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Abstract

This work explores the integration of behavioural biomet-
rics in the physical world. We developed SenseHandle, a
system to unobtrusively measure users’ interactions with door
handles, thus, enabling authentication on demand. Our system
is based on consumer sensing technologies from related work
for easy replicability and can be non-invasively integrated into
existing environments with lever-style door handles. From an
initial pilot test with four participants we compare the per-
formance of the technologies we used and discuss possible
improvements and applications beyond authentication.

1 Introduction

Every year numerous new authentication approaches for digi-
tal devices like smartphones or computers are published. At
the same time, one of the oldest applications for authentica-
tion, namely getting physical access to a room or building
through a door, is still done using tokens like keys or access
cards. While they provide benefits like following an estab-
lished metaphor and being shareable they also come with
disadvantages like being easily lost or stolen and requiring
extra interaction (i.e. a door has to be actively unlocked in
addition to having to open it).

We propose to leverage the interaction behaviour when
using a door for authentication, be it as a sole or second factor.
Our vision is, that no additional (un)locking action is neces-
sary and users still retain control: authentication is triggered
if and only if the user is physically interacting with a door (in
contrast to, e.g., face recognition which is triggered on sight).
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Figure 1: We propose SenseHandle, a prototype that leverages
user’s interactions with door handles for authentication. We
use inertial, swept frequency capacitive and acoustic sensing
to capture interactions.

In this work we investigate, if and to what extent users
behaviour can be utilized to realize this vision. Previous work
has shown the potential of motion data for this purpose [3, 5].
We extend this approach by considering additional sensors and
providing a discussion on how different sensors and phases
in the interaction contribute to authentication success. To this
end we developed SenseHandle, a system to capture user’s
behaviour while interacting with a door handle (see Figure 1).
Our prototype can be unobtrusively integrated into existing
environments and uses simple, commercially available elec-
tronic components to support future replication. We explored
SenseHandle’s capabilities in a first pilot test (N = 4). Based
on the results, we discuss and compare the performance of the
integrated sensing technologies and potential improvements
to inform future iterations and usage of our approach.

2 Related Work

Common door locks make use of object-based authentication,
e.g. through a physical key, smart cards (ownership) or other
Bluetooth or NFC-enhanced objects. Access control mecha-



nisms using other metaphors are pin-pads (knowledge) and
fingerprint- or face-recognition (inherence) [5, 6, 12, 14,24].
The use of biometrics (i.e. mechanisms that leverage unique
characteristics in human physiology and/or behaviour for
the purpose of authentication [17]) is a promising direction
to improve on this state-of-the-art. In this work we focus
on behavioural biometrics, as they can be integrated seam-
lessly with the user’s interaction, for example, using keystroke-
dynamics [2, 11,23], mouse [8,20], touch [1, 7], gait [15, 16]
or eye-movement patterns [10,22,25]. Even though such ap-
proaches have been generally investigated in the context of
digital security, related works suggest applying behavioural
biometrics to door access controls [3,5,9, 13]. In a Wizard-of-
oz study, Mecke et al. [13] compared different mechanisms to
unlock doors. Although participants liked a biometric mech-
anism integrated into the handle most, they still valued the
control gained from using a key. However, to the best of our
knowledge, few have developed functional prototypes that
measure users’ interaction patterns in this context.

3 SenseHandle

Here we provide details on the integration and implementation
of the technologies used in SenseHandle (see Figure 3).

3.1 Inertial Measurements

Gupta et al. [5] achieved promising results using a inertial
measurement unit (IMU) for behavioural biometric based
identification of 11 study participants (true acceptance rate
of 87.27% and false acceptance rate of 1.39%). Similarly,
we integrated a high-end 9 DOF IMU, to accurately measure
the angular velocity, acceleration and magnetic field in all 3
axis' (see Figure 2 a). The IMU is fixed to the door handle
using a 3D printed mount, double-sided tape and cable ties.

3.2 Swept Frequency Capacitance

Self-capacitive touch sensing uses one electrode, which is
repeatedly charged and discharged and allows for simple
touch detection, since a nearby human body would affect
the (dis-)charging of the electrode [4]. Sato et al. [21] ex-
tended this approach by looping through different charging
cycle frequencies (aka. frequency sweeps), instead of using
a fixed one and could thereby recognize touch gestures. We
adapted their technique to sample additional touch features
but chose a simplified circuit”’ that uses an Arduino Uno to
generate frequency sweeps that are not sinusoidal but square-
waves. Those signals were then filtered with an LC circuit
(aka. resonant circuit) to generate nearly sinusoidal waves and
passed through an envelope detector. We approximated Sato

"https://learn.adafruit.com/nxp-precision-9dof-breakout,
last accessed January, 7, 2022

et al.s’ [21] frequency range by generating sweeping signals
from roughly 0.6kHz to 4MHz (189 irregular steps in 130ms,
at least 1.5 KHz between frequencies).

