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Building Adaptive Touch
Interfaces

Daniel Buschek, Florian Alt

Motivation for Adaptive, Probabilistic Touch Interfaces

Generally speaking, an adaptive user interface is one that does not look and work in the
same way for everyone or at all times. In contrast, static user interfaces stay fixed across
users and contexts. The idea of building adaptive user interfaces promises many benefits
for users by addressing specific characteristics of interaction behaviour which arise due to
1) the individual user and 2) the current context of use. For example, adaptations often
aim to improve efficiency and effectiveness of interaction under varying conditions, such as
supporting accurate smartphone touch input with different hand postures (e.g. thumb vs index
finger, left vs right hand [Buschek and Alt 2017]) or in different situations (e.g. sitting vs
walking [Goel et al. 2012, Musi¢ and Murray-Smith 2016]).

Adaptation seems particularly intriguing for mobile devices since these are used in a large
variety of everyday situations (e.g. at home, at work, on the go, in public transport; also
see [Sarsenbayeva et al. 2017]). Moreover, smartphones are often seen as highly personal
devices, linked to one specific user. Thus, it seems relevant and useful to investigate how
such a device might adapt to an individual user and his or her specific capabilities, habits,
preferences, and so on.

These ideas have caught increasing interest by many researchers over many years (e.g. see
[Browne et al. 1990, Calvary et al. 2003, Wahlster and Maybury 1998]). In particular, they
have been picked up by people working at the intersection of HCI and Machine Learning.
Adapting user interfaces presents a prime example for opportunities arising from the combi-
nation of expertise in both these fields: Machine Learning is required, for instance, to model
user behaviour, to detect changes in contexts and behaviour, also using sensor data, and to
optimise the user interface based on derived information. On the other hand, HCI expertise
is important to smoothly and usefully integrate adaptations into user interactions and actual
practices of use, and to inform many surrounding questions, for example, about interface con-
sistency, user control and (mixed) initiative [Horvitz 1999].

It is at this intersection that probabilistic approaches become highly relevant and useful,
since reasoning based on human input as well as incomplete and noisy sensor data has
to deal with uncertain information (cf. [Williamson 2006]). Several research projects thus
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explicitly address handling uncertainty in (adaptive) touch interfaces (e.g. see [Bi and Zhai
2013, Schwarz et al. 2010, 2011, Weir et al. 2012, 2014]).

To gain a more intuitive understanding from a practical developer perspective of why a
probabilistic approach is practically useful, consider the task of implementing from scratch a
mobile touch GUI with two sliders. How should we decide, for a given sliding trajectory of the
finger, which slider the user wanted to activate? Easy — the closest one! But what if the finger
trajectory is “wiggly” and touches both of them (e.g. due to mobile use on a shaky bus ride)?
And how do we measure “closest” exactly? We could come up with some custom “scoring”
measure but that might be inconsistent with the implementation that our colleagues chose for
other parts of the software (e.g. other GUI widgets). In summary, every time we have to think
about manually “scoring” user input with regard to some decision-making, we are potentially
struggling with a fundamentally deterministic setup for input that we would actually like to
treat probabilistically — and hence we could benefit from a principled probabilistic approach.

Examples of concrete user- and context-specific adaptations in (mobile) touch interfaces
are abundant in recent HCI work: They include, for instance, adapting keyboards to walk-
ing [Goel et al. 2012] and individual users [Findlater and Wobbrock 2012], as well as ways
of holding the device [Buschek et al. 2014, Goel et al. 2013], or multiple such factors at
once [Yin et al. 2013]. Other work corrected touch points based on user-specific targeting
behaviour [Buschek and Alt 2015, Weir et al. 2012], or supported touch input for users with
specific motor impairments [Mott et al. 2016].

Many such projects build research prototypes for evaluation in a user study, but not for
further use or even a “productive deployment”. Thus, both conceptual and practical aspects of
development and engineering remain an underexplored part of realising the vision of user-
and context-adaptive touch interfaces. Yet these aspects are of high practical importance
for interactive system developers who want to benefit from digital signal processing and
Machine Learning. In the spirit of this book, this case study therefore discusses the authors’
ProbUI framework [Buschek and Alt 2017] as a concrete example for supporting developers
in building adaptive mobile touch interfaces.

Three Key Challenges for Developing Adaptive Touch Interfaces
Overall, ProbUI is motivated by three key challenges for developers: 1) Specifying complex
input behaviours (here: touch gestures), 2) recognising and distinguishing said behaviours,
and 3) handling and reacting to such input under uncertainty. Figure 10.1 presents an overview.
Before we take a closer look at ProbUI, let us first examine these challenges in more detail.

How to Describe Complex Touch Behaviours and Integrate them into Uls?
Many adaptive and/or probabilistic touch Uls address not only simple taps, but also more
complex touch behaviours, such as gestures (e.g. swiping, scrolling). For the developer, this
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Overview of the three key areas and related strengths (“+”) and challenges (“-”). ProbUI for
the first time links these three areas in a single pipeline in one framework, thus supporting

developers in 1) specifying input behaviour, 2) recognising said behaviour under uncertainty,
and 3) reacting to it, for example with GUI adaptations, again considering uncertainty.

raises the question of how to describe and integrate such gestures into a user interface, in
particular when simultaneously considering probabilistic reasoning and adaptation.

Existing options for developers In general, there are several main approaches to integrating
gestures (i.e. recognisers) into touch Uls: First, developers could rely on pre-defined gestures
from an API or library. In this case, implementation and integration might be trivial, yet it is
not clear how well such a library would also support probabilistic reasoning and UI adaptation.

Second, developers could implement their own system from scratch. While this gives
them full control, and might be preferred by developers who are themselves confident and
experienced with probabilistic reasoning, it might often result in significant increases in time
and effort spent on the project. Some support could be provided by making use of general
probabilistic inference frameworks, such as Infer. NET [Minka et al. 2014].

