
Bringing Web 2.0 to the Old Web:

A Platform for Parasitic Applications

Florian Alt
1
, Albrecht Schmidt

1
, Richard Atterer

2
, Paul Holleis

3

1 Pervasive Computing Group, University of Duisburg-Essen, Germany

{florian.alt,albrecht.schmidt}@uni-due.de
2 Media Informatics Group, Ludwig-Maximilians-University Munich, Germany

richard.atterer@ifi.lmu.de
3 DOCOMO Euro Labs, Munich, Germany

holleis@docomolab-euro.com

Abstract. It is possible to create interactive, responsive web applications that al-

low user-generated contributions. However, the relevant technologies have to be

explicitly deployed by the authors of the web pages. In this work we present the

concept of parasitic and symbiotic web applications which can be deployed on

arbitrary web pages by means of a proxy-based application platform. Such appli-

cations are capable of inserting, editing and deleting the content of web pages.

We use an HTTP proxy in order to insert JavaScript code on each web page that

is delivered from the web server to the browser. Additionally we use a database

server hosting user-generated scripts as well as high-level APIs allowing for im-

plementing customized web applications. Our approach is capable of cooperating

with existing web pages by using shared standards (e.g. formatting of the struc-

ture on DOM level) and common APIs but also allows for user-generated (para-

sitic) applications on arbitrary web pages without the need for cooperation by the

page owner.

1 Introduction

A drawback of the WWW has always been that information only flows in one direction

i.e. from the author of a web page to its readers. To resolve this shortcoming, several

approaches have been proposed, such as guest books, bookmarks and discussion

boards. However, most of these approaches are not capable of providing a true two-

way flow of information, neither by modifying the information resource itself nor by

extending the unidirectional flow in a way that indirectly associates separately stored

additional information with the original source. A popular solution which allows inte-

raction and shared working on documents is Wikis. However, they still require installa-

tion of the Wiki software on the server side and are hence limited to specific web sites.

Especially with the advent of Web 2.0 technology, annotation systems and tools sup-

porting automation and customization of rendered web pages have become popular.

Yet, those approaches are static in a sense that the applications cannot be easily distri-

buted and made available to other users or programmers.

Our contribution in this paper is twofold. First, we provide a modular technical plat-

form which permits novel types of applications to be deployed on top of existing web

applications. This is possible using statically added components which are imple-

mented directly within the platform, such as a tool which allows users to leave annota-

2 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

tions on arbitrary web pages. More advanced applications are customizable and dynam-

ic, e.g. a voting tool allowing the user to specify questions, options and the pages to

deploy the tool on. Finally, user-generated applications are also possible, they allow

programmers to execute code of their choice on arbitrary pages. The platform is based

on an HTTP proxy which modifies page content before sending it to the browser, to-

gether with an application/database server for storage of code and data of the deployed

applications.

Existing solutions in this area rely on client-side software installation, which has the

unfortunate effect that only users who install the software can use the application. In

comparison, our solution merely requires the user to reconfigure their browser's HTTP

proxy setting. Additionally, existing efforts cannot easily support dynamic applications

requiring for example a database connection due to the same origin policy. We solve

this problem by providing users a simple high-level API that offers methods for data-

base access and XMLHttpRequests.

Our second contribution is at the conceptual level: The abovementioned applications

can be deployed in a symbiotic or a parasitic way. In the first case, they can use the

existing API of the web application they extend. In contrast, parasitic applications can

be built on top of any web page without the need of cooperation of the site owner. This

enables many interesting application concepts to be realized, and allows new user inter-

face components to be added to many sites in a consistent way.

This paper is organized as follows: First, we introduce challenges arising from the

use of parasitic code on arbitrary web pages. Based on this we present a technical ap-

proach for allowing the deployment of static, dynamic, and user-generated code. In

chapter 4 and 5 we present to case studies, demonstrating how our platform can be used

to augment web pages with annotations and dynamic code and which issues arise the-

reof. Finally we present related work in chapter 6.

2 Challenges of Parasitic Applications

In contrast to Berners-Lee’s vision of the WWW, the web as we experience it today has

many restrictions and follows standards only to a certain degree. This makes it difficult

to build applications on top of web documents which enhance those documents.

