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ABSTRACT
Authentication methods can be improved by considering im-
plicit, individual behavioural cues. In particular, verifying
users based on typing behaviour has been widely studied with
physical keyboards. On mobile touchscreens, the same con-
cepts have been applied with little adaptations so far. This
paper presents the first reported study on mobile keystroke
biometrics which compares touch-specific features between
three different hand postures and evaluation schemes. Based
on 20.160 password entries from a study with 28 participants
over two weeks, we show that including spatial touch fea-
tures reduces implicit authentication equal error rates (EER)
by 26.4 - 36.8% relative to the previously used temporal fea-
tures. We also show that authentication works better for some
hand postures than others. To improve applicability and us-
ability, we further quantify the influence of common evalua-
tion assumptions: known attacker data, training and testing on
data from a single typing session, and fixed hand postures. We
show that these practices can lead to overly optimistic eval-
uations. In consequence, we describe evaluation recommen-
dations, a probabilistic framework to handle unknown hand
postures, and ideas for further improvements.
Author Keywords
Keystroke Dynamics; Mobile; Touch; Biometrics
ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI): In-
put devices and strategies (e.g. mouse, touchscreen)
INTRODUCTION
We use mobile devices in many tasks every day [8]. Some
require access to password-protected systems, like email ac-
counts or social networks. The device itself may also be
locked with a password or PIN to protect it in cases of loss
or theft [25]. Utilising device sensors and assuming a one-to-
one relationship with personal devices, research proposed be-
havioural biometrics to enhance security [11, 16, 18, 31]. For
password entry, a second, implicit security layer can observe
typing behaviour: If an attacker knows the password or PIN,
for example due to shoulder surfing [48] or a smudge-attack
[2, 51], access can still be denied based on the fact that they
do not type the password in the same way as the legitimate
user (e.g. different rhythm, finger placement).
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Figure 1. Touch-specific keystroke features on a mobile keyboard. In this
example, the user is typing “hi”. The magnified h-key shows touch down
and up locations, the drag in between, and the offset to the key’s cen-
tre. The keyboard-overlay shows touch area size and axis, as well as the
“jump” vector between subsequent touches. In this paper, we analyse
these touch-specific features to improve mobile keystroke biometrics.

Verifying identity based on typing behaviour (keystroke dy-
namics) has mostly been studied in terms of timing, both on
physical keyboards [40, 41] and older mobile devices with
physical keys [10, 14, 15, 30, 33, 38, 57]. Less work has been
carried out on mobile devices with touch [32, 42, 46, 59],
and without investigating touch-specific behavioural features,
such as those shown in Figure 1. Recent research has success-
fully used similar features with gesture keyboards [11], but
the potential of touch biometrics is still unknown for typing
by tapping [20, 55]. Hence, to improve keystroke biometrics
for the smartphone-era, this paper provides in-depth analyses
of mobile-specific and touch-specific opportunities and chal-
lenges, leading to the following contributions:

1. To improve implicit authentication accuracy, we evaluate
touch-specific features for capturing individual typing be-
haviour. Spatial touch features outperform the commonly
used temporal features, and both can be combined to re-
duce equal error rates by up to 36.8%.

2. To improve applicability, we discuss and quantify practi-
cal implications of different commonly used evaluations.
In particular, we compare results for: 1) training and test-
ing within sessions or across sessions; 2) training on owner
data only or also on data from others; 3) assuming fixed
or changing hand postures. Our analyses allow for a more
realistic assessment of keystroke biometrics in practice.

3. To improve usability, we propose an approach to avoid
restricting users to one typing posture. We analyse one-
thumb, two-thumb and index finger typing. We show that
behaviour is highly posture-specific and present a method
to handle changing hand postures.
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RELATED WORK
We relate our work to touch behaviour, keystroke dynamics,
and touch-based implicit identification and authentication.

Modelling Touch and Typing Behaviour
Related research reduced typing errors with keyboard person-
alisation based on users’ individual touch distributions per
key [3, 4, 13, 21, 24, 56]. Azenkot and Zhai [3] found that
touch distributions for each key on a smartphone’s soft key-
board varied less within users than between them. Yin et al.
[56] showed that user-specific models reduce error rates fur-
ther than posture- or key-specific ones. Edelmann et al. [21]
also found that user-specific models led to less typing errors
on a tabletop. Hence, this line of research revealed individual
touch typing patterns, but none of these projects utilised this
information for user authentication, which we explore here.
Research also found several influences on general touch be-
haviour: Individuals visually target differently with their fin-
ger tips [27], since targets are often occluded by the finger
[6]. Contact areas are influenced by the finger’s angle [22,
52]. Targeting offsets differ with respect to the finger’s pitch,
roll and yaw [28], and offset patterns [26] can better be cor-
rected for individual users than overall [12, 53, 54]. In this
paper, we examine targeting behaviour in terms of such touch
offsets as a novel feature for mobile keystroke biometrics.

