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ABSTRACT

Humans throughout history have aspired to own superpowers to extend their
control over their surroundings and maximize their benefits. Such superpowers
were inspired by advantages of other creatures or by human ingenuity and
imagination to extend the motor, perceptual, or cognitive capabilities. The
synergy between the machine extended superpower and the human proved to
be the optimal combination for highest performance. The work of this thesis
focuses on amplifying the perceptual capabilities of humans via extending their
vision. Visual perception is the ability to see, process and understand stimuli
in an environment. Despite its importance, the visible luminance range that is
detectable is limited. The perceivable spectrum of the human eye comprises
less than one percent of the electromagnetic spectrum. Historically, tools that
enhance our vision for the visible aspects of our immediate environment like
lenses and glasses were extensively built. Afterwards, the research focus shifted
to building tools that support us in seeing what is naturally invisible like X-rays
and telescopes.

Thermal imaging is on the brink of being integrated in our daily devices, enabling
the shift from specific context usage to mainstream. The first simple products,
such as attachable smart-phone cameras, hit the mass market and achieved
considerable market attention. However, the number and versatility of study
prototypes in the field of Human Computer Interaction is far beyond the available
devices on the market. In particular, amplifying our visual perception and making
the invisible visible have high potential to change the way we perceive and
interact with our environment and surroundings. Thermal imaging allows the
unobtrusive sensing and visualizing of the heat map of the environment including
both; objects, and human subjects. It is capable of sensing the physiological
information of human subjects, detecting actions performed in the environment,
and depicting the environment in an amplified form.

In this thesis, we explore how thermal imaging can amplify our visual perception.
Employing a user-centered design process, we demonstrate how different thermal
properties can be leveraged to make the invisible visible. We focus on amplifying
our perception of the environment as well as of the cognitive load. We use
a probe-based research approach to systematically investigate the possible
potentials and challenges of thermal imaging. We developed ten study probes
showing how our perception benefits from thermal imaging and what technical
and user requirements thermal imaging poses for amplified perception systems.
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We present a contextual inquiry to investigate the understanding and perception
of thermal imaging by diverse groups of users. We show that users highlighted
that thermal imaging increased their awareness of their environment and changed
how they interact with it. On the environment side, we look at implicit amplified
perception by presenting the thermal camera feed to the user as well as explicit
amplified perception by processing the scene before presenting it to the user. We
present three study probes in different forms, namely two head mounted displays
as well as hand-held devices to investigate amplified environment perception. In
particular, we had a real-life application in the context of firefighters’ amplified
environment perception.

Beside the amplified perception of the environment, we explore how thermal
imaging can be used as a window into our internal states. As thermal imaging
remotely measures our body temperature, which reflects information about our
internal states and changes in our autonomic nervous system, they allow different
physiological states to be sensed unobtrusively. We explore how we can leverage
these physiological signals for amplifying our perception of cognitive load. We
conduct two studies assessing how we can estimate our cognitive load and classify
attention type using these temperature signals.

From the aforementioned study probes, we collected a unique and novel thermal
images dataset. With the consent of the involved parties, we release all the
collected data sets and the implemented systems as open source. The implemented
systems are intended to support developers in deploying and utilizing thermal
cameras by providing an easy to use Windows Application Service, to connect
and acquire the feed from the thermal camera.

Finally, we distilled a set of design recommendations. These recommendations
are grouped into social-based and technology-based recommendations and serve
as a basis for designing novel thermal imaging based systems. Throughout our
developed and evaluated research and study probes we derive design implications
and a conceptual architecture for amplified perception using thermal imaging. We
dedicate a discussion to the social implications of using thermal imaging derived
through the evaluations of our developed probes. We conclude with a vision of
thermal imaging and discuss opportunities of future work.
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ZUSAMMENFASSUNG

Ubermenschliche Kiifte zu besitzen und damit einen Vorteil gegeniiber anderen
zu haben, war schon immer ein Wunschtraum der Menschen. Die Inspiration fiir
Superkrifte kommt aus dem menschlichen Einfallsreichtum und der Beobachtung
von Fabel- und Lebewesen. Dabei ertriumen sich Menschen eine Erweiterung
ihrer motorischen, perzeptiven und kognitiven Fahigkeiten. Aus einer technischen
Sicht sollen die erweiterten Fihigkeiten durch die Synergie von Mensch
und Technik erreicht werden, wobei eine optimale Kombination fiir hochste
Leistungsfdhigkeit angestrebt wird.