2.1 One-way Information Exchange

When considering the flow of information of web documents on the World Wide Web,

it is obvious that a one-way information exchange from the author to the reader pre-

vails, since the user sitting in front of the browser has read-only access to web docu-

ments. Many different tools are available for the document author to visualize his in-

formation, while the interaction of the reader is limited to viewing the page, clicking on

hyperlinks and creating bookmarks. Other types of communication on the web, such as

forms or email, do not have these restrictions. It is apparent that the unidirectional

information exchange limits the system in its communication potential.

Tools supporting the deployment of user-generated code on web pages can partly

help to overcome this problem by providing the readers a form of backchannel. With

the help of such a backchannel, they can not only address the author but also provide

others with tools to embed information and thus modify the page.

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 3

2.2 Structural Diversity

Another problem of web documents is the lack of a structural layout standard, which

leads to the use of arbitrary layouts. As an example, a margin is not any longer a man-

datory element of each document. While numerous web pages have a fixed width,

which results in a margin being displayed if the browser window size is large, there are

also a lot of web pages that adjust automatically to the window width.

This raises severe problems when it comes to implementing applications that try to

interact with the web page’s static code. Our approach tries to overcome this problem

by providing a way to symbiotically interact with pages, e.g. based on a common stan-

dard, but also explores ways of how to interact with pages without knowledge about

their structure.

2.3 Multidimensionality of Web Documents

In contrast to traditional documents, digital documents allow to overcome the two-

dimensionality of documents by adding new layers. The use of CSS offers the chance

to position elements above each other, thus providing content to be added similar to

post-its that are stuck to a sheet of paper. This way, an almost unlimited amount of

additional space is available for new content. However, this raises several issues such

as how to create a relation between this content and the original document, and how to

define and display an anchor in the original text.

2.4 Reliable Modifications to Existing Page Layouts

At a more technical level, adding new code and layout elements to existing web pages

is a non-trivial task if we consider that the existing page may change subtly over time.

For example, if an annotation was placed on a page, it should still be attached to the

sentence it was added to, even if other parts of the text content change. This makes it

necessary to define different levels on which positioning of added content is possible,

and to extract high-quality anchor information which allows proper repositioning even

in case the source document is modified [11, 25].

3 A Platform for Parasitic Applications

Existing systems supporting client side interaction need to make a trade-off between

several advantages and disadvantages. Systems requiring client side software installa-

tion tend to have a more intuitive and responsive user interface since they benefit from

the tight integration with the browser and client side integration of the features. On the

other hand, the main advantage of server-based approaches is that site visitors do not

need to install software on their computer. Instead, they can start using the server side

system immediately to deploy any changes.

It is the aim of our work to combine both aspects. Even though no software installa-

tion should be required, the user interface should be intuitive to use and responsive, for

example by avoiding re-downloading and redisplaying the entire page during working.

This is achieved by combining an AJAX-based architecture for responsive client side

performance with an HTTP proxy approach which allows the deployment of code on

arbitrary pages.

4 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

3.1 Requirements

In our experience, the following requirements were important for such a system:

 In the same way as the other technologies of the WWW, our implementation

should achieve platform independence on the server side (i.e. with arbitrary web

server solutions) and the client side (different browsers and operating systems).

 Furthermore, it should be minimally invasive in terms of required client and server

side changes. In contrast to systems that require the installation of software, which

is always a possible source of errors and implies an additional burden to the user,

this approach reduces the users' effort: they only need to change the browser prefe-

rences for the HTTP proxy. (Moreover, by deploying the proxy as a transparent

proxy for a whole network, even this small change can be eliminated.)

 Maintainability of code for the platform and for applications should be ensured.

Because the JavaScript code for the application platform is delivered by the proxy

each time a page is loaded by the user, the code can be modified at any time with-

out requiring the user to make an explicit software update. Also, the strong concep-

tual isolation of the web server, proxy and browser makes it easier to replace any

of these components.

 The platform should support different types of applications, such as static applica-

tions provided by the platform owner, dynamic applications that can be configured

by the user and user-generated applications.

 Finally, the result should be responsive despite the fact that loading and storing of

modifications requires a lot of traffic between the client and scripting/database

server. An efficient implementation using AJAX technology is essential to avoid

negative effects of the platform on the user experience.

