CON-
FERENCE 
INTELLIGENT SYSTEMS CONFERENCE 
INTERNATIONAL CONFERENCE INFORMATION INTELLIGENCE SYS-
TEMS AND APPLICATIONS 
INTERNATIONAL CONFERENCE ON 3D IMMERSION 
INTERNATIONAL CONFERENCE ON 3D VISION 
INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL 
INTELLIGENCE 
INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND 
INTELLIGENT INTERACTION 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND 
COMPUTER ENGINEERING 

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND 
DATA PROCESSING 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND 
KNOWLEDGE ENGINEERING 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIR-
CUITS AND SYSTEMS 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR 
INDUSTRIES 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN 
INFORMATION AND COMMUNICATION 
INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COM-
PUTATIONAL INTELLIGENCE 
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 
AND APPLICATIONS 
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 
AND SECURITY 
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE 
IN DATA SCIENCE 
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND 
COMPUTATIONAL INTELLIGENCE 
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE/IN-
TELLIGENCE AND APPLIED INFORMATICS 
INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, 
AND INTELLIGENT SYSTEMS 
INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT 
SYSTEM 
INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT 
SYSTEMS 
INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT 
SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) 
INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTERS AND 
ARTIFICIAL INTELLIGENCE 
INTERNATIONAL CONFERENCE ON GAMES AND VIRTUAL WORLDS 
FOR SERIOUS APPLICATIONS 
INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING 
INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED 
SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOL-
OGY CONGRESS 
INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND 
HUMAN-COMPUTER INTERACTION 
INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE 
SYSTEMS AND CYBERNETICS 
INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS 
INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CY-
BERNETICS 
INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA 
SCIENCE 
INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMA-
TION TECHNOLOGY 
INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS 
INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE 
VISION IN PRACTICE 
INTERNATIONAL CONFERENCE ON PATTERN ANALYSIS AND INTEL-
LIGENT SYSTEMS 
INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION 
INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND 
IMAGE ANALYSIS 
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INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM 
INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, 
AND CYBERNETICS 
INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE 
INTELLIGENCE ISCMI 
INTERNATIONAL CONFERENCE ON SOFT COMPUTING, INTELLIGENT 
SYSTEM AND INFORMATION TECHNOLOGY 
INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTEL-
LIGENCE 
INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI 
INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUAL-
IZATION 
INTERNATIONAL CONFERENCE ON VIRTUAL SYSTEMS & MULTIME-
DIA 
INTERNATIONAL CONFERNCE ON COMPUTATIONAL INTELLIGENCE 
AND COMMUNICATION NETWORKS 
INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL IN-
TELLIGENCE CONFERENCE 
INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECH-
NOLOGY AND INTELLIGENT SYSTEMS 
INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTEL-
LIGENCE AND INFORMATICS 
INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE 
AND DESIGN 
INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, 
ARTIFICIAL INTELLIGENCE, AND ROBOTICS 
INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING 
AND COMMUNICATION SYSTEMS ISPACS 
INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND IN-
FORMATICS 
INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY 
JOINT INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND 
INTELLIGENT SYSTEMS SCIS AND INTERNATIONAL SYMPOSIUM ON 
ADVANCED INTELLIGENT SYSTEMS ISIS 
SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS 
SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY 
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEU-
RAL) 
ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (SPRINGER) 
AI & SOCIETY (SPRINGER) 
APPLIED INTELLIGENCE (SPRINGER) 
ARTIFICIAL INTELLIGENCE REVIEW (SPRINGER) 
HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES (SPRINGER) 
INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCA-
TION (SPRINGER) 
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNET-
ICS (SPRINGER) 
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUT-
ING (SPRINGER) 
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS (SPRINGER) 
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS (SPRINGER) 
JOURNAL OF REAL-TIME IMAGE PROCESSING (SPRINGER) 
JOURNAL OF VISUALIZATION (SPRINGER) 
LEARNING AND ANALYTICS IN INTELLIGENT SYSTEMS (SPRINGER) 
MACHINE LEARNING (SPRINGER) 
MACHINE VISION AND APPLICATIONS (SPRINGER) 
NEURAL COMPUTING & APPLICATIONS (SPRINGER) 

NEURAL PROCESSING LETTERS (SPRINGER) 
PATTERN ANALYSIS AND APPLICATIONS (SPRINGER) 
STUDIES IN COMPUTATIONAL INTELLIGENCE (SPRINGER) 
VIRTUAL REALITY (SPRINGER) 
VISUAL COMPUTER (SPRINGER) 
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E CODE BOOK 
Table 13: ❍ stands for one selection only; ❏ stands for multiple selections; [...] stands for copied text from the paper. 