Der Fokus dieser Arbeit liegt auf der Erweiterung des menschlichen Sehsinns.
Visuelle Wahrnehmung ist die Fiahigkeit, Stimuli in der Umgebung zu sehen,
zu verarbeiten und zu verstehen. Die durch den Menschen wahrnehmbaren
Wellenldngen und auch die wahrnehmbare Leuchtdichte sind begrenzt. Dennoch
konnen Menschen zum Beispiel eine 50 Kilometer entfernte Kerze in der
Nacht entdecken. Das menschliche Auge erfasst aber lediglich ein Prozent des
elektromagnetischen Spektrums. Im Lauf der Geschichte wurden verschiedene
optische Gerite und Brillen entwickelt, die den Sehsinn verstirken, um die
sichtbaren Aspekte unserer unmittelbaren Umgebung besser wahrnehmen zu
konnen. Der Fokus in der Forschung und Entwicklung verschob sich hin zu
Geriten, welche Phinomene sichtbar machen, die zuvor unsichtbar waren, wie
zum Beispiel Rontgengerite und Teleskope.

Wirmebildkameras sind inzwischen weit entwickelt und stehen kurz davor, in
verschiedene Gerite integriert zu werden. Die Nutzung wandelt sich von der
Spezialanwendung hin zur allmeinen Nutzung in verschiedenen Szenarien. Die
ersten einfachen Gerite, beispielsweise Wirmebildkameras fiir das Smartphone,
haben auf dem Massenmarkt eine beachtliche Aufmerksamkeit erreicht. Im
Forschungsgebiet der Mensch-Computer-Interaktion gibt es eine zunehmende
Anzahl von Prototypen und Studien, welche Wérmebildkameras fiir interaktive
Systeme nutzen. Hierbei birgt gerade die Verstirkung unserer visuellen
Wahrnehmung ein grofles Verdanderungspotenzial. Dadurch dass das Unsichtbare
sichtbar wird, verdndert sich, wie wir unsere Umgebung wahrnehmen und
wie wir mit ihr interagieren. Die Wirmebildgebung erlaubt die Wahrnehmung
und Sichtbarmachung der Wirmesignatur einer Umgebung. Dabei werden
die Temperaturunterschiede sichtbar, und sowohl Objekte mit bestimmten
Eigenschaften als auch Menschen zeichnen sich ab. Es konnen so auch
physiologische Informationen von Menschen erfassen werden. Zusitzlich lassen
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sich Handlungen in einer Umgebung nachvollziehen, und die Umgebung kann
mit zusétzlichen Informationen dargestellt werden.

In dieser Dissertation wird untersucht, wie Wiarmebildgebung unsere
visuelle Wahrnehmung erweitern kann. Mittels eines nutzerzentrierten
Designprozesses wurde untersucht, wie unterschiedliche Wirmeeigenschaften
und Temperaturinformationen genutzt werden konnen, um Unsichtbares sichtbar
zu machen. Der Fokus liegt sowohl auf der Wahrnehmung der Umgebung, der
Interaktion, wie auch anderer Menschen.

Unter Verwendung eines Prototypen-basierten Forschungsansatzes werden die
Moglichkeiten und Herausforderungen der Wiarmebilddarstellung systematisch
erforscht. In zehn verschiedenen Studien wird dargelegt, wie die menschliche
Wahrnehmung von der Wirmebildgebung profitieren kann und welche
technischen und Benutzeranforderungen diese mit sich bringt.

Im Kontext realer Anwendungsszenarien wurde das Verstdndnis von
Wirmebildkameras bei verschiedenen Nutzergruppen empirisch erforscht. In
der Arbeit werden die Potenziale und Herausforderungen prisentiert. Nutzer
haben deutlich gemacht, dass Wirmebildkameras ihre Wahrnehmung fiir die
Umgebung in bestimmten Kontexten verbessert und somit die Interaktion
mit ihr verdndert haben. Einerseits wurde hierbei untersucht, wie die durch
rohe Temperaturinformation implizit erweiterte Darstellung des Videobildes
genutzt werden kann. Anderseits wurde betrachtet, wie eine Darstellung
explizit durch verarbeitete und interpretierte Informationen aus dem Warmebild
sinnvoll erweitert werden kann. In drei verschiedenen Studien, vor allem
mit Head-Mounted-Displays und mobilen Gerdten wurde die erweiterte
Wahrnehmung der Umgebung untersucht. Hierbei wurde insbesondere der
Nutzungskontext Feuerwehr als realer Anwendungsfall untersucht.