3.2 Supported Types of Applications

Especially since the advent of Web 2.0 technology, a lot of research has gone on into
the area of automating and customizing web pages based on user-generated code and
content. Widely available examples are tools for annotation, adding links, building

custom portals, and making alternative queries (see related work). All those tools have

in common that they allow users to add content to web pages without any programming
knowledge. On a lower level, several approaches allow users to execute their code on
arbitrary web pages. Prominent examples are toolkits such as Greasemonkey and WBI
[4] or high-level programming languages such as WebL [15] or Chickenfoot [6].

However those applications have major drawbacks. First, high level applications
(such as annotation tools) are static in the sense that they do not allow for customizing
or modifying by the user. Second, solutions allowing the deployment of user-generated
code are not easily available, since first, the toolkit itself has to be installed as a plug-in
which limits its use to certain browsers, and second, the scripts are not centrally availa-

ble. Finally, existing approaches cannot easily be extended or modified though proba-

bly intended by the author, since placing user-generated content requires the use of,

e.g., a database. This is difficult due to the same origin policy of modern browsers.

Our system tries to integrate the advantages of different approaches. First, we sup-

port pre-implemented applications deployable by users without any programming
knowledge. Second, we allow providing applications that can easily be customized, and
finally we provide means to implement JavaScript-based applications.

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 5

Static Applications: As mentioned before, a lot of effort has been put into the devel-

opment of technologies supporting the deployment of applications on top of web pages,

hence easing the automation and customization for users. The challenging part for such

applications is the storage of data, since web pages are only virtually modified. Most of

those applications are static because extending the functionality would require major

changes on the provider side and cannot be simply achieved by writing client side code.

Yet such applications are very useful, since no programming knowledge is required for

their deployment. An example for a static application that can be distributed via an

application platform such as the one presented in this work are annotation tools. In

chapter 5 we explain how such a system can be integrated with our platform.

Dynamic Applications: A similar, yet more generic approach is the support of dynam-

ic applications. Although those applications also have to be deployed within the appli-

cation platform, they leave more space for customization. An example would be an

application allowing for generating customized surveys. Connections to external sto-

rage such as a database server again have to be implemented within the application

platform. Yet the code for the application itself is created dynamically based on user

requirements.

User-implemented applications: Finally we also support applications implemented by

users. We provide a module which allows for inserting arbitrary JavaScript code in any

web page through the application platform. The JavaScript code is stored in a database

and can be fetched and executed on demand. In order to enable users to create dynamic

applications, we further provide a simple high-level API realizing access to a database.

The API provides methods such as insert(key, value) which writes a (key, value) pair into

the database and get(key) which returns the value for a given key. value can be an arbi-

trary string which allows for storing 2-dimensional data sets. Programmers can simply

parse the value variable in order to store multiple attributes. This provides an easy way

of avoiding the same origin policy and additionally supports users in creating dynamic

applications without the need to care either for XMLHttpRequests or for database con-

nections.

In order to allow the use of the database by multiple applications, we use prefixing

for the key values in the form {app1}_{local|global}_key. Hence it is not only possible to

use multiple applications but also to determine between local and global entries in the

database within one application. Taking the voting system as an example, local entries

would be the available options (e.g. votingApp_local_1 = "option 1"), global entries would

be the answers of the users (e.g. votingApp_global_1 = "1").

3.3 Parasitic vs. Symbiotic Applications

We now introduce the concept of parasitic and symbiotic applications. In the WWW,

the client side has read-only access to web resources. To virtually take control over a

web page, pages need to be manipulated directly before or after they are rendered in a

browser. Hence an illusion for the users is created pretending that they are given the

power to modify a web page itself.

We call a web application parasitic if it is capable of editing, inserting or destroying

content on a web page without the need for server side cooperation. We call a web

application symbiotic if it uses functionality provided by the server side or provides

functionality that can be used by the server side to modify web content. Table 1 gives

examples for the different types of applications that become possible with our platform.

6 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

Table 1. Classification of parasitic and symbiotic applications.

Non-cooperative

(parasitic)

Cooperative

(symbiotic)

Static applications
Annotations tool for arbitrary

web pages

Annotation tool supported by

web pages using common guide-

lines

Dynamic applications Voting tool Customized search tool

User-based applications
Script for increasing contrast

of web pages

Websites using user-based APIs

(e.g. drag and drop)

Parasitic Applications: Parasitic applications interact with web pages without the

explicit permission of the site’s owner. This creates new opportunities since it allows

users to adjust web sites to their needs.

While this may sound unattractive at first, parasitic code can be useful in a number

of ways: an interested party can increase the accessibility and usability of the web ap-

plication without having to coordinate this activity with the provider of the application.