Behavioural Biometrics for Mobile Typing
Related work applied keystroke dynamics on mobile phones
with physical keys: Zahid et al. [57] deployed a fuzzy-logic
classifier observing temporal features and error counts on
a keypad phone. Other researchers used neural networks to
authenticate mobile phone users based on temporal typing
features on keypads [15] and physical mini-QWERTY key-
boards [33]. Their systems achieved 12.8% EER [15] and
12.2% EER [33], using attacker data during training.
Nauman et al. [42] enhanced password authentication for web
services with keystroke dynamics on smartphones. They used
keystroke latencies and key-hold times, but no touch fea-
tures. Saevanee et al. [47] combined linguistic analysis with
keystroke dynamics on mobile devices. The keystroke-based
part of their system used key-hold times and achieved 20.8%
EER. They trained classifiers in a “one-vs-rest” scheme, us-
ing data from both the legitimate user and others.
Zheng et al. [59] measured pressure and touch size for nine-
key PIN unlock on smartphones. They reported EERs be-
tween 3.65%-7.34% with distance-based anomaly detection
evaluated in a single session. Other authors used a Bayesian
Net to authenticate phone users in a passcode entry task with a
grid of 16 symbols [32]. They reported 82.18% accuracy with
temporal features and distances between subsequent touches.
They also applied the method to an actual keyboard, but did
not consider touch features there. In contrast to these projects,
we include touch offsets and touch locations.
Burgbacher and Hinrichs [11] trained Support Vector Ma-
chines (SVMs) in a “one-vs-rest” scheme to authenticate
users via finger movement behaviour on gesture keyboards
(see [36]). They reported 0% EER if five or more words in the
message are known to the system. They targeted gesture key-
boards, whereas our approach addresses typing by tapping.

Draffin et al. [20] trained neural network classifiers for
keystroke authentication using touch-to-key offsets, size,
pressure, drag, and hold time. Although they used features
derived from exact touch locations, they did not evaluate the
contribution of these new spatial features to the overall per-
formance. This was also pointed out by Xu et al. [55], who
therefore decided against using these typing features in their
work on implicit authentication with mobile touch input. In
contrast, we present a detailed evaluation of offsets and other
touch features. We show that they outperform the temporal
features, and thus should indeed be included.

Touch-based Implicit Authentication and Identification
Related work addressed verifying user identity with diverse
touch measures: Shape-based phone unlock systems were en-
hanced with an implicit layer using touch sequence matching
[1, 7, 18]. Characteristics of touch strokes from zooming and
scrolling were utilised as well [23, 58]. Other work suggested
to directly replace passwords with touch evidence [31, 49],
for example with special touch gestures [45]. In contrast, our
method addresses text-based logins and typing.

Further related research distinguished users with rear-
projected tabletop systems: Holz and Baudisch [29] used a
fiber optics plate to authenticate users via fingerprints dur-
ing touch interaction on a multitouch table. Mock et al. [39]
also captured images of finger contact areas on a tabletop.
They used SVMs to identify one of twelve known typists with
97.51% accuracy, and detected unknown users with 12.3%
EER, both after one keystroke. This shows that finger place-
ment on soft keyboards provides user-specific information.
However, current mobile touchscreens lack optical sensors;
images of the fingers are not available. In this paper, we nev-
ertheless utilise spatial typing touch information, solely rely-
ing on sensors available on off-the-shelf mobile devices.

Opportunities and Intended Contribution
In summary, related work on keyboard personalisation, tar-
geting, and touch-based authentication has shown individual
touch and typing behaviour. However, research on keystroke
biometrics has either ignored spatial touch-specific typing
features on mobile devices [15, 33, 42, 57], or only used such
features on tabletops [29, 39] or with gesture-keyboards [11].

We found only one exception: Draffin et al. [20] measured
touch-to-key offsets, but only tested them with one classifier,
and crucially neither optimised feature sets nor evaluated the
influence of the new features, as pointed out by Xu et al. [55].

In conclusion, this leaves the potential of touch features for
mobile keystroke biometrics still unexplored. At the same
time, related work has revealed the need to address mobile
applications of keystroke biometrics and to develop novel
features [5, 16, 50]. Hence, we aim to improve behavioural
biometrics for mobile touch keyboards with a comprehensive
analysis of touch-specific features in a password entry task.

Furthermore, we analyse common evaluation schemes in re-
search on (mobile) keystroke biometrics to quantify the ef-
fects of potentially “optimistic” methods. We suggest alterna-
tives which allow for more practical and usable perspectives.
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THREAT MODEL
We consider that an attacker gains access to an unlocked de-
vice and additionally knows the owner’s password for their
email account, for a social network or for similar services and
apps which require authentication. Here, keystroke informa-
tion serves as an additional security layer (“password hard-
ening” [40]): even if the attacker enters the correct password,
the system can deny access due to different typing behaviour.

IMPROVING ACCURACY OF KEYSTROKE BIOMETRICS
We propose new typing features for the password entry task
resulting from the described threat model. We then introduce
our employed user models for implicit authentication.

Typing Features
To build user models for authentication, we need to capture
individual aspects of typing behaviour. We are interested in
features which vary characteristically between users, but also
stay consistent for the same user over time. Formally, we de-
scribe each password entry as a feature vector, as in most re-
lated work (see e.g. [20, 42, 50]): Typing a password with n
keystrokes is represented as a vector f = (f1, f2, ..., fn)

T ,
the concatenation of the typing features ft for each touch t.
For example, if a system observes the two features hold time
ht and flight time ft, the typing behaviour for a password
entry is described as f = (ht1, ft1, ht2, ft2, ..., htn, ftn)

T .
This representation of user behaviour can then be processed
by machine learning methods to authenticate users.