Third, programming-by-demonstration presents an alternative for setting up touch gesture
models (e.g. [Li et al. 2014, Lii and Li 2012, 2013, Lii et al. 2014]). In this case, developers
record gesture examples with a dedicated toolkit, and possibly refine them, ideally to then
generate compatible gesture recognition code. A downside of this approach is that developers
have to actively record data with external tools, the results of which then need to be integrated
into the application/UI code.

Finally, some researchers have suggested declaration as an easy-to-use approach to ges-
ture specification. Here, developers use a simple language to write down the desired touch be-
haviour/gestures. For example, one might simply say “swipe right” to denote said behaviour.
Actually proposed declarative languages are not that verbatim but rather stay on a level of ab-
straction that renders them similar to regular expressions. An example is the Proton language
for multitouch gestures [Kin et al. 2012a,b]. Earlier related work includes GDL [Khandkar and
Maurer 2010] and Midas [Scholliers et al. 2011], which also offered a rule-based reasoning
system. ProbUI follows this declarative approach.

Declaration — strengths and challenges The main strength of the declarative approach
is its ease-of-use for the developer. In particular, declaration offers concise and readable
specifications, often directly embedded into the code (e.g. as a string parameter), without the
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need to switch from the development IDE to external tools. However, the original declaration
approach does not lend itself well to handling variations in user behaviour (e.g. different finger
trajectories for the same swipe command), as well as probabilistic reasoning and handling
uncertainty in general (cf. Proton’s discussions [Kin et al. 2012a,b]).

As we will see in Section 10.3, ProbUI uses declarations and rules for their ease-of-use for
the developers, yet treats them as input to an algorithm that automatically derives probabilistic
models to address these challenges.

How to Recognise Touch Behaviours Probabilistically?

The second key challenge is to recognise the defined behaviour during use, in particular in
a probabilistic and adaptive Ul concept. Here, developers face the question of how to derive
probabilities for users’ touch input. This question is obviously linked to the first one; again,
there are several options.

Existing options for developers As a first option, developers could simply cut the probabilis-
tic treatment and recognise gestures with one of the easy-to-integrate declarative approaches
from the previous section. However, they then miss out on handling uncertain user input,
continuous feedback under uncertainty, and related mechanisms of UI adaptation (also see
e.g. [Buschek and Alt 2017, Schwarz et al. 2015, Williamson 2006]).

Second, developers could build their own gesture models from scratch, for example using
a Machine Learning framework. This possibly incurs costly data recording if no fitting dataset
already exists, plus time spent on development, debugging, and evaluation.

Third, developers could use some of the above mentioned programming-by-demonstration
tools which generate probabilistic gesture recognition models (e.g. see [Li et al. 2014, Lii
and Li 2012, 2013]). Again, the downsides here involve the need for external tools and data
recording.

Probabilistic reasoning — strengths and challenges The strenghts and challenges of prob-
abilistic reasoning for gesture recognition are inverse to the ones discussed for declaration:
Probabilistic approaches are generally more difficult to setup and integrate into Uls, but they
offer attractive benefits when for handling variations in users’ input behaviour, uncertain and
noisy sensor data under varying contexts, unclear user intentions, and so on.

As we will see in Section 10.3, ProbUI takes the developer’s declarations (plus Ul
specifications) to automatically derive a simple yet consistent probabilistic model. This novel
pipeline merges the benefits of both approaches, namely ease-of-use for setting up gestures
with declarations, and the power of probabilistic input interpretation during interaction.



10.2 Three Key Challenges for Developing Adaptive Touch Interfaces 5

10.2.3 How to Handle and React to Uncertain User Behaviour Information?
Finally, assuming probabilistic input, how can user interfaces make use of it for the benefit of
the user? This is the third key question that developers of probabilistic and adaptive (touch)
Uls have to respond to.

Existing options for developers In a very simple approach, probabilistic input events could
be “thresholded” to treat them deterministically, thus ignoring and losing the uncertainty
information. Again, one could also implement a custom mapping of probabilities (e.g. from
a gesture recogniser) to some Ul variables (e.g. transparency of a button linked to gesture
shortcut probability). Another use of such probabilities are custom rules, such as if-else-
statements that reach a decision based on probabilities. The larger underlying question here
often relates to how exactly to treat these numbers. Earlier research projects informally
outlined, for example, selection rules (e.g. see selection of sliders in [Schwarz et al. 2010]
or probabilistic representation of scrolling in [Schwarz et al. 2015]).

Despite such case-to-case implementations in some examples, the related work provides
many ideas, concepts, and overarching frameworks for consistently handling probabilities in
Uls (e.g. see [Mankoff et al. 2000a,b, Schwarz et al. 2010, 2011, 2015]). A key concept is a
so-called “mediator”, that is, a software component that takes in all probabilistic information,
requests from Ul elements, and other data, to reach a global decision (e.g. which button to
activate) and to do bookkeeping work (e.g. cancelling intermediate visual feedforward/back
once the decision has been made).

Probabilistic GUI frameworks — strengths and challenges Probabilistic GUI frameworks’
strengths lie in their support for dealing with uncertainty in user input behaviour and context
information. This renders them highly relevant for adaptive user interfaces. However, the
challenge of most such existing frameworks is that they require other software components
to provide them with these probabilities in the first place. In other words, these frameworks
do not derive probabilities themselves. Thus, developers have to manually hook them up to,
for example, the probabilistic gesture recognisers mentioned before. This generates manual
development effort.