Furthermore, opposing goals of the application provider and of the users can be solved

by users. At the simplest level, this can involve removing advertising, but more contro-

versial changes are also possible, such as preventing users from accidentally signing up

for a service they have to pay for. Finally, it is possible to enrich existing applications

with new functionality, e.g. by interfacing it with other online services such as maps,

dictionaries or even related services of competitors.

Symbiotic Applications: Web pages and applications deployed on top of them can

also interact in a symbiotic way. Web page owners can support the use of applications

provided by our platform in different ways:

 Page formatting: Repositioning of additional UI elements is not an easy task. Web

pages that use identifiers for areas containing text can support applications in a way

such that places where insertions or modifications happen can easily be retrieved

once the page is loaded, especially if they moved to a different location.

 Provide APIs: Web site owners can provide APIs to be used by applications dep-

loyed via the platform. Hence, programmers can be supported and encouraged to

write applications, thus increasing the value of a page. Like this, dynamic applica-

tions can be supported by providing them access to, e.g., a local database.

Further, page owners can also benefit from deploying platform-based applications:

 Piggyback applications: Page owners can use the APIs provided by the platform to

implement applications outside their web server. This allows the use of applications

among multiple page owners. An example would be a rating system supported

among a company’s web pages. Hence a user-generated rating could be created

based on comments and ratings and stored in a third party’s location (in this case the

application platform) thus increasing its credibility and liability.

 Increasing usability/functionality: The platform can offer scripts that increase the

usability and add functionality to websites by offering tools to the user for customiz-

ing and formatting of web pages based on their needs. A simple example would be a

script to adjust the font-size according to the users' preferences.

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 7

Figure 1. Components of a proxy-based application platform: application server,

HTTP proxy and client side JavaScript. With this approach, no installation of software

is necessary on the client browser or the web server.

3.4 Implementation

The implemented application platform consists of three components: an HTTP proxy,

an application/database server and the client side JavaScript code which supplies the

main functionality as well as the user interfaces. Figure 1 gives a simplified overview

of the interaction of the components during operation of the application platform.

HTTP Proxy: The HTTP proxy UsaProxy ([3, 4, 5]) forms the center of the applica-

tion platform since it connects the client side JavaScript code and the application serv-

er. Its first task is to embed Java- Script code on-the-fly on any page that is sent from

the web server to the client in response to a standard HTTP request. This makes it poss-

ible to realize the embedding of content on the client instead of the proxy. In order to

add the JavaScript code, UsaProxy monitors all HTTP requests which pass through it.

In case the server delivers HTML content to the browser, the content type of the server

response is text/html or text/xhtml, and the returned document is modified. Other content

types such as videos and images are forwarded without any changes. The modifications

to the original HTML content are small: a <script> tag is added inside the document's

<head>, and its src attribute references the annotation JavaScript. The same approach is

used to include a CSS style sheet which controls the layout of the user interface for the

application platform as well as the layout of the modifications themselves. Finally, the

elements for the user interface and the API is inserted after the opening <body> tag.

To access the application (script) data in the database on the annotation server, the

JavaScript which is run inside the browser as a result of the above modifications uses

8 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

further HTTP requests. XMLHttpRequest objects provide a convenient way of down-

loading the data. A problem when doing so is that, for security reasons, modern brows-

ers require that the requests are made to the same server which also supplied the origi-

nal web page. This “same origin” policy is circumvented in the following way: the

JavaScript simply makes a request to the same server that the HTML was requested

from, which is allowed by the browser. The requested URL is special in that it appar-

ently attempts to access the directory /usaproxylolo/httprequest/ on the server. However,

in reality, the request never reaches the original web server. Instead, triggered by the

special directory name, it is intercepted by UsaProxy and redirected to the application

server, which answers the query and returns the required data.

Application and Database Server: The purpose of the application server is to store

the code for both, platform-side applications and for client side JavaScripts in a data-

base, and to retrieve it later upon request. The database is accessible via PHP scripts,

which handle storage and retrieval of the data. Furthermore, they pre-process data be-

fore returning it to the browser, which simplifies the work of the JavaScript.

Based on the type of modification required by the deployed applications (annotations,

voting tools, text marking), different types of information are stored. They can be sepa-

rated into three classes:

 Content information: data such as the code for creating the voting tool or text that is

selected by a marking.