Related work on keystroke-based biometrics commonly uses
temporal typing features (e.g. [15, 33, 42, 57]): hold time
passes between the moment when the finger touches the
screen (touch down), and the moment when the finger is lifted
(touch up). Complementary, flight time is measured between
touch up and touch down. We can also measure the time in
between subsequent touch up or down events, to which we
refer as up-up times and down-down times, respectively.

To complement the temporal features, we propose to consider
new spatial touch-specific features (Figure 1): exact touch lo-
cations at touch down and up events; offsets between touch up
and key-centres, due to typing inaccuracy; touch “jumps”, the
distances between subsequent touches; drag distances/angles
between touch down and up locations, due to small “natural”
movements (≈ 2.1 pixels average drag in our data); touch area
sizes and ellipses axes. We also evaluate touch pressure. Size,
axes and pressure are estimated by the Android API.

User Models for Authentication
We compare models of two types: 1) anomaly detectors,
which only require training data from the legitimate user; and
2) classification methods, which are trained on data from mul-
tiple users. In practice, training data can be collected in an en-
rolment phase or from normal use. During testing, that means
whenever a password is entered correctly, these models then
decide whether it was typed by the legitimate user.

Anomaly Detection: Many models for keystroke-based au-
thentication exist [5, 34, 50]. To show that results are not
model-specific, we selected methods for three common ap-
proaches: distance to training instances (here: mean distance
to k=5 nearest neighbours, kNN); a statistical model (here:

Gaussian model without covariance, GM); and a kernel-based
method (here: Least Squares Anomaly Detection, LSAD
[44]). We refer to the related work for detailed descriptions.

Classification: Complementary to authentication, we chose
a small set of representative classifiers: k-Nearest-Neighbour
classification (kNNC); Naı̈ve Bayes (NB); and Support Vector
Machines (SVM). We refer to related work for more details on
these models [19, 43] and their applications [5, 50].

IMPROVING APPLICABILITY AND USABILITY
To improve mobile keystroke biometrics besides raw accu-
racy, we further target applicability and usability. Our goal is
to 1) identify evaluations and assumptions that can result in
too optimistic assessments of the actually applicable and us-
able quality of the examined systems; and to 2) propose and
highlight more usable and practically relevant alternatives.

In particular, we compare conditions and quantify effects of:
collecting data in a single session - or in multiple sessions;
training user models on data from the owner - or also on data
from others; and assuming a fixed known hand posture - or
leaving the choice of postures to the user. The following sec-
tions discuss these issues in more detail and introduce our
proposed improved concepts for evaluation and applications.

Evaluation Within Sessions vs Across Sessions
Typing and touch behaviour can be expected to vary over
time. Therefore, training and testing on data from the same
session is likely to be too optimistic, since, in practical ap-
plications, enrolment and authentication will never follow di-
rectly one after the other. However, a recent survey [50] found
that 73% of examined publications on keystroke behavioural
biometrics only studied data obtained in a single session.

To improve mobile keystroke biometrics for practical use, it
is thus important to study the practically relevant case across
sessions, and to quantify the effects of single session evalua-
tion to inform future study design. To the best of our knowl-
edge, this is the first reported direct comparison of evaluations
within and across sessions on mobile touch keystroke data.
We show that single session evaluations can lead to EERs less
than half of those obtained across sessions. We thus recom-
mend to collect data in at least two sessions.

Classification vs Anomaly Detection Methods
Two training and modelling schemes are commonly em-
ployed for keystroke-based biometrics: classification and
anomaly detection (Figure 2). Classifiers are potentially more
powerful, since they characterise the legitimate user in con-
trast to others, whereas anomaly detectors can only check for
deviation from the legitimate user’s behaviour. However, the
need for data from others can make classifiers difficult or even
impossible to apply in practice.

Since classifiers need training data from multiple users, their
application to capture behaviour for specific passwords or
PINs implies that the user’s password or PIN has been typed
by others and is thus known to them. In contrast to the com-
mon use of classifiers in this way [15, 32, 42, 46], we thus
strongly recommend to focus on anomaly detectors instead,
when adding an implicit layer for password or PIN entry.
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Figure 2. Three training schemes for evaluation of keystroke biometrics.
Anomaly detectors are only trained on data from the legitimate user
(“owner”). In contrast, classifiers also use pooled data from all other
users. However, applications may not always have access to typing be-
haviour of other users in practice, especially not for specific secret pass-
words. Moreover, it is unrealistic to assume known data from the at-
tacker. To address these issues, we 1) recommend anomaly detection for
applications where features are extracted for secret passwords, and we
2) propose a slightly different training scheme for classifiers, which ex-
cludes the attacker from the training data for the “others”-class.

Moreover, the dataset of others used to train classifiers often
also includes data from the very participant who serves as an
attacker in the current evaluation case [17]. Assuming that
data from the attacker is known to the system in advance is
highly unrealistic.

We address this issue with a simple alternative way of split-
ting the training data for evaluation of classifiers (Figure 2). In
particular, we split the data into three parts: owner, attacker,
and others (excluding the attacker). Classifiers can then be
trained on data from owner and others, without assuming
known data from the attacking individual.