ProbUI improves on this by establishing a pipeline from 1) gesture declaration over
2) gesture recognition to 3) interpretation in one framework: When declaring gestures and
rules, developers can already implement callbacks for handling resulting events. In addition,
developers can easily and directly access any probabilistic information at any point in the
application/UI code (e.g. when implementing a UI widget class). Following related work, a
mediator object takes care of the appropriate global decision-making processes at runtime
during interaction.
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The ProbUI Framework

Several aspects of the ProbUI framework have been motivated already when describing the
key challenges and related options for developers in the preceding section. Building on this
background, this section now introduces ProbUI in more detail.

ProbUI addresses the described set of challenges with a conceptual framework that merges
benefits from three areas of related work by offering a novel development pipeline. This
conceptual framework is also implement as an Android library for practical use (see [Buschek
and Alt 2017)).

Overview
In brief, this pipeline first allows developers to specify touch behaviour per Ul element
with a declarative language. For example, a developer might assign a tap and both left
and right swipes to a multi-functional button. Next, ProbUI takes the developer’s specifi-
cations to automatically derive a basic probabilistic model (simple Hidden Markov Models
or “HMMs” [Barber 2012, Rabiner 1989]). In a way, this probabilistic GUI representation
brings some of the ideas of touch modelling in adaptive keyboards (e.g. see Chapter CS3.3.2)
to GUIs in general, beyond keyboards. Finally, during use, ProbUI continuously infers the
user’s intended behaviour and target. It does so in a probabilistic manner. As a result, de-
velopers can access and utilise probabilities about behaviour (What is the user doing? e.g.
swiping) and targets (Which Ul elements is the user using? e.g. button X; or How likely is it
that the user really wanted to trigger this button?). This information is useful, for example, to
implement live feedback and adaptations (e.g. reacting to left vs right handed use, see exam-
ples in Section 10.4.4). Figure 10.2 visualises a development example using the framework.
Next, we explain the core components of the framework in more detail, before discussing
concrete development examples step-by-step in Section 10.4.

ProbUI's Modelling Language (PML)
ProbUI introduces a simple declarative language, PML, that allows developers to describe
touch gestures as strings directly within their Ul-related code (e.g. when implementing a
button class). PML consists of tokens, similar to the elements of regular expressions. The two
main token types are 1) area tokens and 2) transition tokens. Developers use area tokens to
define the user’s finger location relative to a GUI element (e.g. the area token N means “north
of” e.g. a button). Moreover, they use transition tokens that chain area tokens to describe a
sequence of finger locations, in other words, a touch gesture (e.g. N->C—>S means “from
north to centre to south”, i.e. vertically crossing e.g. a button). Figure 10.3 shows examples.
There are further tokens, such as O (“origin”’) which denotes the area at touch down (e.g. to
implement a gesture that might start anywhere). Tokens can also be stacked (e.g. NN is an area
further north of the GUI element than N). In addition, tokens can be modified. Such modifiers
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ProbUI development example. In this example case, we implement a novel “play” button
for a music player app. The button integrates play/pause (on tap), fast back/forward (on
short slide left/right), and skip to previous/next track (on long slide left/right): (a) First,
the developer uses a declarative language to specify gestures for this GUI element (e.g.
tap, slides). (b) ProbUI takes these declarations plus the GUI properties (e.g. button size,
location) to automatically derive simple probabilistic gesture models. (¢) During use,
ProbUI continuously evaluates the incoming touch events to estimate the probability of
each behaviour, as well as the probability of each UI element. Image from [Buschek and Alt
2017].

include d, m, u to distinguish specific touch events (down, move, up) provided by the OS
(here: Android). For example, Cu implements "lift on button” whereas Cdu means that both
down and up events have to hit the button. The ProbUI paper lists further tokens [Buschek
and Alt 2017].

Deriving Probabilistic Models

ProbUT’s internal algorithm takes the developers’ PML statements, combined with the visual

GUI properties (e.g. location and size of a button) to automatically derive probabilistic mod-

els. Figure 10.3b) visualises example models alongside the corresponding PML statements.
Formally, these models are Hidden Markov Models (HMMs, [Barber 2012, Rabiner

1989]). HMMs are probabilistic graphical models useful for modelling sequences (e.g. here

sequences of touch points x,y). They model that a sequence of observed data (e.g. touch
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Figure 10.3 Examples for (a) area tokens (shown relative to a square button), and (b) derived models
(HMMs, visualised with sigma ellipses for states, and arrows for transitions). Image
from [Buschek and Alt 2017].

points) results from a sequence of “hidden” states (e.g. here the areas such as N) whereby
each such state emits observable data according to some probability distribution. These mod-
els are “Markovian” since the transition from one state to another only depends on the last
state. HMMs can be used, for example, to evaluate how likely an observed sequence of data
points is, or what the most likely sequences of hidden states is given the sequence of observed
data. Intuitively, an HMM in this use case can be thought of as a graph of screen areas: Each
area (i.e. state in the usual HMM terminology) is represented by a probability distribution
(i.e. emission distribution; here: Gaussian). Multiple such states are connected by weighted
transitions. For a more formal and detailed general treatment of HMMs see the related work
(e.g. [Barber 2012, Rabiner 1989]). Drawing a connection to Chapter 3, these HMMs can be
seen as a lattice model for decoding, with states representing finger locations (touch areas)
which compose a gesture trajectory, instead of words composing a sentence.