3.3 Acoustic Sensing

Ono et al. [18, 19] used acoustic sensing to classify multi-
touch gestures and applied force on common objects. This is
done using two piezoelectric components, one serving as a
vibration actuator and the other one as a sensor. The measured
resonant responses are influenced by different touch and grasp
gestures, as well as force. We adapted this approach using a
Raspberry Pi 4° instead of a notebook for the signal genera-
tion and data processing to reduce the size of SenseHandle.
We implemented the acoustic sensing using a compatible Hi-
FiBerry DAC + ADC pro shield* with a sampling rate of
192kHz and used two unimorph piezoelectric elements as
actuator and sensor (200 Ohm, 4.4 kHZ, 27mm diameter). In
our setup we found the strongest effect on frequencies of up
to 5kHz and thus implemented sweeps from 100Hz to SkHz
(in 91 uniform steps) in 310ms (see Figure 2 c).

3.4 Limitations of the Prototype

We used a conductive lever-style door handle, though Sense-
Handle could also be used on door knobs or non-conductive
door handles with minor modifications (e.g. covering the han-
dle with conductive paint, foil or tape). We also designed the
setup to not obstruct the usage of the door handle from one
side only (we attached the IMU to the handle on the other
side). An adapted design could allow operation from both
sides (e.g. by connecting the IMU to the tip of the handle).

4 Pilot Test

We conducted a pilot test to gain first insights into the feasibil-
ity of user identification using the different sensing technolo-
gies. Our test was, therefore, not restricted to user’s interaction
with a locked door only, but included a complete interaction
cycle with the door handle to also explore uses cases differing
from physical access control (see section 6.2). Hence, we
evaluated a setting, where participants had to open a door,
enter and subsequently leave the room and close the door.

Our goal with this evaluation was not to achieve a competi-
tive identification accuracy but rather to get insights into the
performance of the sensors and to inform a larger follow-up
study. This is also reflected in our sample size that would be
too small for an authentication study.

Inttps://www.instructables.com/Touche-for-Arduino-Advan
ced-touch-sensing/, last accessed January, 7, 2022

3https://www.raspberrypi.com/products/raspberry-pi-4-mo
del-b/, last accessed January, 7, 2022

“https://www.hifiberry.com/shop/boards/hifiberry-dac-ad
c-pro/, last accessed January, 7, 2022
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Figure 2: Door opening in our pilot test: a) IMU values (angular velocity, acceleration, magnetic field), b) capacitance (selection),
and c) fft-transformed acoustic signals. Bounds of the interaction (see Section 4.3) are marked with dashed lines.
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Figure 3: SenseHandle consists of an Arduino Uno, a circuit
for swept frequency capacitive sensing, a Raspberry Pi 4, a
HiFiBerry DAC+ ADC pro shield and an adafruit precision
NXP 9-DoF breakout board.

4.1 Method

We applied a within-subjects study design with two conditions
and two levels each: participants would start at a DISTANCE
of Sm (far) or 25cm to the door (near). We also asked partici-
pants to interact fast (imagining a ringing phone behind the
door) or at normal SPEED.

Conditions were chosen to reflect potential alterations when
interacting with doors and repeated 10 times; resulting in
40 repetitions per participant. The order of the conditions
was counter-balanced. Participants had to consent to the data
collection beforehand. Furthermore, participants filled in a
survey on their demographics and the perceived usability of
the system at the end of the session. Sessions took between
20 and 30 minutes and participants were compensated with
5€. Following our institutions guidelines and local laws, our
low-risk pilot test required no formal approval by an IRB.

4.2 Participants

We recruited 4 participants from our personal environment as
the pandemic situation did not allow for external participants.

Participants were aged 26 to 64, two identified as female and
two as male. They reported to not feel influenced in their
behaviour by SenseHandle or the environment.

4.3 Measures

We split each repetition in the opening and closing phase
and excluded samples outside the duration of the interactions
based on one specific capacitive touch feature (320kHz fre-
quency) that proved to be a stable measure for touch detection.
Values were repeated until a new measurement was avail-
able to compensate for different sampling rates between the
technologies (e.g., acoustic sensing: 3.2Hz vs IMU: 25.9Hz).
Our final dataset consisted of 18600 samples from 320 inter-
actions (80 per participant) with an average sampling rate of
25.9Hz (718s summed interaction duration). It included 288
features: 9 IMU features, 189 features for swept frequency
capacitance and 90 features for acoustic sensing.