Note that we do not argue against the use of classifiers for
keystroke biometrics altogether: A system could be shipped
with anonymous typing data for common words (but not pass-
words or PINs), collected by the developers in a user study.
This data can then be used to train models against the device
owner’s data for the same words, observed when typing mes-
sages, e-mails, and so on (see e.g. [11, 59]). Finally, classi-
fiers trained on “shipped data vs owner data” in this way may
also be applied (even to passwords) if typing behaviour is not
described per word but for example per bigram [50]. These
cases are not further addressed in our study in this paper.

To the best of our knowledge, we are the first to report a di-
rect comparison of anomaly detectors and classifiers on mo-
bile touchscreen keystroke data. We show that classifiers lead
to 28.4 - 48.1% lower EERs relative to anomaly detectors,
and to 45.2 - 58.2% lower EERs, if the attacker’s data is in-
cluded. We thus recommend to carefully consider if classi-
fiers are practically applicable for given use-cases. We further
recommend to exclude the attackers’ data from training sets
when evaluating such systems.

Fixed vs Changing Hand Postures
Many studies of mobile keystroke biometrics evaluated sys-
tems with data from one hand posture or did not report the
posture [14, 15, 32, 33, 57]. Some reported results for dif-
ferent postures [30, 59], but those were always treated sep-
arately. As a result for practical deployments, these evalua-

thumb

two-thumbs

index

posture-specific
user models

p(u | h = two-thumbs, i)

p(u | h = thumb, i)

p(u | h = index, i)

p(h = two-thumbs | i)

p(h = thumb | i)

p(h = index | i)

probabilistic
posture
classifier

typing
input i

combiner

> threshold?

true false

accept deny

Figure 3. Probabilistic framework for usable mobile keystroke biomet-
rics which does not restrict users to a fixed hand posture. For an entered
password (input i), each posture-specific model predicts the probability
p(u|h, i) of the legitimate user u, assuming that the corresponding hand
posture h was used. Additionally, a posture classifier estimates the prob-
ability p(h|i) of each posture indeed being the one used while typing.
Both sets of probabilities are then combined. The resulting probability
p(u|i) of the legitimate user can then be compared against a threshold.

tions imply systems that require fixed hand postures: the user
would always have to type with the same posture for the sys-
tem to work with the evaluated accuracy. This clearly restricts
the user’s freedom and lowers the usability of such a system.

To the best of our knowledge, this paper presents the first re-
ported direct comparison of mobile touch keystroke biomet-
rics for different postures. We show that entering a password
in a system trained on a different posture increases EERs by
up to 86.3% relative to a system assuming a fixed posture.

To address this issue and improve usability of keystroke bio-
metrics, we propose a framework that allows users to type
with different postures. We follow a probabilistic approach,
utilising the fact that we do not need to decide for a certain
posture, since we only care about correct authentication.

In summary, when a password is entered, we use a probabilis-
tic classifier to predict a probability for each posture. We also
use posture-specific user models to predict the probability of
the legitimate user per posture. We then combine these prob-
abilities, as shown in Figure 3.

In contrast to a hard decision for a specific posture, our ap-
proach always includes all training data from all postures for
its predictions, and can thus better respect user-specific char-
acteristics possibly present across postures.

Formally, we estimate the probability p(h|i) of hand pos-
ture h given input i (the typing feature vector), and the prob-
ability p(u|h, i) of the legitimate user u given posture h and
input i. We can then integrate out the posture:

p(u|i) =
∑
h∈H

p(u|h, i)p(h|i), for the set of postures H

Any suitable models can be used to estimate p(u|h, i) and
p(h|i). In this paper, we implement this framework as fol-
lows: For p(u|h, i), we use the LSAD model, training one
such model for each posture. For p(h|i), we train a proba-
bilistic SVM on the owner’s data from all three postures.
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Type 6 characters 8 characters
dictionary word monkey password
pronounceable Igur39 Bedufo20
random 12hsVi s5mqde3A

Table 1. Passwords used as stimuli in the user study.

STUDY AND DATA COLLECTION
We collected typing data in a user study with two sessions one
week apart. The independent variables were hand posture and
password. As dependent variables, we recorded keystrokes
with timestamps and touch locations to derive the described
features. Participants also filled in a short questionnaire.
We examined three common postures, all in portrait orienta-
tion: 1) THUMB, holding the device in the right hand, touch-
ing with the right thumb; 2) TWO-THUMBS, holding it in both
hands, touching with both thumbs; and 3) INDEX finger, hold-
ing it in the left hand, touching with the right index finger.
We asked participants to repeatedly enter six passwords,
shown in Table 1. These passwords were selected to cover
two different lengths and three styles: dictionary words, pro-
nounceable passwords [37], and random ones.

Participants
We recruited 28 participants with an average age of 25 years
(range: 20-33). 8 were female, 20 male. All were undergrad-
uate or graduate students. One was left-handed. All stated
that they own mobile phones with touchscreens and that they
(also) employ their right hand for typing. They were compen-
sated with a e15 gift card for an online shop.

Apparatus
We used a Nexus 5 phone. Our app showed the password at
the top and the entered text in a box in the centre. We used a
custom touchscreen keyboard to measure all features. Style,
size and functionality mirrored the default keyboard on the
Nexus 5. Thus, capitalisation turned off after one keystroke
and vibration issued haptic feedback on touch down.