Des Weiteren wurde erforscht, wie Wirmebildkameras als Sensor fiir emotionale
und kognitive innere Zustinde genutzt werden konnen. Mit Wirmebildkameras
lasst sich die Korpertemperatur genau messen. Damit konnen Informationen tiber
das Befinden des Nutzers und iiber Verinderungen im vegetativen Nervensystem
erfasst werden. Dies ermoglicht eine unauffillige Wahrnehmung verschiedener
physiologischer Zusténde. Es wird erforscht, wie diese physiologischen Signale
nutzbar gemacht werden konnen, um die Wahrnehmung fiir solche Zusténde zu
erweitern. In zwei Studien wurde gezeigt, dass die kognitive Belastung und die
unterschiedlichen Arten von Aufmerksamkeit mit Wirmebildgebung erfasst und
gemessen werden konnen.
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Mit den vorgenannten Studien wurde ein neuer Datensatz erhoben und mit
dem Einverstindnis der Beteiligten offentlich zugiinglich gemacht. Es wurde
ebenfalls Software der entwickelten Systeme veroffentlicht, welcher unter
anderem Entwickler dabei unterstiitzt, Wirmebildkameras zu integrieren.

Aus der Forschung werden Designempfehlungen abgeleitet. Diese sind aufgeteilt
in soziale und technische Empfehlungen und dienen als Basis fiir das Design von
neuartigen Systemen, welche Wirmebildinformationen nutzen. Auf Basis der
Erfahrung aus den verschiedenen entwickelten Systemen und evaluierten Studien
werden Auswirkungen analysiert und Empfehlungen fiir das Design diskutiert.
Es wird ebenfalls eine konzeptuelle Architektur fiir solche Systeme vorgestellt.
Abschlielend folgt eine Diskussion iiber die Potenziale der Warmebildgebung in
der zukiinftigen Forschung im Bereich der Mensch-Computer-Interaktion.
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PREFACE

This thesis contains work created from 2014 to 2018 at the University of
Stuttgart. Since studying of thermal imaging based system requires different
types of expertise from different disciplines, this thesis has been done in close
collaboration with experts from the University of Stuttgart, project partners within
the feuerWeRR project, Microsoft SocialNUI lab and external collaborators.
These collaborations resulted in publications which are a core part of this thesis.
The contributing authors (i.e. co-authors of papers) are clearly stated at the
beginning of each chapter together with the reference to the publication if
applicable. To keep the consistency throughout the thesis and to emphasize
these collaborations, I use the term "we" instead of "I" when referring to myself.
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Chapter

Introduction

"It is one of the commonest of mistakes to consider that
the limit of our power of perception is also the limit of all
there is to perceive.”

— C.W. Leadbeater -

Humans throughout history have aspired to own superpowers to extend their
control over their surroundings and maximize their benefits. Such superpowers
were inspired by the advantages of other creatures or by human ingenuity and
imagination to extend the motor, perceptual, or cognitive capabilities. For
example, inventors used animals as an inspiration and attempted to fly, which
led to revolutionizing transportation via airplanes. Similarly, recent research in
brain computer interfaces empowered quadriplegic individuals to interact with
their environment and enabled humanity to benefit from an individual like Steve
Hawking. Another example of human computer interface was enhancing the
cognitive abilities of chess players with the support of artificial intelligence
machines. In each case, the synergy between the machine (extended superpower)
and the human proved to be the optimal combination for highest performance
performance.
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The work of this thesis focuses on amplifying the perceptual capabilities of
humans via extending their vision. Visual perception is the ability to see, process
and understand stimuli in an environment. Despite its importance, the visible
spectrum of the human eye comprises less than 1% of the electromagnetic
spectrum. Therefore, historically, tools that enhance our vision for the visible
aspects of our immediate environment like lenses and glasses were extensively
built. Afterwards, the research focus shifted to building tools that support us in
seeing what is naturally invisible like X-rays and telescopes.