Item Description 
General research objective and con-
tribution 
C1 Category ❍ AI applied to solve a XR problem 

❍ XR applied to solve an AI problem 
❍ XR and AI both applied but not focus of the work 

C2 Research question/objective [...] 
C3 Contribution or main fndings [...] 
C4 Contribution type ❏ Application; ❏ Empirical; ❏ Dataset; ❏ Methodological; ❏ ML model; 

❏ System/artifact; ❏ Technological; ❏ Theoretical; ❏ Other 
C5 AI part of the contribution? ❍ Yes, paper presents the implementation of an algorithm, classifer, model, etc. as part 

of the key contribution 
❍ Yes (not communicated by the authors), but focus of paper is clearly on the algorithm 
❍ No, AI algorithm is applied to solve a problem but not the actual focus of the work 
(e.g., applied for analysis of results) 
❍ AI is not actually applied, but paper discusses/studies/investigates some issue that 
might become important with AI, e.g., interaction with social agents 

C6 Limitations [...] 
User-based evaluation 
C7 Type of user study ❍ Yes, brainstorming/ideation; ❍ Yes, empirical lab study; ❍ Yes, empirical remote study; 

❍ Yes, expert evaluation; ❍ Yes, feld study; ❍ Yes, pilot testing; ❍ Yes, workshop; ❍ No 
user study; ❍ Other 

C8 Purpose of user study [...] 
C9 Metric for user-based evaluation [...] 
C10 Study details(e.g., age, gender, tar- [...] 
get user group) 
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Table 14: Continuation of Table 13 

Item Description 
XR-related 
C11 Type of XR 

C12 Device type 

C13 Interaction/application/task 

C14 What XR problem is solved? 

AI-related 
C15 Custom implementation? 
C16 Tool/library used 
C17 Class of algorithm 

C18 Details about algorithm 
C19 Validation and test 
C20 Performance and/or validation met-
ric 
C21 Model technique 
C22 Purpose + application 
C23 When/how AI is applied 

C24 Data acquisition 

C25 Publicly available resources (e.g., 
data sets, code, models) 
C26 What AI problem is solved? 

❍ AR (not further specifed); ❍ AR (optical see-through, 3DoF); ❍ AR (optical see-
through, 6DoF); ❍ AR (projection); ❍ AR (smartphone); ❍ AR (video see-through, 3DoF); 
❍ AR (video see-through, 6DoF); ❍ VR (3DoF); ❍ VR (6 DoF); ❍ VR (not further specifed); 
❍ Other 
❍ HoloLen1; ❍ HoloLens2; ❍ HTC Vive; ❍ HTC Vive Pro; ❍ HTC Vive Pro Eye; 
❍ Smartphone-based AR; ❍ Oculus Go; ❍ Oculus Quest; ❍ Oculus Rift; ❍ Samsung Gear 
VR; ❍ Custom device; ❍ Not specifed; ❍ Other 
❍ Interaction/collaboration with artifcial agent/embodied AI; ❍ Interac-
tion/collaboration with people; ❍ Locomotion/navigation; ❍ Manipulation; ❍ Pointing; 
❍ Selection; ❍ Typing; ❍ Viewing; ❍ Visual search; ❍ Other 
❏ Collaboration/shared visual environments with artifcial agents/embodied AI; ❏ Col-
laboration/shared visual environments with people; ❏ Display technology; ❏ High 
fdelity virtual human characters/virtual representation of humans; ❏ Interaction tech-
niques; ❏ Perception and neuroscience; ❏ Social and ethical issues/impact; ❏ Tracking 
technologies; ❏ Health-related impacts; ❏ Longitudinal efects; ❏ Novel systems and 
devices; ❏ Not applicable, focus on AI problem; ❏ Not applicable, is sued as an applica-
tion; ❏ Other 

❍ Yes; ❍ No 
[...] 
❍ Supervised learning; ❍ Unsupervised learning;❍ Semi-supervised learning;❍ Rein-
forcement learning; ❍ No algorithm applied; ❍ Not specifed; ❍ Unclear; ❍ Other 
[...] 
[...] 
[...] 

❍ Classifcation; ❍ Regression; ❍ Clustering; ❍ Dimensionality reduction; ❍ Other 
[...] 
❍ "Before" interaction, e.g., for generation of virtual content, generation of 
model/classifer etc.; ❍ use case "During" interaction: use case meant for online use of 
AI, but not yet done in paper e.g., interaction with embodied AI; ❍ Deployment "during" 
interaction: algorithm/model actually applied/deployed online; ❍ "After" interaction: 
e.g., to analyse results of a user study, to build a model based on the recorded data; 
❍ Other 
❏ "Human input" subjective data; ❏ Acoustic sensor; ❏ Brain computer interface; ❏ Elec-
troencephalography; ❏ Eye tracking; ❏ Hand tracking; ❏ Images/videos; ❏ Inertial 
sensor; ❏ Mid air pointing; ❏ Positional tracking;❏ Publicly available data set; ❏ Syn-
thetic data; ❏ Speech/audio; ❏ Data not recorded but based on previous paper; ❏ Data 
not recorded but gathered from literature survey; ❏ Other 
[...] 