Procedure
Each participant was invited to two sessions, with a gap of
at least one week. Each session comprised three main tasks
(three hand postures). The order of tasks varied between sub-
jects according to a 3×3 latin-square design to minimise pos-
sible learning effects and fatigue. A different latin-square was
used for each session to vary the order of tasks between weeks
as well. Sessions lasted for about one hour. Users sat on a
couch and were reminded to take breaks.
Between tasks, the app instructed users to assume the correct
hand posture for the next task. The phone was held in portrait
orientation. Participants were informed to neither put special
emphasis on typing speed nor accuracy, but rather to touch
naturally as they would do in their usual everyday typing.
For each hand posture, participants typed 6 different pass-
words in random order, 20 times each. Words were submitted
with the return key. To advance to the next repetition, the cur-
rent one had to be entered correctly without extra key presses.
Otherwise, the text was cleared and the user could try again.
The number of attempts was unlimited. In total, we collected
2 sessions × 28 users × 3 postures × 6 passwords × 20 rep-
etitions = 20.160 correct passwords with 201.600 touches.

Feature
Authentication Equal Error Rate (%)

THUMB TWO-THUMBS INDEX
GM kNN LSAD GM kNN LSAD GM kNN LSAD

hold time 31.98 32.02 30.87 26.54 26.47 25.57 40.34 40.73 39.24
flight time 35.91 34.52 34.55 32.58 31.64 31.55 36.92 36.85 36.60
up-up 33.95 32.88 32.67 29.91 28.77 29.45 37.13 36.71 36.99
down-down 34.44 33.09 33.13 31.62 30.63 30.42 37.31 37.04 37.33

offset x 33.66 33.06 31.56 31.65 31.22 29.82 39.30 38.71 37.56
offset y 33.28 32.66 31.31 30.45 30.07 29.45 36.21 35.79 34.07

down x 34.12 33.55 32.23 32.40 31.42 30.38 39.48 39.19 37.63
down y 34.02 33.41 32.27 31.76 31.25 31.08 36.63 36.29 35.04
up x 33.64 33.12 31.59 31.65 31.22 29.82 39.30 38.71 37.56
up y 33.62 33.09 31.99 31.37 30.90 31.03 36.40 36.19 34.82

jump x 35.58 34.80 33.84 32.93 32.29 31.08 38.84 38.43 37.13
jump y 36.92 36.37 34.87 35.49 34.65 35.09 40.02 38.89 38.75
jump angle 37.81 37.76 36.81 33.15 32.52 31.93 39.87 39.41 38.89
jump distance 34.76 34.23 32.17 32.39 32.11 31.65 37.70 37.47 35.64

drag x 44.69 45.02 43.45 45.51 45.53 44.22 48.32 48.92 46.43
drag y 45.08 45.56 44.33 45.60 46.00 44.93 46.53 47.24 46.03
drag angle 45.02 45.05 45.05 44.27 44.36 44.32 45.55 45.47 45.41
drag distance 44.09 44.76 44.13 44.14 44.84 42.06 46.21 46.65 44.89

down size 32.63 32.49 29.82 31.39 31.24 29.38 37.81 37.51 37.21
up size 34.98 34.76 32.50 33.34 33.23 31.61 40.41 39.94 37.95
down major* 32.63 32.76 30.62 31.39 31.67 30.52 37.81 36.17 36.03
up major* 34.98 34.99 32.59 33.34 33.67 32.18 40.41 39.81 38.47

down pressure 31.38 31.03 30.32 28.59 28.91 27.84 33.14 33.32 32.61
up pressure 40.19 39.90 36.37 39.07 39.32 36.05 42.55 42.86 40.37
* The study phone estimated a spherical touch area and therefore returned identical values for major and minor axes.

Table 2. Single feature evaluation. The table shows EERs when using
each feature on its own. Highlighted are the top third features (and
their x/y counterparts) per model/posture combination. Overall, the best
features are hold time, touch down pressure and size, and touch off-
sets/locations. These results show the potential of touch features.

RESULTS
Since users typed passwords they likely never used before,
we considered the first three repetitions of each password as
training and removed them from the evaluation. We also re-
moved interrupted entries - those in which at least one flight
time exceeded five standard deviations of all repetitions for
this user and password (1.6% of each user’s data per session).

In general, our evaluation setup assumes each user to be the
device “owner” once. A model is trained for this user, ei-
ther on data from the first session (for evaluation across ses-
sions), or with leave-one-out cross-validation (for within ses-
sion evaluation). The model is then fed the owner’s testing
data (i.e. data from second session, or test case from cross-
validation) to record predicted probabilities for this legitimate
user. Complementary, the model is fed data from all other
users to record predicted probabilities for “attackers”. After
all users have been processed in this way, a threshold is ap-
plied to all recorded probabilities to compute global true/false
acceptance rates and true/false rejection rates.

We report equal error rates (EER), obtained by varying the
threshold applied to the predictions until false acceptance
rate and false rejection rate are equal. We chose the EER
statistic, since it provides a one-number-summary and is al-
most always reported in related work. We visualise results
with Receiver-Operating-Characteristic (ROC) curves, which
plot false positive rates against true positive rates for varying
thresholds. Finally, we report comparisons of EERs in rela-
tive difference (e.g. 4% to 6% EER yields a 50% increase).
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Feature Evaluation
To evaluate which touch and typing features are most useful
to describe individual behaviour, we first examine the power
of single features, before optimising feature sets.