In particular, in ProbUI each HMM is used to evaluate the likelihood of the user’s current
sequence of touch points given the behaviour represented by the HMM. This touch sequence
processing is thus an example of processing a discrete-time signal (see Chapter 3.2.1).
Moreover, compared to the GMMs used for gesture recognition in Chapter CS4, HMMs also
model the transitions between the Gaussians. Thus, gestures are recognised based on both
where the touch points occur, and also in which order they occur at these different locations.
To create these HMMs, ProbUI needs to derive the following information (see e.g. [Barber
2012, Rabiner 1989]):

o States of the HMM: ProbUI creates one state per area included in the PML statement.
The location (i.e. mean) and “shape and size” (i.e. covariance matrix) of the Gaussian
emission distribution of each state is derived by the location and size of the corresponding
Ul element (e.g. button location and size), as shown in Figure 10.3.
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e Transitions of the HMM: The transition tokens (->, <—>) inform the HMM’s transition
matrix. In brief, ProbUI sets positive transition probabilities for transitions indicated by
the tokens (e.g. N—>C leads to a positive probability in the “N to C” cell of the transition
matrix). The exact transition values are simply uniform defaults (and practically not too
important as long as used consistently), but they can also be manually specified by the
developer. A Laplace correction is applied such that all states are connected with at least
a tiny probability. This ensures that the model can output alternative hypotheses (e.g. the
user actually moves the finger in the opposite direction).

Starting probabilities of the HMM’s states: Finally, the starting probabilities of the
HMM’s states are informed by the order of the area tokens. The state corresponding to
the leftmost token gets a positive starting probability (e.g. the north state in N—>C->S).
In case of two-way gestures (e.g. rubbing left-right L<->R), both first and last state
get a positive starting probability. Again, a Laplace correction ensures that the model can
output alternative hypotheses. Developers can easily overwrite all these probabilites with
manual specifications, if desired.

These HMMs are then used internally for probabilistic inference during interaction. The
overall probabilistic UI model in ProbUI is defined as the following factorisation of the joint
distribution over touch sequences ¢, touch behaviours b, and elements e:

p(t,b,e) = p(t|b)p(ble)p(e) (10.1)

In that model, the HMMs derived from the developers’ PML statements are used to evaluate
touch input to get p(¢|b), the probability of a touch sequence ¢ given a behaviour b. This is
combined with p(ble), the probability of a behaviour b given an element e (i.e. prior over
possible touch gestures for a given GUI element). Finally, p(e) defines the prior over elements
(e.g. uniform or based on past usage).

During interaction, this models allows ProbUI to infer p(b|e,t) (probability of behaviours
per element) and p(e|r) (probability of the elements). These probabilities are useful to assess
what touch behaviour(s) the user is most likely performing and at which GUI element(s).
Figure 10.4 provides an overview of the inference process, using these HMMs. The ProbUI
paper describes further details [Buschek and Alt 2017].

Rules and Event Handling

Finally, ProbUI also enables developers to write rules (again as strings directly in the Ul-
related code), using previously defined touch behaviours. For this, PML supports behaviour
labels (e.g. swipe_right: L->R). These labels can then be referred to in rules, com-
bined with keywords that relate to certain events and system states. For example, the rule
swipe_right on complete triggers once the swipe has been completed (i.e. the finger
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Inference process — from a sequence of touch points (x;,y;) to probabilities for behaviours
p(b|t,e) and GUI elements p(e|t). From left to right: The input is a touch trajectory, i.e. a
sequence of x,y coordinates. In step 1, the likelihood of the sequence given each behaviour b
is evaluated using b’s HMM. With Bayes rule, this allows us to infer p(b|z,e), the distribution
over behaviours per GUI element e, which is visualised in the centre bar plot (elements A
and B with example behaviours, i.e. the small orange arrows/dots). In step 2, the likelihoods
are integrated over all behaviours per GUI element (i.e. visually: “stacking the bars” in the
figure), which yields p(|e) (and this is the denominator from step 1, as indicated by the
shading and arrow). With Bayes rule, this allows us to infer p(elt), the distribution over
GUI elements, given the user’s current touch input. Both p(b|t,e) and p(t]e) can be used by
developers e.g. to implement feedback and adaptations.

has moved from the left to the right). Developers attach callbacks to these rules to react to
such events. The examples in the following section practically illustrate this from a developer
perspective. From the system’s perspective, the current touch sequence is evaluated using the
defined HMMs to infer the most likely state sequence (using the Viterbi algorithm [Barber
2012, Rabiner 1989]). This sequence is then matched against the sequence defined in the
PML statement to see which rule keywords are fulfilled (e.g. is the gesture complete?) and
thus which rules to trigger. Note that the underlying idea of decoding touch sequences into
sequences of area tokens is related to the decoding of touch keyboard input into words in
Chapter CS3.

Development Examples

This section further explains the concepts and use of ProbUI for developers in a way similar
to a tutorial. In particular, we present and discuss several examples, implementing both more
“traditional” as well as novel adaptive widgets. All code examples are given in Java/Android.
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Example 1: A Simple Counter Button

In this first example (adapted from our paper [Buschek and Alt 2017]), we implement a button
that simply counts the number of times the user has vertically crossed the button with a finger
swipe.

This example shows the basic components of developing with ProbUI. Going step-by-step
through the code, we first implement a new button class (line 1), extending a basic button class
provided by the framework. Then, we overwrite the onProbsetup method, which is called by
the framework when initially creating the GUL.

Within this method, developers put their setup code, for example to define touch behaviours
and rules. In this example, we add one such behaviour in line 6 ("across: N->c->s"), which
describes a vertical slide across the button (i.e. moving the finger from an area north of the
button to its centre, then further down to the area south of it).

Moreover, we also add a rule in line 8 ("across on complete"), which uses our just
defined label ("across") to refer to our vertical slide. The keyphrase "on complete" tells
ProbUI to check whether the swipe has just been completed. In addition, the keyphrase
"is most_likely" checks whether this is the most likely behaviour among the possible
behaviours for this button (in this case there’s just one anyway, but one could add e.g. another
slide in a different direction). In other words, this rule evaluates to “true” at runtime if the
system’s inferred most likely area sequence indicates that the user has moved the finger from
north of the button to its centre and just entered the south, thus completing the gesture in this
moment. Finally, we implement a callback method (lines 9-10), which is called when the rule
is evaluated to “true”; in this example, the callback simply increases a counter variable.

