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Abstract
Assistive systems have become commercially available to
help new workers or workers with cognitive disabilities to
learn new tasks. However, continuous feedback systems
can make the worker feel patronized or bored, which might
influence their performance. We present ABBAS, a novel
integration of four different bio-sensors into an assistive
system, using in-situ projection for providing feedback and
measuring workers’ stress levels during assembly work
tasks through bio-sensors in real-time. It adjusts work steps
according to the worker’s state. In two user studies, we
assessed the suitability of different bio-sensors to detect the
worker’s stress level and showed the feasibility of Galvanic
Skin Response to create adaptive assistive systems that
consider the workers’ current physiological state. Finally,
we discuss how integrating bio-sensors influences assistive
systems and leads to both opportunities and challenges for
assistive technology in general.
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ACM Classification Keywords
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Introduction
Work processes in manual manufacturing are becoming in-
creasingly complex. This is mostly due to a growing number
of variants that need to be assembled at a single workplace.
Additionally, for reducing storage costs, manufactured prod-
ucts are nowadays produced on demand, i.e., after the
customer ordered a product. Frequently changing the prod-
uct to be assembled at a single workplace leads to a higher
cognitive load for the workers. Hence, assistive systems us-
ing for instance Augmented Reality (AR) or in-situ projection
have been introduced to cognitively support workers at the
workplace.

EPOC	  Head	  Set	  

Respira1on	  Rate	  

BVP	  

GSR	  

Figure 1: Four different bio
sensors to assess a worker’s state
during an assembly task: Galvanic
Skin Response (GSR), Blood
Volume Pressure (BVP),
Respiration Rate, and
Electroencephalography (EEG).

Using head-mounted displays (HMDs) has further been
suggested to augment the workplace [22, 25]. Others used
in-situ projection to display information directly in the work-
ers’ field of view (FoV) [2, 4, 9, 13]. An example for such
systems are the Light Guide Systems from OPS solutions1

or the WERKLICHT system by EXTEND3D2. Using such
systems during assembly processes was found to increase
the workers’ performance and reduce the number of errors
made during the assembly [9]. However, previous work also
showed that presenting too much help at the workplace
can result in an increased number of errors and assembly
time [6]. Therefore, we should present instructions at the
workplace, however the worker should not be overwhelmed
with instructions. Thus, we argue to take the current situa-
tion and state of the workers into account.

In this paper we present an adaptive assistive assembly
system, that takes the cognitive state of the worker in real-
time into account. Based on four bio-sensors (see Figure 1),
we investigate the feasibility of inferring stress levels in

1http://www.ops-solutions.com/ - last accessed February 17, 2017
2http://www.extend3d.de/werklichtpro.php - last accessed Febru-

ary 17, 2017

real-time and support the worker according to the current
workload during assembly tasks. We conducted two user
studies to investigate the usage of commercial bio-sensors
to assess workload during assembly tasks. Our findings
show that GSR reliably detects cognitive workload in work-
place settings and allow instructions to be adapted accord-
ing to these measured workload levels. Study participants
welcomed our approach of using bio-sensors in work envi-
ronments to enhance assistive systems with adaptive fea-
tures. The contribution of this work is to show that the GSR
is showing reliable results for measuring workers’ workload
at manual assembly workplaces.

Related Work
We review the prior work done in three fields: (1) assistive
systems, (2) state assessment and (3) how they have been
deployed together to build adaptive and personalized sys-
tems.

Assistive Systems
Researchers targeted the development of assistive systems
in the workplace using camera-projector systems [2]. Funk
et al. [5] evaluated feedback systems for supporting inex-
perienced workers in an industrial work place. ‘The results
showed that a contour visualization is a significantly better
way to present instructions at the workplace. Funk et al.[7]
further evaluated haptic, auditory, and visual error feed-
back modalities for assistive systems at a manual assembly
workplace. Buttner [3] compared HMD with in-situ projec-
tion and found that in-situ projection lead to better worker
performance.

User’s State Assessment
Autonomic Nervous Systems (ANS) controls the organs
of our body, such as the heart, stomach, and intestines.
It is accountable for activating the glands and organs for
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defending the body from threats. Its activation might be ac-
companied by many bodily reactions, such as an increase
in the heart rate, rapid blood flow to the muscle, activation
of sweat glands, and increase in the respiration rate. These
physiological changes can be measured objectively by
using sensors [14, 19]. Haak et al. [11] proved that the in-
crease of blinking rate extracted from EEG signals is related
to stress levels. However, Yu,et al. [20], explored GSR as
indicator of cognitive load. Elise et al. [15] used heart rate,
respiration rate and GSR as stress indicator.