Eyeglasses use lenses to correct human visual perception. Lenses can also be
used to amplify the visual perception. For instance, optical microscopes enable
us to perceive objects that would be otherwise too small. Binoculars are devices
which let us see things at a greater distance and in greater detail than we would
be able to see with the naked eye. Research was conducted on extending our
visual perception, for instance Kimber et al. [135] used mirrors to augment user’s
perception. Others looked into extending the perception via extending the field
of view [78, 180, 181]. Recent research explored the visualization of non-visible
waves such as wireless traffic [79, 95], where they aimed to extend our perception
to include non-visible waves.

Thermal imaging is the capturing of infrared information via a camera. The
technology builds upon the research enabling us to see what is naturally invisible.
It is highly useful as it captures valuable invisible environmental cues because
all objects emit a thermal radiation. For instance, thermal imaging allows
visualizing gas/water leakage as they have different temperatures, and can also
detect overheating devices. Examples for application domains include firefighting,
military and medical applications. During the past decade thermal cameras have
witnessed a tremendous reduction in their price, along with great advances in
form and usage possibilities, changing it to a commodity device and upgrading
its user group. Additionally, it has been integrated in diverse daily devices like
mobile phones and drones. However, it is still a growing market and it is not
widely adopted yet. Thus, there is a research gap in understanding how thermal
cameras are used in daily life beyond specific professional domains to amplify
visual perception.

In this thesis, we investigate how thermal imaging could be ubiquitously used
to enrich human visual perception. We specifically investigate how typical
experts and growing-market novice users perceive and understand the thermal
spectrum deploying a mixed method approach including interviews, surveys and
cultural-technology probes to gain insights about the users perception of the
thermal spectrum. Further, we explore a set of scenarios and use cases using
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technical prototypes to support the visual perception using thermal imaging.
Finally, we discuss a set of guidelines for designing thermal imaging applications.

1.1 Research Questions

To understand and investigate how thermal imaging could be used to extend and
amplify human perception, two main aspects need to be considered and examined,
namely the user perception of the thermal spectrum and the opportunities and
enhanced capabilities offered by having this extended perception. Table 1.1
summarizes the research questions, which have driven the research presented in
this thesis.

Thermal imaging has drastically decreased in both size and cost, making it
commercially available to a wider user group. However, our aim is not only
to study thermal imaging due to the "technology push", but rather to examine
and investigate how non-traditional imaging, i.e. thermal imaging technology
operating in the non-visible spectrum, could be deployed to extend our perception.

Thermal imaging has traditionally been used most by special user groups such as
firefighters or technical users rather than non-technical novice users. Therefore,
we first focus on the understanding thermal imaging by both experts (Research
Question (RQ)1) and novice users (RQ2). We further investigate and explore
the capabilities of having amplified perception via thermal imaging. Hence, we
investigate two main domains in which thermal imaging offers novel approaches
or enhances current ones. First, we explore the usage of thermal imaging
to amplify our environment perception (RQ3). The operation spectrum of
thermal cameras enables enhanced sensing of the internal state in a non-obtrusive
manner. (RQ4) address how thermal imaging could be deployed to amplify our
perception of the cognitive load. In the final part of this thesis, we focus on the
implications of adopting to thermal imaging in our daily lives (RQ5).

1.2 Research Approach & Methodology

Although thermal imaging was discovered in the 1800s, with the first thermal
camera created in 1929, it has mostly been used by the military and firefighters.
However, deploying thermal imaging as a ubiquitous computing tool amplifying
human perception and for interactive systems by novice users is a more novel
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RESEARCH QUESTIONS

UNDERSTANDING THERMAL IMAGING

RQ1 What is the understanding of thermal imaging by expert users?

RQ2 What is the understanding of thermal imaging by novice users?

AMPLIFIED VISUAL PERCEPTION

RQ3 How can thermal imaging be used to amplify perception of the environment ?

RQ4 How can thermal imaging be used to amplify perception of cognitive load?

IMPLICATIONS & DESIGN GUIDELINES

RQ5 What are the implications of thermal imaging adoption?