Following this piece of code, the developer can implement any other aspects of this button
class as usual. For example, we might implement visual feedback (e.g. changing the button’s
text to show the current counter value).

public class MyButton extends ProbUIButton {

private int counter;

// Called by the manager when setting up the GUI:

public void onProbSetup () {
// Add a touch behaviour to this button:
this.core.addBehaviour ("across: N->C->S");
// Add a rule with callback:
this.core.addRule ("across on complete and across is most_likely",

new Rulelistener () { public void onSatisfied() {
counter++;

Pr)

}

// ... rest of the class
Note that already in this basic example, the framework does significant useful work in the
background: With this short piece of code, we end up with a probabilistic model for the defined
slide (a simple HMM). Moreover, if we add multiple such buttons to an interface, ProbUI
will automatically infer and evaluate which one to activate (and count up) in a consistent
probabilistic fashion, which includes considering the full finger trajectory during the slide.
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Follow-up ideas: The current button only counts downward crossings. As an exercise for
the reader, this example could be extended with a second behaviour, rule, and counter to detect
and separately count downward and upward swipes across the button. It could be similarly
extended with horizontal crossings.

Example 2: Swiping Through A Gallery
This second example is adapted from the developer study from our paper [Buschek and Alt
2017]. Here, we implement an image gallery view widget that reacts to swiping left/right. In
particular, the two swipes are used to transition to the next/previous image in the gallery.
Looking at the code below step-by-step, we again overwrite the onProbsetup method, as
in the previous example (rest of class not shown). We first define the two swipe behaviours in
lines 4 and 5 ("swipe_1: od->Lu" and "swipe_r: od->Ru"). Note that this example uses the
O token, which denotes that the gesture originates at touch down (i.e. the gesture is relative to
its origin). This allows the user to perform the slide anywhere, since in this example we do not
care whether slides are performed, for example, on the centre of the image or at its bottom.
Next, we add two rules (lines 8-13 and 16-21): As in the first example, the rules trigger
a callback on completing the most likely gesture (here: either left or right swipe). In the
callback, we call either a method for loading the previous image (line 11: prev ()) or the next
one (line 19: next ()). The details of these methods are not shown here, since they are not
related to ProbUI.
public void onProbSetup () {
// Add two behaviours for swipes from the touch centre to the left/right
this.core.addBehaviour ("swipe_1l: Od->Lu");

this.core.addBehaviour ("swipe_r: Od->Ru");

// Add a rule: performing a left swipe triggers the prev() method
this.core.addRule ("prev: swipe_r on complete and swipe_r is most_likely",

new PMLRulelListener () {
public void onRuleSatisfied(String event, int subsequentCalls) {
prev();

Pr) g

// Add a rule: performing a left swipe triggers the next () method
this.core.addRule ("next: swipe_1l on complete and swipe_1l is most_likely",
new PMLRulelListener () {
public void onRuleSatisfied(String event, int subsequentCalls) {
next () ;

Ph)

Follow-up ideas: As an exercise for the reader, this example could be extended to account
for vertical swipes as well, for instance to navigate between different photo albums (e.g. swipe
up for previous album, swipe down for next album). Targeting another use case, this idea
could be transferred, for example, to a music player interface (e.g. swiping on an album cover
for previous/next songs). It is an interesting question to think about if and how probabilities
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might be used in these scenarios to inform useful adaptations and visual feedback (also see
next example).

Example 3: Transition Effects Using ProbUI Probabilities

This third example extends the previous one: We now add a transition effect that blends over
from one image to another, using the probabilities provided by ProbUI. Conceptually, we want
to tie the new image’s opacity to the swipe probability. In other words, the previous/next image
becomes more visible with increasing confidence that the user is currently indeed performing
a left/right swipe. On completing the slide, the image is then actually changed, as implemented
in the previous example.

To achieve this, we overwrite the widget’s drawing function (called by ProbUI, tied to the
usual Android UI drawing system). As the code snippet below shows, developers can easily
access the current probability of user behaviour at any point in their code (lines 4 and 5).
These values can be used freely; here, we use them to 1) decide if we should blend over to
the next or the previous image (if-else-statement, lines 11 and 17), and to 2) set the opacity
of the previous/next image (lines 12 and 18). The other lines simply call drawing commands
provided by the standard Android API.

It is worth pointing out here that the method calls getBehaviourProb ("swipe_1") (line 4)
and getBehaviourProb ("swipe_r") (line 5) yield the current probabilities of performing the
swipes, regardless of if (or how far) these slides have been completed by the user. Completion
can be checked via rules (see previous example). This way, probabilities of behaviours enable
developers to track user intention “live” — in this example to show feedforward (i.e. showing
the user which image would be made fully visible if the swipe is completed).

public void drawSpecific(Canvas canvas) {

// Get the behaviour probabilities for both swipes:
double probSwipelLeft = this.core.getBehaviourProb ("swipe_1");
double probSwipeRight = this.core.getBehaviourProb ("swipe_r");

/* Tie the opacity of the previous/next image to the probability
of the right/left swipe, respectively. */

// 1f swipe left more likely and there is another image:
if (probSwipeleft > probSwipeRight && this.previewImageNext != null) {
this.previewPaint.setAlpha ((int) (probSwipeLeft * 255));
canvas.drawBitmap (this.previewImageNext, null,
this.canvasRect, this.previewPaint);
}
// else (swipe right more likely) and there is a previous image:
else if (this.previewImagePrev != null) {
this.previewPaint.setAlpha ((int) (probSwipeRight x 255));
canvas.drawBitmap (this.previewImagePrev, null,
this.canvasRect, this.previewPaint);
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Follow-up ideas: This example could be extended with many different kinds of visual
feedforward (e.g. what could be tied to the probabilities instead of transparency?). In this
gallery use case this might result in different transition effects. Moreover, the simple trans-
parency effect (or other effects) could be implemented for other widgets to signal activation or
completion of actions (e.g. for sliders, selection of list/grid items, selection of map points/ob-
jects, etc.). It might be interesting to explore the impact on user experience if this is developed
further as a UI concept where this kind of feedforward is the norm. Inversely, one could think
about using the lowest probabilities, for example, to give the user visual cues on what else
could be done with a widget in contrast to how the user is currently using it (e.g. to improve
discoverability of gesture-enabled functionalities, cf. [Bau and Mackay 2008]).