❏ Explainability and understandability; ❏ Human-AI interaction and collaboration; 
❏ Learning, reasoning, planning; ❏ Perception, cognitive modeling; ❏ Privacy protection 
trust, and security; ❏ Social, ethical, legal, political issues; ❏ Not applicable, focus on 
XR problem; not applicable, both applied; ❏ Other 
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F PUBLICATION VENUES 
Table 15: Published papers per publication venue and category. The full conference venue names are shown in Table 19 and 
Table 20 

Venue # Venue # Venue # Venue # Venue # Venue # Venue # 

VRST 57 ICIP 7 TAFFC 3 AIH 2 TAP 2 TEI 1 ICPR 1 
AIVR 42 IVA 6 VC 3 SSCI 2 CGA 2 ISRITI 1 IISA 1 
TVCG 35 CVPR 5 CVR 3 PAMI 2 GVWSA 2 RTIP 1 JIS 1 
ISMAR 28 ACII 4 TIP 3 ETRA 2 ICCV 1 PAA 1 JAI 1 
CHI 22 SIGGRAPH 4 AH 3 CHI PLAY 2 IJCANN 1 ICMLA 1 JV 1 
VR 14 HAI 4 IC3D 3 SUI 2 TNNLS 1 MobileHCI 1 DIS 1 
TOG 11 SAP 3 AAMAS 3 ICASSP 2 VRCAI 1 PACMCGIT 1 VCIP 1 
UIST 10 

Table 16: Published papers per publication venue/community and category. 

AI applied XR XR applied to AI Intelligent VAs XR and AI applied Sum 

XR 70 2 17 23 112 
Computer Graphics 48 0 5 8 61 
AIXR 22 5 3 14 44 
HCI 25 0 6 11 42 
AI 7 0 3 8 18 
Agents 1 0 8 1 10 
Computer Vision 8 0 0 1 9 
Afective Computing 1 0 1 5 7 
Eye Tracking and Perception 4 0 2 1 7 
Visualization 0 0 0 1 1 
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Table 17: Distribution of XR and AI keywords for each paper category. 

Keyword AI applied to XR XR applied to AI Intelligent VAs XR and AI both applied Sum 

XR keywords VR 
virtual reality 
augmented reality 
virtual 
AR 
virtual environment 
mixed reality 
HMD 
head-mounted display 
headset 
immersive environment 
virtual space 
XR 
extended reality 
head-up display 
head-worn display 

273 
235 
72 
42 
57 
44 
26 
22 
21 
23 
5 
4 
3 
1 
0 
2 

12 
17 
0 
-1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

28 
43 
15 
48 
14 
14 
5 
2 
1 
2 
2 
0 
0 
0 
0 
0 

59 
80 
56 
20 
35 
11 
10 
6 
5 
2 
1 
0 
0 
3 
0 
0 

372 
375 
143 
109 
106 
70 
41 
30 
27 
27 
8 
4 
3 
4 
0 
2 

AI keywords model 
agent 
learning 
predict 
deep 
neural 
classif 
machine learning 
dataset 
estimation 
recognition 
optimi 
computational 
segmentation 
intelligent 
computer vision 
generative 
artifcial intelligence 
supervised 
cluster 
bandit 
markov 
natural language processing 
reasoning 
tensor 

139 
15 
137 
112 
85 
94 
37 
51 
44 
37 
35 
29 
21 
13 
3 
12 
13 
9 
10 
3 
3 
2 
1 
0 
1 

2 
0 
11 
0 
2 
9 
0 
7 
4 
0 
0 
0 
0 
2 
0 
3 
4 
2 
0 
2 
0 
0 
0 
0 
0 

28 
90 
8 
4 
3 
2 
2 
3 
3 
1 
0 
2 
2 
0 
13 
0 
0 
6 
0 
0 
0 
0 
1 
0 
0 

38 
30 
58 
21 
26 
18 
32 
21 
7 
5 
13 
14 
9 
6 
16 
5 
2 
7 
3 
4 
0 
3 
0 
0 
0 

207 
135 
214 
137 
116 
123 
71 
82 
58 
43 
48 
45 
32 
21 
32 
20 
19 
24 
13 
9 
3 
5 
2 
0 
1 
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Table 18: Papers applying XR and AI to an external problem. 