Projector and Depth Camera 

Assembling	  Table	  	  

Data	  Monitoring	  	  

Figure 2: Setup.

Using Bio-Signals to Adapt Systems
Adaptive systems are now deployed in a wide range of
systems including cars, games, museums, and work envi-
ronment. Wang et al. [23] showed that EEG signals can be
used to infer the memory workload. Parnandi et al. [17, 18]
considered real-time adaptive games introduced two differ-
ent real-time adaptive biofeedback games.

Abdelrahman et al. [1] recommended a personalized feed-
back system that can detect visitor’s engagement in the
exhibited objects by measuring brain signals. Other re-
searchers were concerned with the work environment.
Wang et al. [24] explored how to build an adaptive system
that helped workers who heavily use computers on a daily
bases by extracting features, such as face pose, eye blink-
ing, yawn frequency and eye gaze from a recorded video.
Hernandez et al. [12] integrated bio-sensors, namely: GSR
and skin temperature with sensitive keyboard and mouse
clicking to be able to discriminate between stressful and
relaxing stages in a workplace.

In our work, we aim to evaluate the deployment of four com-
mercially available bio-sensors to monitor the worker’s state
in a manual assembly environment rather than a station-
ary or stable environment. When being overwhelmed with
a task at hand, workers exhibit symptoms of stress and

anxiety. Bio-sensors can detect these symptoms by collect-
ing bio-data, such as GSR, BVP, and respiration rate or by
using a Brain Computer Interface (BCI) for the EEG. The
system would be able to detect the worker’s cognitive state
in real-time and adapt the task difficulty accordingly.

The ABBAS-System
In our work we assess the feasibility of using bio data in
creating an adaptive assistive system for an assembly
workspace. We extended Funk et al.’s [5] assistive system,
as shown in Figure 2. The setup consists of a top-mounted
projector that provides visual feedback about whether the
worker selected the correct part and assembled them cor-
rectly using the proper tools.

Based on the survey by Gedon et al. [19], which reviewed
bio-sensors, such as EEG, BVP, Heart rate variability
(HRV), GSR, and Electromyography (EMG), our system
combines the following senors; GSR, blood volume pres-
sure, and respiration sensors using the NeXus3 device, in
addition to the blinking rate and EEG measurements from
EMOTIV EPOC 4 headset. Both devices send data via blue-
tooth. For the EEG measurements, we used the predefined
brain stages in the EMOTIV EPOC software namely; frustra-
tion, meditation, excitement and engagement.

Pilot Study
To assess the feasibility of our concept and answer the re-
search question "can assistive systems be adaptive using
bio-sensors?", we first conducted a pilot study in a con-
trolled lab setting.

The study was designed using a 4-level repeated-measures
design with three different tasks and a baseline as the in-

3http:http://www.mindmedia.info/CMS2014/
4http://emotiv.com
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dependent variable and the level of cognitive effort as de-
pendent measure. The four conditions with presumably
increasing cognitive demand were: Baseline, add-3, 3-back
and stroop test (see side column).

Baseline: Participants were
asked to assemble a Lego
construct by picking parts out
of available Lego picking bins.
The top projection indicated
which assembly part to pick
from one of the Lego bins and
where to assemble it on [10].
The baseline did not comprise
any tasks in parallel.

Stroop-Test: During the as-
sembly task, names of colors
were projected on the assem-
bling table. Participants were
asked to say out loud the
color [21].

3-back Task: During the as-
sembly task, a sequence of
numbers appeared on the as-
sembling table. Participants
were asked to say out loud
the 3rd number back in that
sequence, having to keep track
of the numbers projected [16].

Add-3 Task: During the assem-
bly, a number consisting of four
digits appeared on the assem-
bling table. Participants were
asked to add 3 to each of those
digits and tell the experimenter.

As dependent variables, we measured participants’ error
rate (ER), GSR, BVP, respiration rate, blinking rate, and
EEG. We further asked participants to fill in a NASA-TLX
survey for mental and physical measurement.