Further Examples: Ul Elements that Adapt to Hand Postures

The previous examples have demonstrated fundamental aspects of using the framework.
Equipped with these basics, we can now turn towards cases that more clearly show the value of
the framework for building adaptive interface elements. Figure 10.5 shows three such widgets:

In @) and b), an adaptive slider bends itself to match the thumb’s reach and movement arc,
whereas c¢) shows the sliders’ feedforward in cases of uncertain user input (e.g. thumb moving
in a yet unclear trajectory in between two sliders. In d) and e), an adaptive menu button is
either opened in a straight line on tap, or in an arced layout on a flick with the finger/thumb;
the latter enables users to reach the top menu items during one-handed use, even on devices
with a larger screen. Finally, f) shows an adaptive contact list that swaps the alignment of
contact portrait and buttons based on the scrolling trajectory, such that the user’s thumb is
always close to the buttons and never occludes the contact portrait.

The visual adaptation of these widgets is more sophisticated than the preceding examples.
Implementing, say, the bending animations for sliders and menu item layouts is not a part of
ProbUI, but rather relies on the Android API. However, ProbUI makes it easy to trigger and
manage these visual changes, for example, to keep track of what should be displayed at which
point during interaction, and to reach decisions related to such feedback/feedforwad.

Overall, these widgets are implemented in the same way as the previous examples: Devel-
opers set up multiple behaviours and use rules with callbacks to react to them. For example,
the bending slider has five behaviours, one for each bending direction, plus one for the de-
fault straight state (see [Buschek and Alt 2017]). Similarly, the adaptive contact list has the
following three behaviours and two related rules:

this.core.addBehaviour ("straight: T<->B");
this.core.addBehaviour ("arc_left: L<->B");
this.core.addBehaviour ("arc_right: R<->B")

’

this.core.addRule ("arc_right is complete and arc_right is most_likely",
new PMLRulelListener () {
public void onRuleSatisfied(String event, int subsequentCalls) {
updateAlignment (ALIGN_LEFT) ;
P
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10000 |

Example UI elements that adapt to the user’s hand posture and finger in use: bending sliders,
adaptive menu item layouting, and adaptive alignment of portraits and buttons in a contact
list. See text for further details.

this.core.addRule ("arc_left is complete and arc_left is most_likely",

new PMLRuleListener () {

public void onRuleSatisfied(String event, int subsequentCalls) {
updateAlignment (ALIGN_RIGHT) ;
PH) i
Note that the "straight" behaviour is not linked to a rule and callback, since there are

only two alignments of the list entry GUI elements (see Figure 10.5f: portraits left, buttons
right — or vice-versa). However, by adding this straight behaviour, none of the two arced
behaviours becomes the most likely one when the user is actually scrolling in a straight
trajectory (e.g. with the index finger). This stops the list from flipping its alignment for
straight scrolling trajectories. Thus, this example demonstrates how developers can make use
of the probabilistic reasoning framework to “catch” user behaviour that should not be used
for adaptation. Supporting this aspect is crucial for facilitating the development of robust
adaptations, since unwanted adaptation (or “over-adaptation”) and resulting unpredictability
are well-recognised problems of adaptive user interfaces (e.g. see [Browne et al. 1990, Gajos

et al. 2008, Lavie and Meyer 2010]).

Reflection from a Developer Perspective
The preceding section demonstrated ProbUI’s use in the development of several example
interface widgets. In this section, we reflect on ProbUI’s concepts with regard to interactive
system developers. Besides reflections on a conceptual level, this section is based on empirical
results from an online survey (N = 33, 11 female, mean age 25) and a workshop (N = 8§,
3 female, mean age 25), both conducted with Android developers (also see [Buschek and Alt
2017]).

In the workshop, we introduced ProbUI in a short 20 minutes presentation, plus Q&A. We
then provided six short coding projects in which developers had to implement widgets (similar
to the examples in this chapter) using ProbUI. We encouraged questions during the workshop
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LINT3

and recorded developers’ “thinking aloud”. The workshop concluded with a questionnaire and

interview.

Declarative Language (PML)

One key aspect of our framework for developers is our declarative language, PML, that
developers use to define touch behaviours. PML was first addressed in the online survey:
Here, our goal was to evaluate how easy it is to learn and understand PML, and to gather first
feedback on the concept. The survey explained PML similar to an online tutorial. Afterwards,
it asked developers to 1) translate gestures given as videos/images into PML, to 2) select a
gesture based on a given PML statement, and finally to 3) write PML statements themselves
for a given gesture.

The participating developers took an average of 8:06 minutes to read the explanation and
complete all tasks with a score of 95.45% correct answers. In the Likert questions, 97%
rated it as easy to understand, 91% as easy to write. Overall, 75% were interested in actually
employing it in app development. Together, these results indicate that developers learned to
read and use PML quickly, with a positive attitude towards the concept.

Further insights into the concept of using a declarative language for setting up probabilistic
gesture models result from our developer workshop. Here, we found that PML is easy
to use after an initial introduction, matching the results from the online survey. However,
during actual use, we observed a learning curve: For example, a common question raised by
participants addressed the two sets of area tokens (around GUI element: N, E, S, W vs on GUI
element: T, R, B, L; see Figure 10.3a). It was unclear to the developers when to use which
set of tokens. In fact, ProbUI is very lenient about, for example, swapping north/top (N/T),
since input is evaluated probabilistically. Reflecting on the concept, it might thus be useful to
improve the tokens’ explanation, or even think about redesigning PML to clearly favour one
set of area tokens and present using both as a more advanced option for refined setups.