Single Features
To assess each feature’s discriminative power alone, we
trained different user models on each feature on its own, as
shown in Table 2. Across all three tested user models, we
observed lowest EERs for hold time, touch down pressure
and size, and touch offsets/locations. These results indicate
that spatial touch features should be considered for mobile
keystroke biometrics. Touch offsets, pressure and size almost
always outperformed the flight time commonly used in re-
lated work. Typing with both thumbs was more individual
than with one, as indicated by lower EERs, while the index
finger was the least individual posture. Comparing models,
LSAD performed best for almost all feature/posture cases.

Feature Sets
We also evaluated different sets of features to assess their
combined potential for user authentication (Table 3). These
sets were found with a wrapper approach [35]. Wrappers opti-
mise feature sets by greedily adding the feature which leads to
the highest improvement. We applied the wrapper to the best
model from single feature evaluation (LSAD), hence the pre-
sented results for the other two models can be considered pes-
simistic. Table 3 shows that our proposed spatial touch fea-
tures are superior to the temporal features, with 14.3 - 23.5%
lower EERs. The best found sets show that offsets were the
most useful features based on touch locations.

Combining spatial and temporal features outperformed fea-
ture sets consisting of only one of these dimensions: The best
combined feature sets achieved 8.5 - 26.3% lower EERs than
the best spatial feature sets, and 26.4 - 36.8% lower EERs
than the best temporal sets. Thus, spatial and temporal fea-
tures should be combined for mobile keystroke biometrics.

Although down pressure achieved the lowest EERs for single
features (Table 2), it never appeared in the best sets selected
from all features. An additional analysis showed that offsets
resulted in 5.9 - 12.5% lower EERs than exchanging them for
down pressure in the best found sets. This indicates that sens-
ing pressure can be suitably replaced by measuring touch-to-
key offsets in this context. Henceforth, we employ the best
found feature set for each posture.

Comparison to Related Work
In general, a direct comparison of EERs with related work
is difficult due to different devices, tasks and evaluations.
Nonetheless, we can compare feature sets used in related
work with the features proposed in this paper when evaluated
on our data and with our models, see Figure 4. Note that our
feature sets were optimised on our data and models. Never-
theless, the comparison shows the benefits of 1) considering
touch-specific features and 2) optimising feature sets includ-
ing touch-specific features - in contrast to related work, where
these features were not considered [15, 33, 42, 55, 57] or not
tested for optimal combinations [20].

Best Feature Set Authentication EER (%)
GM kNN LSAD

Spatial
THUMB: offset x/y, up/down size, jump x 27.38 25.38 20.06

TWO-THUMBS: offset x/y, up/down size 23.35 21.73 18.65

INDEX: offset x/y, up/down size, jump distance 32.27 31.19 26.76

Temporal
THUMB: hold time, up-up time 28.59 27.75 26.22

TWO-THUMBS: hold time, down-down time 24.40 23.64 21.75

INDEX: hold time, up-up time, flight time 34.57 33.72 33.25

Spatio-Temporal & Pressure
THUMB: hold time, offset x/y, up/down size 24.32 22.63 17.00

TWO-THUMBS: hold time, offset x/y,
up/down size 19.01 17.60 13.74

INDEX: hold time, offset x/y, up/down size,
up-up time, jump x, jump distance 30.84 29.48 24.48

Table 3. Feature set evaluation across sessions. The table shows best
found feature sets when considering only spatial, only temporal, or all
features. These results show that mobile keystroke biometrics benefit
from the proposed spatial touch features, including touch-to-key offsets.
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Figure 4. Comparison with feature sets from related work. The figure
shows ROC curves obtained when using the LSAD model with the pro-
posed feature sets, and when using it with feature sets occurring in re-
lated research (f1 [10, 15, 42], f2 [20], f3 [46], f4 [55, 59]). Crossings with
the falling grey lines mark EERs. The results show that touch features
should be included when optimising feature sets.

Within Sessions vs Across Sessions
So far, we have conducted evaluations across sessions, since
user behaviour can be expected to vary over time. Table 4
now compares analyses within and across sessions: Aver-
aged per posture, anomaly detectors achieved 40.9 - 53.3%
lower EERs within sessions than across both sessions. Clas-
sifiers achieved 61.6 - 72.8% lower EERs (incl. attacker) and
51.2 - 64.0% lower EERs (excl. attacker) within sessions than
across. These results show that evaluation with data collected
in a single session is highly optimistic and should thus be
avoided to assess the system’s expected accuracy in practice.

Classification vs Anomaly Detection Methods
Table 4 also compares the three described training schemes.
Averaged over all models per posture for the within session
case, classifiers achieved 28.4 - 48.1% lower EERs (excl. at-
tacker) and 45.2 - 58.2% lower EERs (incl. attacker) than
anomaly detectors. Complementary, across sessions, classi-
fiers led to 11.7 - 31.1% lower EERs (excl. attacker) and 16.8
- 38.1% lower EERs (incl. attacker). We conclude that clas-
sification evaluations yield highly optimistic results if classi-
fiers are not applicable to the intended use-case.
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Training Scheme
Equal Error Rate (%)