Main Topic Cluster Count Papers 

Applying XR and AI to an External Problem 74 
Health-related Training Applications 18 

Medical Training Applications 11 [26, 27, 49, 97, 157, 169, 253, 313, 318, 330, 394] 
Sport-related Applications 4 [138, 217, 312, 389] 
Psychotherapy in XR 3 [240, 291, 384] 

Training/Learning Applications 18 
General Training/Learning Applications 11 [35, 65, 84, 155, 160, 203, 252, 266, 278, 301, 311] 
Training Applications for Healthcare Workers 7 [93, 102, 310, 314, 359, 396, 412] 

Using XR for Simulation Purposes 13 
General 9 [20, 22, 29, 109, 233, 327, 355, 369, 422] 
XR as Driving Simulator 4 [45, 67, 152, 363] 

Special Applications 12 [39, 70, 79, 86, 89, 150, 254, 276, 381, 397, 405, 413] 
Using XR for Visualization 8 [1, 145, 206, 218, 319, 324, 354, 378] 
Testing Ecological Validity in XR 4 [154, 198, 244, 349] 
Using XR as Interface 1 [338] 

Table 19: Publication venues and venue groups of included papers. Part I. 

Acronym Publication Venue Venue Group 

ACII 2019 8th International Conference on Afective Computing and Intelligent Interaction (ACII) Afective Computing 
TAFFC IEEE Transactions on Afective Computing Afective Computing 
IVA IVA ’20: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents Agents 
AAMAS AAMAS ’18: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Agents 

Systems 
TNNLS IEEE Transactions on Neural Networks and Learning Systems Agents 
HAI HAI ’19: Proceedings of the 7th International Conference on Human-Agent Interaction AI 
SSCI 2021 IEEE Symposium Series on Computational Intelligence (SSCI) AI 
PAMI IEEE Transactions on Pattern Analysis and Machine Intelligence AI 
ICASSP ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) AI 
IJCNN 2019 International Joint Conference on Neural Networks (IJCNN) AI 
ISRITI 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) AI 
PAA Pattern Analysis and Applications AI 
ICMLA 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA) AI 
ICPR 2020 25th International Conference on Pattern Recognition (ICPR) AI 
IISA 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA) AI 
JIS Journal of Intelligent Information Systems AI 
JAI International Journal of Artifcial Intelligence in Education AI 
AIVR 2019 IEEE International Conference on Artifcial Intelligence and Virtual Reality (AIVR) AIXR 
AIH Journal of Ambient Intelligence and Humanized Computing AIXR 
TVCG IEEE Transactions on Visualization and Computer Graphics Computer Graphics 
TOG ACM Transactions on Graphics Computer Graphics 
ICIP 2019 IEEE International Conference on Image Processing (ICIP) Computer Graphics 
TIP IEEE Transactions on Image Processing Computer Graphics 
CGA IEEE Computer Graphics and Applications Computer Graphics 
RTIP Journal of Real-Time Image Processing Computer Graphics 
PACMCGIT Proceedings of the ACM on Computer Graphics and Interactive Techniques Computer Graphics 
VCIP 2018 IEEE Visual Communications and Image Processing (VCIP) Computer Graphics 
CVPR 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Computer Vision 
VC The Visual Computer Computer Vision 
ICCV 2019 IEEE/CVF International Conference on Computer Vision (ICCV) Computer Vision 
SAP SAP ’19: ACM Symposium on Applied Perception 2019 Eye Tracking and Perception 
ETRA ETRA ’21 Full Papers: ACM Symposium on Eye Tracking Research and Applications Eye Tracking and Perception 
TAP ACM Transactions On Applied Perception Eye Tracking and Perception 
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Table 20: Publication venues and venue groups of included papers. Part II. 

Acronym Publication Venue Venue Group 

CHI CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems HCI 
UIST UIST ’17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology HCI 
AH AH2019: Proceedings of the 10th Augmented Human International Conference 2019 HCI 
CHI PLAY CHI PLAY ’17: Proceedings of the Annual Symposium on Computer-Human Interaction in Play HCI 
SUI SUI ’20: Symposium on Spatial User Interaction HCI 
TEI TEI ’20: Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied HCI 

Interaction 
MobileHCI MobileHCI ’20: 22nd International Conference on Human-Computer Interaction with Mobile Devices HCI 

and Services 
DIS DIS ’21: Designing Interactive Systems Conference 2021 HCI 
JV Journal of Visualization Visualization 
VRST 2021 IEEE Virtual Reality and 3D User Interfaces (VR) XR 
ISMAR 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) XR 
VR Virtual Reality XR 
SIGGRAPH SVR’21: Symposium on Virtual and Augmented Reality XR 
SVR 2019 21st Symposium on Virtual and Augmented Reality (SVR) XR 
IC3D 2021 International Conference on 3D Immersion (IC3D) XR 
GVWSA 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games) XR 
VRCAI VRCAI ’19: The 17th International Conference on Virtual-Reality Continuum and its Applications in XR 

Industry 
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