 Positioning information: the topmost positioning information is the URL of the page

an application or modification was created for. Additionally, x/y coordinates are

stored for relatively positioned content whereas for selections, a string representation

of the DOM path, the surrounding context, the actually marked text, and, if availa-

ble, the ID of the node is stored.

 Additional information: all types of information not directly related to the content or

the positioning such as the date a modification was inserted or updated, the author or

the title of the page.

Client-side JavaScript: The client-side JavaScript code is inserted into every page by

means of the HTTP proxy. Its purpose is to provide the interface for loading and ex-

ecuting available applications from the database. Access to the database is realized

using XMLHttpRequest to server-side PHP scripts.

In a similar fashion, the API is made available to programmers using the platform

for distributing their applications. The high-level functions that allow programmers to

use the platform’s database are written in JavaScript and by default delivered by the

proxy by embedding a script tag in the page <script type='text/javascript' src='UsaAPI.js'>.

Further methods can be simply added by updating the remote JavaScript source file.

The API would be available immediately for all users hence meeting the requirement of

easy maintainability.

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 9

Figure 2. Elements of the system's user interface: control panel, sticky notes, markings.

Modifications to the Existing Page Layout: Modifications of the original HTML can
happen at different granularity levels: The same change (e.g. adding a layer with UI
elements) can be performed on all pages of a domain, or it can be tailored for exactly
one page on a website. Within pages, the modification can apply to a certain node

which must be identified. At the most accurate level, it is specific to individual charac-

ters, such as text that has been highlighted by the user.
To be able to implement applications capable of making changes on these levels,

different types of information are needed for reinserting the changes correctly on a

page. This includes anchor text information and surrounding context [8] as well as

structural document information and absolute positioning information. Thus, the plat-

form for deployment of applications supports not only the simple case that absolute

positioning is used to add new elements at fixed positions on the page, but also that the

positioning depends on the properties of a certain element in the existing document’s

Document Object Model (DOM) tree. To allow individual characters to be addressable,

e.g. to ensure that an annotation for part of the text appears next to the relevant words,

the platform can identify the characters using the offset within their enclosing element.

Alternatively, it can store the marked text, i.e. the words or sentences that the user

selected when he created the annotation, and employ a substring search at a later time

to find it again. This approach can be made more robust against changes on the page by

not only storing the marked text, but also some of the text surrounding it.

4 Case Study 1: A Web Annotation Tool

One of the best-researched piggyback applications on the web are annotation tools.
Hence we had a student implement such an annotation tool as a proof-of-concept for
our application platform during a master thesis. An annotation tool is an example for a
static application deployed on the platform side. However, we added several dynamic
elements that allow for customization such as dynamically choosing the marking color.

In this section we give an overview of the design process and implementation and in

a final step the evaluation in a user study and a real-world deployment.

10 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

4.1 Implementation

The annotation tool provides two basic forms of annotations: the marking of text, simi-

lar to the use of a highlighter, and placing sticky notes onto a website, similar to stick-

ing paper post-its to a sheet of paper. Additionally, inline comments are introduced,

which allow for associating comments with marked text passages. Figure 2 shows the

different types of supported annotations and the expanded control panel.
The basic idea for the marking tool is to simply change the background color of the

text selected by the mouse, thus creating a similar effect to using a highlighter in the
real world. However this approach is technically limited to the marking of text so that it
is not possible to highlight arbitrary page elements.

In order to offer the opportunity to create a text comment related to a marking, simi-

lar to notes scribbled between the lines or in the margin near the annotated text on
physical paper, the marking concept is extended by so-called inline comments. Once
created, they can be displayed either as tool tips or as text rendered next to the marked
text. This way of displaying inline comments differs significantly from real-world

annotations, so special attention was paid to it during the evaluation.
The use of sticky notes is similar to the real-world Post-It counterparts which can be

placed everywhere on a page. To allow moving the sticky notes around a page, a drag-

and-drop functionality is implemented so that sticky notes can easily be positioned in

arbitrary locations. An interesting extension of this concept trying to deal with the li-
mited space on a web page is to provide a minimize function which transforms sticky
notes into small icons that can similarly be dragged around, but do not obscure any
elements on the page.

To enable access to the previously described functions, it is necessary to provide a

control panel, a layer that is automatically inserted on each page. The control panel
offers access to other features such as hiding, displaying, expanding and collapsing the
annotations, creating summaries or overviews, and using the notification tool.