THUMB TWO-THUMBS INDEX
within across within across within across

a) with others (incl. attacker)
NB 9.71 19.35 10.69 22.06 14.72 37.88
kNNC 3.05 11.15 1.19 8.44 4.03 18.30
SVM 3.43 9.09 1.52 6.71 2.98 14.39

b) with others (excl. attacker)
NB 9.96 19.58 10.71 22.14 14.78 37.88
kNNC 6.27 13.61 3.47 11.29 7.77 20.09
SVM 5.38 10.87 3.31 8.57 4.85 16.09

c) owner data only
GM 17.04 24.32 11.71 19.01 19.77 30.84
kNN 14.02 22.63 8.89 17.60 16.55 29.48
LSAD 7.69 17.00 3.84 13.74 10.74 24.48

Table 4. EERs within and across sessions for different training schemes
and models. These results reveal two insights: First, due to variance in
behaviour over time, error rates obtained within a single session do not
appropriately reflect the practically realistic case across sessions. Sec-
ond, assuming the availability of data from others for training classifiers
(cases a and b) leads to highly optimistic results compared to using only
data from the legitimate user (c), especially if the specific participant
used as an attacker is also included during training (compare a to b).

Comparing both classification variants, including data from
the specific attacker led to 20.7 - 25.1% lower EERs (within
sessions) and to 4.7 - 11.4% lower EERs (across sessions),
averaged over the three tested models per posture. Hence,
if classifiers are applicable in a studied use-case, evaluations
should still exclude attacker data from the training sets, since
it reduces errors but is most likely not available in practice.
Fixed vs Changing Hand Postures
So far, we have separated the data by hand posture, effectively
assuming fixed and known postures. However, changing pos-
tures have to be considered for usable applications.
To evaluate how password typing behaviour varies between
postures, we trained models on data from one posture and
tested them with data from a different one. Table 5 shows
the resulting EERs for all posture combinations. Averaged
over all combinations and models, EERs increased by 86.3%,
when models were tested with a different posture. Hence, as-
suming a fixed posture yields highly optimistic evaluations:
Demanding a specific posture (ideally two-thumbs) improves
security, but is an undesirable restriction regarding usability.
We have described a probabilistic method to enable more us-
able keystroke-based authentication with changing hand pos-
tures. To evaluate it, we trained models on the data from all
three postures from the first session (given the ground-truth
postures), and tested them with data from all three postures
from the second session (without providing ground-truth pos-
tures). This resembles an application asking for all postures
during enrolment, but then leaving users free to type with any
of the enrolled postures without telling the system which one
they are currently using.
Our proposed probabilistic framework, implemented as de-
scribed in this paper, achieved 21.02% EER. Note that here
we test with data from all postures. Therefore, this value
also fits the expectation that a system’s extension, which suit-
ably handles changing postures, should lead to EERs between
those obtained for fixed single postures (LSAD: two-thumbs
13.74% to index 24.48%). In the following, we compare our
system to two simple alternatives.

Authentication Equal Error Rate (%) Across Hand Postures
THUMB TWO-THUMBS INDEX

GM
THUMB 24.32 38.67 40.41
TWO-THUMBS 35.66 19.01 40.76
INDEX 43.29 44.13 30.84

kNN
THUMB 22.63 38.29 39.82
TWO-THUMBS 34.85 17.60 40.33
INDEX 42.88 43.88 29.48

LSAD
THUMB 17.00 35.48 37.24
TWO-THUMBS 33.05 13.74 39.12
INDEX 42.45 59.07 24.48

Table 5. Equal error rates across sessions when using data of different
hand postures for training (rows) and testing (columns). These results
show that mobile keystroke-based biometrics are highly posture-specific.

Across postures, our framework yields a reduction in EERs
by 36.4 - 64.4% compared to the values in Table 5, which
correspond to a system naı̈vely assuming that training data
from any posture is suitable for predictions for all postures.

We also compared our method to models trained on data
from all postures pooled together: The best EER obtained was
27.38%, using the kNN model. In comparison, our proposed
method thus reduced EER by 23.2%.
In conclusion, our probabilistic framework handles changing
hand postures better than approaches, which either 1) sim-
ply ignore differences between postures (Table 5), or 2) just
train a single model. In contrast, our framework estimates the
probability of the legitimate user for each posture, in addition
to the probability of each posture being indeed the one used.

SUMMARY AND IMPLICATIONS
In this section, we summarise challenges and opportunities
and present implications derived from our analyses.

Challenges: We quantified the following challenges for prac-
tical and usable applications of mobile keystroke dynamics:

• Mobile typing biometrics vary over time: Training and test-
ing models on data collected in a single session results in
EERs less than half of the values observed across sessions.
• Data from multiple users improves authentication accu-

racy, but is not applicable to password-hardening: Eval-
uation with classifiers led to 11.7 - 31.1% lower EERs than
employing anomaly detectors. However, classifiers using
feature-vectors from different users typing a specific pass-
word impractically imply that the word is known to others.
• Mobile typing biometrics are highly hand posture-specific:

Training and testing models on different postures increased
EERs by 86.3% relative to testing with the same posture.