The workshop also revealed that developers would like to receive IDE support for the
declarative language. For example, while modern IDEs have strong capabilities to auto-
complete code, they do not know about PMLs tokens and syntax and thus cannot support
syntax-checking or auto-completion for PML statements. This could be fixed, for example,
with an IDE plugin. Following one developer’s suggestion, we could also provide string
constants for PMLs keyphrases, which would (partly) enable auto-completion in unmodified
IDEs.

Probabilistic GUI Concept

Besides PML, ProbUI provides a probabilistic GUI concept that facilitates development of
adaptive user interfaces. The examples in Section 10.4 demonstrate how these probabilities
might be used, for example, to implement visual feedback. Working with the option of
utilising probabilistic information anywhere in UI code is a key aspect of development as
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enabled by ProbUI. Thus, we reflect on the related findings from our developer workshop
here.

Overall, working with probabilities was unfamiliar for the developers participating in our
workshop. Nevertheless, they welcomed the idea and practical value, as evident, for example,
from many suggestions on how they might use such probabilities for interfaces beyond those
included in the workshop tasks. As with PML, we observed a learning process: Several initial
key questions repeatedly occurred in the workshop sessions. These are particularly insightful
to reflect on.

First, a common question addressed the distinction between the two types of probabilities
provided by ProbUI, that is, 1) the probabilities of touch behaviours (e.g. swipe left) vs 2)
the probabilities of GUI elements (e.g. button X). This distinction and the practical value of
both types became clearer over the course of the tasks. One idea to better support learning
about this distinction is an object-oriented access method, suggested by one of the partici-
pants and now implemented in ProbUI: In addition to getter methods for probabilities pro-
vided by the “core” ProbUI system object (e.g. this.core.getBehaviourProb ("swipe_1")),
the API now also lets developers first use a getter for either the GUI element or a
specific behaviour — and only then call a getter for a probability on that object (e.g.
this.getBehaviour ("swipe_1") .getProbability ().

This API change ties in with the second key question revealed by our workshop, which
addressed object-oriented development. Many methods in ProbUI use string identifiers, since
those also appear as part of the declarative language PML (e.g. the behaviour labels as in
"swipe_left: rR->L"). While PML was well-received, developers also expressed the wish
to work with the resulting components in a typical object-oriented way. As a result, ProbUI
now returns behaviour objects when defining behaviours. Developers can use these objects to
access probabilities, manually refine the behaviour parameters, and so on. Going a step further,
we might also support an object-based declaration instead of PML altogether, also for the
rules. Comparing this against the declaration-as-strings API approach presents an interesting
aspect for a future study with developers. Overall, however, ProbUI could also support both
API approaches in parallel, since the framework internally already uses objects to represent
all components anyway.

Generalising GUI Target Representations

In traditional GUI frameworks for mobile apps and also websites, GUI target areas (e.g. active
area of a button) are described as rectangles (often called “bounding boxes”). Boxes are a
simple representation for GUI targets which implies three limitations for developers:

1. Bounding boxes are a discrete representation; they cannot deal with uncertain input, since
a touch point is either in or out of a box. Thus, there is no inherent notion of uncertainty.
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2. There is a one-to-one mapping from boxes to GUI targets. For example, each button has
exactly one bounding box that describes where/how expected user input for this button
takes place.

3. Bounding boxes are a static representation. They only describe simple tapping well.
In contrast, many other touch behaviours are dynamic and thus not adequately repre-
sented by boxes. For example, users might slide [Moscovich 2009, Yatani et al. 2008],
rub [Roudaut et al. 2009], cross [Apitz et al. 2008, Perin et al. 2015], and encircle GUI
targets [Choe et al. 2009, Ka 2013].

Reflecting on the concepts of ProbUI, we see that it generalises GUI target representations
from bounding boxes to what we call “bounding behaviours”. In particular, this generalisation
addresses the three limitations listed above:

First, our bounding behaviours are probabilistic representations (HMMs). This supports
providing the various benefits motivated throughout this chapter, such as inferring user
intention, giving continuous feedback/feedforward, and robustly adapting the GUI.

Second, our framework allows developers to attach more than one bounding behaviour to
each GUI element. This enables GUIs to anticipate and address variations in user behaviour
(e.g. due to different hand postures) or entirely different ways of using one GUI element (e.g.
target selection by tapping vs crossing). This supports not only different user preferences for
interaction styles but may also better account for the skills of specific user groups (e.g. motor
impairments) and contexts (e.g. stationary use at home vs less precise mobile use).

Finally, by using HMMs, our bounding behaviours better represent dynamic user behaviour
which unfolds over time (i.e. here: touch gestures), compared to the static bounding boxes. As
our examples show, this enables developers to realise and work with a consistent probabilistic
representation of many (previously non-probabilistic) touch input behaviours proposed in the
HCI literature (cf. examples in [Buschek and Alt 2017]).

Limitations and Extensions

We further reflect on the concepts of the framework, beyond the survey and workshop, based
on discussions with fellow researchers and practitioners. Here, it is also insightful to address
the main limitations of ProbUI in its current state:

One constraint is set by the choice for the declarative language: Complex gestures are
much more difficult to express with a sequence of tokens than with demonstration. One might
argue that gestures tied to GUI elements should be limited in their complexity anyway for
reasons of usability. Nevertheless, it would clearly be useful to support multitouch gestures
more directly. ProbUI already keeps track of touch events by all fingers and includes simple
declarative statements addressing multiple fingers (e.g. number of fingers used to define a
two-finger slide). A useful extension of this could, for example, allow developers to index area
tokens with finger IDs. A radically different approach to integrating complex gestures could
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employ a machine learning gesture recogniser instead of declarations and feed the resulting
probabilities to the remaining parts of the framework (cf. related work in Section 10.2.3).