The positioning of the control panel is a non-trivial problem. For automatic position-

ing, the system would have to interpret the structure and the content of the page in
order to determine whether important areas of the page are obscured. To deal with this,
the control panel can be dragged to any position on the page by the user. Additionally,
a minimizing feature of the control panel is provided that reduces the control center to a

small box showing only the most important functions.

4.2 Real World Usage Scenario

In order to assess the applicability of tools developed for the use with our application
platform in WWW, we tested the annotation tool in the real world. The system was set
up and adjusted for the online archive of the German weekly newspaper Die Zeit, in
preparation for productive use with the pages which comprise the archive.

The goal of the evaluation was to discover potential issues that arise from using our
system on pages in the World Wide Web. Therefore, we not only intensively tested all
features of the system, but also closely examined the internal HTML structure of the
page, the layout and the use of CSS styles.

It turned out that the entire functionality of the annotation tool could be used
throughout the website without any restrictions. However, we discovered some poten-

tial issues that might interfere with the use not only of the annotation system but also

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 11

with other tools deployed via the application platform. Most of the issues are related to

the modification of content and/or structure of web sites.

 Dynamic URLs: since each annotation is uniquely defined by the URL of the page it

belongs to as well as its ID, the insertion algorithm relies upon the URL for correct-

ness. Hence, URLs that change according to session IDs or dynamic parameters may

lead to duplicate pages so that annotations can no longer be associated with a specif-

ic web page and get orphaned.

 Dynamic page width: while markings are positioned directly in the DOM structure,

sticky notes strongly rely on the layout of a page since their position is recorded in

pixel coordinates. This way, pages that do not have a fixed width and/or are not left-

aligned lead to sticky notes being displayed in different locations for different

browser window sizes.

 Dynamic page content: for pages with dynamic content, the DOM tree can change

thus causing the positioning information of annotations to become invalid. This can

be circumvented by predefining areas for dynamic content. Thus the DOM path will

only be changed on a level where it does not affect the positioning algorithm for the

annotations.

 Overriding global style sheet settings: the CSS rules which are intended for format-

ting the annotations should be designed with care to avoid that they influence the

original site layout. This is achieved by defining a special class for all parts of the

annotation UI, and assigning it to the UI elements.

4.3 Summary

The implementation of the annotation tool prototype helped us considerably in under-

standing issues and challenges arising from the deployment of piggyback applications.
We think that applications provided via our platform could especially benefit in symbi-

otic scenarios by following common design guidelines or even standards. Applications
will be most successful once they are well integrated and their functionality tailored
towards specific tasks.

However, we also showed that such tools can be deployed as parasitic applications.
Yet, creating reliable parasitic applications requires a lot of effort, such as the imple-

mentation of complex positioning algorithms.

5 Case Study 2: UsaScript

In a second case study, we implemented UsaScript, a tool for testing the deployment of

user-generated code on arbitrary web pages. The tool uses the infrastructure of the
application platform to store JavaScript code in the database and to make it available on
any web page to any user.

A simple example would be a script that overcomes the very common problem of
web pages with low contrast between background and text. A user could implement a
script based on three lines of code that sets the background color of an arbitrary web
page to white and the standard text color to black:

var bodyNode = document.getElementById('body');
bodyNode.style.background = '\#FFF';
bodyNode.style.color = '\#000';

12 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

A user who wants to use that piece of code can simply choose it from a list of avail-

able applications provided by the platform. The script is loaded into a <script> tag

embedded in the page by the platform and executed immediately.
However, the tool also allows for writing more complex applications that provide,

for example, a GUI. In order to prevent the code of being immediately executed once
loaded, programmers can define JavaScript methods to be called later, even by other
scripts. By following this approach, UsaScript does not only support the deployment of
user-generated scripts, but also gives programmers the opportunity to provide APIs for
other programmers or the site owners.

An example would be an API that enables drag and drop for page elements. This
API could provide a function makeDraggable(id) which assigns drag and drop functio-

nality to the element id. Page owners could then define page elements which should be

draggable (e.g. products in an online store that could be dragged to the shopping cart).

To users who are not using the application platform, the web page appears normal.
However, once they use the application platform, they are be able to drag and drop

elements without any further required action since the API for the drag and drop func-

tionality can be loaded based on the URL of the page.