These challenges imply three important considerations for ap-
plicable and usable mobile keystroke dynamics: First, user
studies should always include multiple sessions for each par-
ticipant. Second, classifiers should only be used in evalua-
tions if they are also applicable to the targeted threat model.
This is not the case if passwords have to be revealed to others.
Finally, applications of mobile keystroke biometrics have to
infer postures dynamically to retain usability.
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Opportunities: To improve keystroke biometrics for usable
applications, we revealed and quantified these opportunities:

• Spatial touch features outperform the traditional tempo-
ral features: The best spatial feature sets reduced EERs by
14.3 - 23.5% relative to the best temporal sets.
• Spatial touch features outperform pressure features: Pres-

sure never appeared in optimised feature sets, while offsets
were always selected. They resulted in 5.9 - 12.5% lower
EERs than exchanging them for pressure in the best sets.
• Spatial and temporal features complement each other: The

best spatio-temporal feature sets reduced EERs by 8.5 -
26.3% relative to the best spatial sets, and by 26.4 - 36.8%
relative to the best temporal sets.
• Models for different hand postures can be combined to al-

low for changing postures: Combining models in a prob-
abilistic framework reduced EERs by 23.2% compared to
training a single model on data from all postures, and by
36.4 - 64.4% compared to ignoring posture differences.

In consequence, we recommend to measure touch-to-key off-
sets to improve accuracy of mobile keystroke biometrics. Fur-
thermore, these features should be combined with the tempo-
ral typing features known from related work. Finally, hand
postures present a trade-off between security and usability: A
fixed posture results in lower EERs, but restricts the user. This
can be addressed by combining posture-specific models.
We expect lessons learned in this work to be useful on a
broader scale beyond keystroke biometrics: Variability over
time and between postures can be expected for other mobile
biometrics (e.g. general touch behaviour). Moreover, poten-
tial problems regarding the use of classifiers should be con-
sidered for all behavioural biometrics related to secret tokens,
not just passwords (e.g. PINs, shapes, gestures).

DISCUSSION
On our collected study data, we reduced EERs by up to 36.8%
with the proposed feature sets, including touch-specific fea-
tures. While a direct comparison of absolute EERs with re-
lated work is difficult due to different devices, tasks and eval-
uations, we showed improvements compared to feature sets
employed in related work when tested with our models and
data. To further improve absolute accuracy, practical systems
could combine touch features with others (e.g. motion [59]),
or observe mobile device usage more holistically, with typing
biometrics as one part of it (multimodal biometrics [17]).

For privacy reasons, the data processing system should run on
the device, not in a cloud. We analysed the study data on a PC,
but also measured crucial operations on the device: Training
an LSAD model is determined by computing and inverting
a kernel matrix [44]. For our training set sizes and number
of features, the required matrix operations took 50 ms on the
Nexus 5. Authentications after password entry are simple vec-
tor multiplications, unnoticeable to users.

We highlighted that classifiers are not applicable to keystroke
biometrics for password entry, if features are extracted for
the specific word used: Since classifiers are trained on data
from multiple users, their use implies that the password was
entered by others and is thus not secret any more.

However, we do not argue against the use of classifiers in
general: In this paper, we only discussed a static task, mean-
ing that the system expects a fixed text (i.e. password) to
be entered. For dynamic tasks (i.e. free text entry), typing
behaviour can be described for common words [11] or for
bigrams [9, 50]. In these cases, it is reasonable to assume
recorded data from others to train classifiers. While we did
not explicitly cover such a dynamic task in this paper, our
results with classifiers show that they also benefit from the
proposed touch-specific typing features.

Our analysis revealed that typing behaviour is highly posture-
specific. This presents a challenge to usable applications of
mobile keystroke biometrics. We proposed a probabilistic
framework to allow users to type with changing postures. It
outperformed models trained across all postures as well as
“posture-agnostic” approaches.

LIMITATIONS
We only collected right-handed touches, limiting the ob-
served set of postures. Our evaluations across postures can
assess accuracy for changing postures between entries, or be-
tween enrolment and entry. However, they can neither assess
posture changes mid-typing nor continuous changes, which
might occur, for example, due to hand drift [13].

A set of three anomaly detectors and three classifiers was
evaluated with six different passwords. Many more methods
exist [50], and could be tested with a broader set of passwords
to improve generalisability. Nevertheless, our results suggest
that the proposed typing features can be suitably used by dif-
ferent models.

We conducted a lab study with participants sitting down in
two sessions. An “in the wild” study may observe greater
variability in long-term behaviour with varying contexts
and phone models. Regarding touch features, related work
showed that offset patterns are to some extent robust across
changing conditions, and that they are highly individual on
other phone models as well [12, 54].

CONCLUSION AND FUTURE WORK
In this paper, we have studied mobile-specific and touch-
specific challenges and opportunities for keystroke biomet-
rics. We have revealed, analysed and discussed different im-
provements for a password entry use-case and threat model.
These analyses and improvements are important to advance
keystroke biometrics on mobile touchscreen devices.

Overall, our results 1) improve implicit authentication accu-
racy through new features, 2) support realistic evaluations
leading to applicable systems, and 3) improve usability with
a framework to handle changing hand postures.

In summary, we first complemented existing temporal typ-
ing features with touch-specific spatial features. Second, we
quantified the effect of three common assumptions, namely
within-session evaluation, training on attacker data, and as-
suming fixed hand postures. We revealed that these practices
can result in overly optimistic assessments with respect to us-
able applications in practice. In consequence, we addressed
these issues with evaluation recommendations and a proba-
bilistic method to account for changing hand postures.

8



We plan to use touch-specific features in a dynamic typing
task, such as free text messaging. While related work [9,
50] extracted features per bigram in such cases (e.g. flight
time from t to h), in other words features for discrete key-
combinations, we will instead train regression models to map
precise touch locations to feature values [12, 54].

PROJECT RESOURCES
Please contact the first author to gain access to the dataset.
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