4.4 Random Forest Classification

We used random forest classification with default parameters
trained on 75% of all full repetitions. We made a prediction for
each sample and the final decision was based on the prevail-
ing class (winner-takes-it-all). Since identification accuracy
might vary, we report the mean over 10 executions.

5 Results

Overall, we found a mean identification accuracy for the com-
bination of all three sensing technologies of 84.25% (opening
the door) and 83.5% (closing). With regards to the different
sensing technologies our results (see Table |, top) showed
the best accuracy for the IMU (90.0% and 94.75%), followed
by swept frequency capacitive sensing (77.75% and 78.75%).
Acoustic sensing performed worst (55.50% and 76.0%).
Even though fast conditions generated much less data sam-
ples (34.89% of all samples) than normal ones, we observed
only slight corresponding effects on the accuracy. Overall, the
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Figure 4: Identification accuracy for the different conditions of our pilot test when opening (left) and closing (right) the door.

Table 1: Mean identification accuracy of the sensing technolo-
gies for opening/closing and before opening the door.

unique samples accuracy
technology  overall for testing mean std
w MU 6938 1780  90.00 2.24
§ capacitance 2460 630 7775  2.08
R acoustic 1075 277 5550 270
S all sensors 7248 1862 8425 3.17
" IMU 9918 2625 9475 0.75
£ capacitance 3433 908 7875 3.40
NS acoustic 1471 387 76.00 1.66
all sensors 10356 2746 8350 2.29
IMU 239 747 7094 281
§ capacitance 105 3.00 66.57 3.63
E acoustic 31 141 5727 6.80
all sensors 254 726 6943 5.12

IMU again performed best and achieved prediction accuracies
of up to 95% (near-normal) for opening the door and up to
100% (far-normal) for closing the door. For the combination
of all features, the highest accuracies were related to the far-
fast, opening (86%) and far-normal, closing (90%) conditions.
Figure 4 provides an overview over all combinations.

Table | (bottom) shows identification accuracy before the
door is opened, i.e. the handle is pressed but the door did not
yet move. We observed fewer samples per interaction (mean =
7.26) and worse accuracy of the combination (69.43%) and
all single sensors except acoustic sensing (57.27%).

6 Discussion & Future Work

In our pilot study we gathered insights on the performance of
different sensing technologies integrated into SenseHandle.
We found that the IMU performs best, followed by swept-
frequency capactive sensing. Acoustic sensing consistently
performed worst. Our results also show that overall accuracy
drops when only using samples before the door opens. This is
not surprising as fewer samples are available and performance
was mainly driven by the IMU and thus the (opening) motion.

6.1 Authentication with SenseHandle

Based on our results we identified two directions to turn Sense-
Handle into a functional authentication system:

Technical Improvements: We found both tested touch-
based approaches to perform comparably weak. One
possible improvement could be the addition of curved
force sensitive resistors on the handle to collect higher
resolution data on the grip. This would also be valuable
when limited movement data is available.

Robust Authentication Performance: Our test was not
aimed at training a competitive classifier. Future steps
to enable robust authentication would be to collect data
at a larger scale as well as to optimize and test different
models. Moreover, contextual factors like carrying an
item or getting distracted in the opening process could
also affect the performance of SenseHandle. Hence, we
further propose to study the impact of such changes in a
less constrained setting (e.g. as study in the wild).

6.2 Beyond Access Control

Reliable user identification before the door starts to swing
open is challenging. Technical changes (see Sec. 6.1) may
overcome this challenges, but we also see opportunities to
leverage SenseHandle in different ways. Those include set-
ting off an alarm when unauthorized persons enter an area
or personalization of devices or smart home environments.
User interactions with door handles could also indicate their
physiological state (e.g., level of stress) or be used for ex-
plicit interaction. Overall, we see many opportunities to use
SenseHandle both for security research and beyond.

7 Conclusion

In this paper, we presented and tested SenseHandle, a proto-
type for leveraging user’s behaviour when interacting with
door for authentication. Our promising results can serve as a
base for future improvements and more extensive evaluations.
By presenting SenseHandle as a poster to SOUPS, we hope
to gather feedback on further application areas and inspiring
open question regarding user’s interaction with door handles.
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