6 Related Work

Since the advent of the WorldWideWeb, programmers try to realize Tim Berners-Lee’s
vision of its interactive and bidirectional use. There have been numerous attempts to
build systems enabling users to customize and modify pages of the WorldWideWeb by
adding content and controls. However, existing solutions require either a special server
side setup or installation of software on the client machine, both of which limit the

areas in which the system is useful.
First we focus on research in the area of customization and modification in general,

second we look at research that has been carried out in order to achieve this through
augmenting web pages by content and controls. As a third part we especially focus on
annotation tools as an illustrative application.

Bolin et al [7] have proposed a categorization of tasks supported by tools that deal
with the automation and customization of web pages on the client side. The categoriza-

tion distinguishes between automating repetitive operations, integrating multiple web-

sites (e.g., incorporating a map service inside a web page), and transforming a web
site’s appearance.

Suitable approaches for automation include scripting languages such as Perl, Python,

or WebL [15] but also tools that support the recording of macros such as LiveAgent

[16] or WebVCR [1]. Those tools allow for recording the actions necessary to access

hard-to-reach content and replay it later.
Examples for approaches that deal with transforming a website’s appearance are

toolkits such as the browser extensions Greasemonkey and Platypus, as well as WBI
[4], a pre Web 2.0 approach that observes user interactions by using different kinds of
agents.WebL [15] and Chickenfoot [4] provide a high-level language to ease the mani-

pulation of web pages. The advantage of Chickenfoot is that it supports the modifica-

tion of web pages without requiring knowledge about HTML programming.
Concerning modifications of a page, mechanisms and strategies are required to in-

sert content into the page. Bouvin et al [7] present an overview of web augmentation

Bringing Web 2.0 to the Old Web: A Platform for Parasitic Applications 13

strategies. They define a tool as a hypermedia augmentation tool if “it through integra-

tion with a web browser, an HTTP proxy or a Web server adds content or controls [. . .]
with the purpose to help users organize, associate or structure information found on the
web.” Such tools can be divided into four categories: structuring/spatial, link creation
and traversal, guided tours, and annotations/discussion support.

First, spatial hypermedia describes applications where link structures are not shown
explicitly any more but rather implicitly based on the spatial relationship between ob-

jects, hence providing a powerful tool for organizing and structuring the web. An ex-

ample is Web Squirrel [20] that helps users to organize their URLs in information

farms.
Second, example tools for link creation and traversal are Chimera and DLS. Chime-

ra [1] is an experimental system that allows for displaying structural information of a

page in a separate program (applet) or within the browser by hooking up a web server

to the Chimera server hence translating the Chimera structures into HTML. The Distri-

buted Link Service (DLS) [10] is based on the MicroCosm hypermedia system [13]. It

allows for attaching a link service menu to the browser by using a wrapper. This wrap-

per would contact the link server once a link was clicked in this menu.
Third, tools supporting guided tours are mainly used in educational settings. Wal-

den’s path [11] uses a path authoring tool such as VIKI [19] to compose a trail that

students have to pass. Trails are stored on a Path Server as well as CGI scripts to pro-

vide an interface to the path. A similar approach is followed by WebVise [12], an open

hypermedia service which provides a link, annotation and guided tour authoring inter-

face integrated with MSIE. It can be accessed in arbitrary Web browsers via a proxy

server interface.
Finally, annotation tools such as implemented in the presented case study have been

widely examined and numerous approaches of deploying them exist. Most common are

client side browser extensions such as Yawas, Diigo, Fleck, and Stickis, or bookmar-

klets such as sharedcop. Yet, also entire browsers have been implemented which sup-

port annotations such as comMentor [17]. On the other side, also several serverbased
approaches exist such as CritLink [21] which works based on prefixed URLs or Dash-

note which is, similar to Wikis, entirely deployed on web servers. Between those two

solutions also hybrid approaches exist such as Annotea [14] which allows for storing
the annotations locally or on an annotation server.

7 Conclusion

In this work, we have introduced the concept of parasitic and symbiotic applications
capable of bringing Web 2.0 to any page of the World Wide Web. This was realized by
implementing a proxy-based application platform. Our approach offers the opportunity
to deploy static and dynamic applications provided by the platform owners as well as
the deployment of user-based code.