Regarding the probabilistic “backend” of the framework, it should be noted that the
presented concept does not necessarily result in models that fit the users’ actual behaviour
well in the machine learning sense. Since the models are only informed by declarations and
GUI properties (layout, sizes) — and not from past user behaviour data — the HMMs should
be seen as rather rough approximations of behaviour. Nevertheless, they provide a systematic
probabilistic treatment of input behaviour.

ProbUI enables developers to access probabilities about behaviours and GUI targets any-
where in the UI code. However, the other direction is relevant as well, that is, accessing GUI
information in the probabilistic reasoning process. ProbUI currently supports this to a limited
extent: Our implemented mediator class accesses properties such as visibility and “enabled”
states (to ignore invisible/disabled GUI elements for reasoning). It also keeps track of the
GUI elements’ locations (e.g. while scrolling) to update the behaviour models accordingly
(i.e. move the HMMs’ emission states locations). However, the framework currently does not
directly support reasoning with larger GUI “states” (e.g. considering the user’s recent naviga-
tion history in the app). This is an opportunity for future extensions. Nevertheless, developers
can already use the probabilities provided by ProbUI to write their own systems that use such
information (e.g. implementing a state machine with transitions based on behaviour probabil-
ities). A very simple example of this is given by our adaptive widgets (e.g. the slider has five
bending “states”).

Finally, the probabilistic reasoning requires additional computations, compared to a tradi-
tional GUI framework. For each touch event, ProbUI delegates the event data to all GUI ele-
ments, evaluates their HMMs, checks the defined rules, runs the mediator, plus other “book-
keeping” work. In our implementation, this did not incur noticeably delays (on a Nexus 5
phone) with a reasonable number of GUI elements and attached behaviours and rules. How-
ever, computational costs could become an issue for GUIs with many elements each with mul-
tiple behaviours and rules. Developers can address this only to a limited extent. To improve the
framework in this regard, the evaluation of behaviours etc. can be parallelised: Conceptually,
this is easily possible since the evaluation of one HMM is independent of the others.

Conclusion and Outlook
This chapter presented ProbUI as a case study of a framework for developers of intelligent
and adaptive user interfaces. In particular, ProbUI addressed mobile touch interfaces. As a
key insight for supporting their development, it combines the ease-of-use of declarative spec-
ification of user behaviour (here: touch gestures) with the benefits of probabilistic modelling
and reasoning during interaction.

We demonstrated the use of the framework from a developer perspective through several
coding examples, followed by a reflection on the underlying concepts, based on a survey and
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workshop with Android developers. We conclude that declarations are an adequate and useful
approach to support developers in specifying expected user input behaviour (and its variations)
directly embedded into UI code. Furthermore, the novel automatic probabilistic “backend” of
our framework enables developers to work with probabilities without coding the underlying
models (here: HMMs) by hand. In particular, developers can access and use probabilistic
information about current user behaviour regarding both likely input/gestures and likely
GUI targets. These probabilities are kept up-to-date automatically and continuously during
unfolding user interactions. Finally, our concepts generalise GUI target representations from
bounding boxes to “bounding behaviours”, which better account for dynamic and uncertain
user input behaviour, and also allow developers to anticipate and account for multiple different
ways in which users might want to interact with a given GUI element.

Overall, ProbUI thus presents a case study of how we can combine previously disparate
concepts (such as declaration and probabilistic reasoning) at the intersection of Machine
Learning and HCI to facilitate their integration into novel interfaces and to practically support
the developers of these future interactive systems.

Code and additional material are available at: http://www.medien.ifi.Imu.de/probui/

Follow-Up Questions
Here are some further ideas for following up on the contents of this chapter after reading:

e Ul & Interaction Design — This chapter and the ProbUI paper list several example
widgets. Can you come up with further widgets that benefit from probabilistic input
handling? How could you show that there is a practical benefit for the user?

e Practical — Try out the framework for yourself: Download ProbUI and try out the
examples, the follow-up ideas described after each example in this chapter, or your own
ideas from the previous question. Do you encounter practical limitations when realising
your ideas? If so, what would need to change conceptually?

e Conceptual — How could the ideas of ProbUI be adapted or extended for input beyond
a touchscreen? For example, think about AR/VR applications with typical controls like
mid-air gestures — that is, 3D gestures instead of 2D gestures. What would probably need
to be changed and what could be reused from 2D?

Further Reading

This list provides pointers to related work and further reading on the topics of this chapter:

e More on ProbUI itself can be found in the CHI’17 paper on this framework [Buschek
and Alt 2017].
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e For other frameworks for probabilistic GUISs, including concepts for treating GUI states
in a probabilistic fashion, see the work by Schwarz and colleagues [Schwarz et al. 2010,
2011, 2015].

e The Proton papers give a detailed treatment of using a declarative language for specifying
touch gestures [Kin et al. 2012a,b].

e For further motivation and use of adaptive user interfaces for diverse user groups, see for
example this overview on “Ability-based Design” [Wobbrock et al. 2018].

e Further details and ideas for probabilistic models of mobile finger touch input can be
found for example in these papers [Bi and Zhai 2013, Bi et al. 2013, Weir et al. 2014,
Yin et al. 2013].

e For more background on touch input, see for example these studies by Holz and Baud-
isch [Holz and Baudisch 2010, 2011].

e A broader view on modelling user behaviour in a computational perspective on HCI can
be found in this book [Oulasvirta et al. 2018].

e A general textbook on probabilistic modelling, for example, is this one [Barber 2012].
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