For the data logging we used the NeXus and Emotive
Dynamic-Link Libraries(DLLs) to connect and send data
between the devices and the assistive system. All data
was recorded using time stamps for synchronization. The
computerized cognitive load surveys were filled afterwards.

Procedure
To examine the differences in workload, we performed a
within-subjects study. All participants performed all tasks
during the experiment. The order of the conditions exclud-
ing the baseline was counter-balanced using a Latin-square
design to avoid any learning effects. The study time was
around task 30 (10 x 3 tasks) minutes plus 10 minutes for
attaching sensors and ensuring stable connection.

After welcoming the participants, a brief description for the
study and its goal was explained to the participant. We at-
tached the sensors to the participant as shown in Figure 1.
All participants started with the baseline. The remaining
tasks followed in a random order.

Participants
We recruited 12 participants (4 female) with a mean age
of 24 years (SD = 3.51) using university mailing lists. All
participants were students in different majors. Two of the
participants were left-handed.

Data grouping: We present the data by getting mean value
for each 50 readings. Data was then grouped into data
packets from the NeXus and EPOC using time stamps.

Results
We statistically compared the GSR, BVP, Respiration rate,
blinking rate, and the EEG as well as NASA-TLX and the
cognitive survey responses between for all four conditions.
For sensors’ data and NASA-TLX analysis we used a one-
way repeated measures ANOVA. For the cognitive survey
questions we applied a Friedman test.

Using a one-way ANOVA test, Mauchly’s test showed that
the sphericity assumption was violated for GSR (X2(5) =
15.088, p < .010). We used the Greenhouse-Geisser cor-
rection to adjust the degrees of freedom (F (1.613, 16.128) =
11.795, p < 0.001) and ε = 0.538). The post-hoc test re-
vealed a large effect (η2 = .541) and a significant difference
(p < 0.05) between baseline task and all other tasks. As
shown in Table 1, the baseline has the lowest score , follow-
ing the add-3 , stroop and then the 3-back with the highest
score. However for both BVP, and Respiration rate mea-
surements no significant differences could be detected.

Engagement measurements: the baseline had the high-
est values, followed by the 3-back , the add-3, and finally
the stroop task. There was large effect (η2 = .593) and
a statistically significant difference among approaches
(F (3, 33) = 3.284, p < 0.001). The post-hoc test revealed
a significant difference between baseline task and the rest
of the tasks (p < 0.001).

Excitement measurements were also considered. The
baseline yielded the least excitements measurements, then
add-3 task, followed by 3-back, and finally the stroop. There
was a large effect (η2 = .292) and a statistically significant
difference between approaches (F (3, 33) = 4.538, p <
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0.05). The post-hoc test revealed a significant difference
between add-3 task and the color task (p < 0.05). However,
the blinking rate, meditation, and frustration measurements
were not significant among the tasks.

Mean SD Significant
Baseline 5.3 1.9 All Tasks
Stroop 7.9 3.9 Baseline
3-Back 7.9 3.2 Baseline
Add-3 7.9 3.5 Baseline

Table 1: GSR Data.

Mean SD Significant
Baseline 0.73 0.10 All Tasks
3-Back 0.62 0.62 Baseline
Add-3 0.61 0.67 Baseline
Stroop 0.59 0.49 Baseline

Table 2: EPOC Engagement Data.

Mean SD Significant
Baseline 0.49 0.17 All Tasks
Add-3 0.52 0.18 Baseline
3-Back 0.58 0.14 Baseline
Stroop 0.69 0.14 Baseline

Table 3: EPOC Excitement Data.

GSR	  	  

Figure 3: A participant during the
second user study with the GSR
attached on his fingers.

NASA-TLX The post-hoc test revealed a significant dif-
ference (p < 0.013) and a large effect (η2 = .361) be-
tween the Stroop and the 3-back. Stroop had the lowest
score (M = 53.75, SD = 15.2) followed by the add-3
(M = 62.58, SD = 17.9) and 3-back with the highest
perceived cognitive load (M = 73.0, SD = 17.09).

Threshold In order to identify the different states, we needed
to compute a threshold for the GSR values. We systemati-
cally tested the threshold values and computed the false
positives and negatives from the normalized graph as
shown in Figure 4. Finally, we calculated a general ratio
of 1.3 relative to the user’s baseline value.

Our findings imply that the BVP sensor was not significant
and very sensitive to minimal movements and respiration.
EEG values were not significant either. However, the GSR
data was significant. Based on the tasks comparison, 3-
back challenge has significantly reported the highest chal-
lenging task. Therefore, it was used in the second user
study for system validation.