For the implementation of the concept, UsaProxy served as a basis for inserting Ja-

vaScript code on-the-fly into each web page delivered from a web server to the client.
This JavaScript code provides the basic functionality for inserting or editing the content
of web pages. Furthermore, a HTTP proxy was extended to allow for XMLHttpRe-

quests to a remote application server, thus avoiding the same origin policy of modern
browsers. Hence, content can be dynamically loaded from or stored to the application/
database server using AJAX technology.

14 F. Alt, A. Schmidt, R. Atterer, and P. Holleis

As a proof-of-concept we presented two case studies. One focused on deploying a

parasitic application supporting both static and dynamic elements in the form of an

annotation tool. We presented challenges arising from dealing with arbitrary web pages

and provided potential solutions either by complex client side mechanisms or by sym-

biotic deployment. Issues like scalability and extensibility still need further research.
Second, we presented UsaScript, a tool for deploying user-based scripts and APIs on

web pages. We outlined how this approach can also be used among web site owners to

cooperate with the application platform thus creating additional benefits for the user.

References

1. K.M. Anderson. Integrating Open Hypermedia Systems with the World Wide Web. In

Hypertext’97, 1997.

2. R. Atterer, M. Wnuk, and A. Schmidt. Knowing the User’s Every Move - User Activity

Tracking for Website Usability Evaluation and Implicit Interaction. In WWW’06. 2006

3. R. Atterer, A. Schmidt, and M. Wnuk. A Proxy-Based Infrastructure for Web Application

Sharing and Remote Collaboration on Web Pages. In INTERACT’07. 2007.

4. R. Barrett, P.P. Maglio, and D.C. Kellem. How to Personalize the Web. In CHI’97. 1997.

5. J.P. Bigham, and R.E. Ladner. Accessmonkey: a Collaborative Scripting Framework for-

Web Users and Developers. In W4a’07. 2007.

6. M. Bolin, M. Webber, P. Rha, T. Wilson, and R.C. Miller. Automation and Customization

of Rendered Web Pages. In UIST ’05. 2005.

7. N.O. Bouvin, Unifying Strategies for Web Augmenting. In Hypertext’99. 1999.

8. A.J. Brush, D. Bargeron, A. Gupta, and J.J. Cadiz. Robust Annotation Positioning in Digi-

tal Documents. In CHI’01. 2001.

9. J.J. Cadiz, A. Gupta, and J. Grudin. Using Web Annotations for Asynchronous Collabora-

tion around Documents. In CSCW’00. 2000.

10. L.D. Carr, W. De Roure, W. Hall, and G. Hill. The Distributed Link Service: a Tool for

Publishers, Authors and Readers. In The Web Journal 1, 1. 1995.

11. R. Furuta, F.M. Shipman, C.C. Marshall, D. Brenner, and H. Hsieh. Hypertext Paths and

the World-Wide Web: Experiences with Walden’s Paths. In Hypertext’97. 1997.

12. K. Grønbæk, L. Sloth, and P. Ørbæk.Webvise: Browser and Proxy Support for Open

Hypermedia Structuring Mechanisms on the WWW. In WWW’99. 1999.

13. W. Hall, H. Davis, and G. Hutchings, Rethinking Hypermedia: the Microcosm Approach.

Kluwer Academic Publishers. 1996.

14. J. Kahan, M-R. Koivunen. Annotea: an Open RDF Infrastructure for Shared Web Annota-

tions. In WWW’01.

15. T. Kistler and H. Marais. WebL - a Programming Language for the Web. In WWW’98.

1998.

16. B. Krulwich. Automating the Internet: Agents as User Surrogates. IEEE Internet Compu-

ting 1, 4, 1997.

17. T.A. Phelps and R. Wilensky. Robust Intra-document Locations. University of California,

Berkeley, 2000. http://www9.org/w9cdrom/312/312.html

18. M. R¨oscheisen, T.Winograd, and A. Paepcke. Content Ratings and Other Third-Party

Value-Added Information: Defining an Enabling Platform. Stanford University, Stanford,

1995.

19. F.M. Shipman and C.C. Marshall. Spatial Hypertext: an Alternative to Navigational and

Semantic Links. ACM Comput. Surv. 31, 4. 1999.

20. R.M. Simpson. Experiences withWeb Squirrel: my Life on the Information Farm. In

Hypertext’01. 2001.

21. K-P. Yee. CritLink: Advanced Hyperlinks Enable Public Annotation on the Web, Univer-

sity of California, Berkeley, 2002.