Validation Study
To validate the computed threshold and investigate the
behavior of the adaptive system based on the threshold we
conducted a second user study.

Measuring work load via the GSR sensor, participants were
asked to perform the baseline task consisting of the assem-
bly of the Lego parts with the help of the projection as de-
scribed in the pilot study. The baseline data collected was
used to compute the workload threshold (1.3 × baseline).

Adaptive task: The second task required participants to
perform the 3-back task while assembling the Lego parts.
The study took 20 minutes in total. The 3-back task duration
was longer this time to guarantee efficient evaluation by
recording more readings.

The NeXus sensor provided the GSR readings to the sys-
tem. These values were compared to the calculated thresh-
old. If the GSR values exceeded the threshold, the user
was considered to be overwhelmed. Hence, the 3-back
challenge was removed and participants were asked to
continue assembly without any distractions for 20 seconds.
When the GSR values dropped below the threshold, the
user was considered to be comfortable again and so the
3-back task would be shown again.

We recruited 8 participants (2 female) with an average age
of 22 years (SD = 1.9) who had not previously taken part
in our pilot study.

After the study we conducted interviews with the partici-
pants to evaluate the introduced system.

Results and Observation
After analyzing the data from the 3-back task the following
result was observed. The participants’ GSR values varied
according to their workload state. When the 3-back was
displayed, the GSR readings kept rising. When the read-
ings exceeded the threshold, the 3-back was removed and
the GSR readings started decreasing. When the GSR val-
ues dropped below the threshold the 3-back was added
once more to the task and as a result GSR values started
increasing again. Figure 5 shown how participants’ GSR
values varied throughout the task. According to the post
tasks interviews, one participant stated that the task was
challenging and likable. However, he was relieved when it
was removed as a sort of a break. It was noticed that only
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one participant whose GSR values kept increasing during
the entire study. Even after the task was adapted to their
workload level, as seen in Figure 6. According to the post
task interviews, he was stressed and worried that the 3-
back would be shown again. Hence, they kept stressing out
through the whole task.

Figure 4: Relation between the
baseline and 3-back GSR values.

Figure 5: GSR values varying
according to the task.

Figure 6: GSR values increasing
during the task.

Participants Group Number of Peaks Time Up Time Down

P1 1 7 1.76 0.10
P2 1 3 0.42 0.52
P3 1 2 1.72 0.76
P4 1 2 2.59 0.20
P5 1 2 2.19 0.60
P6 1 7 1.3 0.27
P7 2 1 3.76 -
P8 1 4 2.73 0.49

Table 4: Time taken for frustration and relaxing.

Additionally, to have insights about the behavior of the cog-
nitive workload and the sensor reading, we analyzed the
cognitive workload over time. The time it took participants
to exceed the threshold was M = 1.82sec (SD = 0.79),
however the mean time taken for them to relax again was
M = 0.42sec (SD = 0.24). This reflects the usability
and real time responsiveness of using such a sensor in the
assembly working environment.

All participants recommended the adaptive assistive system
using bio-sensors in real industrial life in order to monitor
workers behavior and offer help when needed. Participants’
only concern was the privacy issues as they do not want
their bio-data to be public to everyone.

Limitations
During the assembly task, participants were able to com-
plete the task using their dominant hand only. Additionally
we should explore different contact-less sensors that will
allow participants to use both hands without distraction.

CONCLUSION AND FUTURE WORK
This work explored the feasibility of using bio-data to create
an adaptive assistive system. User’s cognitive workload
level was first measured using different bio-data: EEG,
blinking rate, GSR, BVP, and respiration rate. Results indi-
cated GSR to be the most significant measure, NASA-TLX
and another cognitive surveys were used to validate this
conclusion. Based on our findings we derived a threshold
for adapting our assistive system in order to accommodate
for when users were overwhelmed with a task. We validated
this threshold by conducting a second user study. Post-
tasks interviews revealed that participants accepted work-
ing in an adaptive environment. By detecting and acting
on overly demanding tasks, such systems could eventually
prevent burnouts due to high stress levels and at the same
time increase productivity in phases of low task engage-
ment by adding work steps. Considering future work, we
want to deploy our system in a real-world work environment
to study the effects of an adaptive assistive system in an
everyday workplace.
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