Table 1.1: Research questions tackled in the course of this thesis

area of research. Most of the camera based interactive systems have been using
traditional RGB color camera, with a recent interest towards depth cameras
e.g. Microsoft Kinect. More recently, most research has focused on designing
and evaluating interactive systems and techniques based on imaging technology.
Hence, previous research charted design opportunities and constraints, as well
as raising concerns of using such technology e.g. privacy issues. Additionally.
given that these cameras operate within the perceived spectrum of our eyes,
understanding how they operate and capture images is relatively straight forward
compared to thermal imaging operating outside the perceived spectrum.

Whereas thermal imaging offers novel opportunities to extend and amplify our
perception as well as build novel systems it also raises concerns and constraints.
Yet there is no existing work on how novice users perceive this spectrum band.
Additionally, the level of their understanding of thermal imaging is not quantified
nor clear. Hence, we started by investigating the perception and understanding
of thermal imaging by both experts and novice users. Next, we developed
a series of research prototypes and probes to answer the research questions
and explore the utilization of thermal imaging. All the conducted research
and developed prototypes followed a user-centered design approach. Our work
provides a coherent understanding of the perception of thermal imaging by users,
as well as investigation of potential application domains where thermal imaging
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offers extended perception via novel approaches or enhancement of existing ones.
From our findings, we chart design recommendations for thermal imaging-based
interactive systems for developers and researchers. Additionally, we chart the
challenges and provide directions for future research.

Prototypes and Studies

In the course of this thesis, we designed and built ten study probes and prototypes.
The developed prototypes ranged from probes to high fidelity fully functioning
prototypes. We tested and deployed our prototypes in various setups such as
indoor vs. outdoor environments, and lab sessions vs in-home sessions.

We coupled each prototype with several methodologies in the user studies to
investigate our research questions thoroughly. We conducted controlled lab, as
well as in-situ probe studies. During our studies, we evaluated both the technical
and conceptual aspects of the proposed system or prototype. For instance, we
evaluated the recognition accuracy of the built system as a quantitative measure.
Additionally, we used interviews, focus groups, surveys and probes to collect
subjective qualitative data and feedback.

1.3 Research Contributions

In this thesis we investigate the usage of thermal imaging to extend and amplify
human perception. The contributions of this thesis are fourfold. First, we
chart a holistic understanding of how users perceive the thermal spectrum (C1),
highlighting the potentials as well as challenges for using thermal imaging for
amplifying our perception. Additionally, it identifies a set of domains where users
can benefit from thermal extended perception. Second, we contribute a set of
research explorations in diverse domains and contexts (C2). Third, we provide
novel datasets of thermal images in diverse contexts (C3). Finally, based on the
collective findings from the extensive evaluations of the developed systems and
prototypes, we present a set of both design and technical recommendations for
designing thermal imaging-based systems (C4).

C1: User understanding of thermal imaging Traditional imaging technology
is a mapping to the human visual perception. Hence, users know what
to perceive and have an intuitive understanding of the presented images.
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Unlike RGB and traditional imaging, thermal imaging operates in the Far
Infrared (FIR) beyond the human visual perception. Based on exploration
of how users perceive the thermal spectrum through interviews, focus
groups and technology-culture probe, we present in chapter 3 a holistic
understanding of the users’ perception of the thermal spectrum.

C2: Research Prototypes The exploration of thermal imaging perception and
user understanding revealed several opportunities and capabilities of having
amplified perception through thermal imaging. Hence, in the context of
this thesis we developed ten research prototypes. The study and research
prototypes and their evaluations introduced in this thesis are structured
according to their relevant research question. In Chapter 3, the perception
of users of thermal imaging is introduced. Two study probes, their
evaluations and lessons learnt are presented. The two probes cover different
target group: expert and novice. In Chapter 4, amplified environment
perception is explored again through five study probes covering hand-held
and head-mounted display (HMDs) amplifying perception tools. Finally,
in Chapter 5, in three study probes we further investigate amplifying the
perception of users’ cognitive load. Table 1.4 depicts the developed study
probes.

C3: Open Dataset and Code The exploration conducted throughout this thesis
resulted in a diverse and unique dataset.

C4: Implications and Design Guidelines We contribute by exploring the ethics
and concerns raised from users’ adoption of thermal imaging, evaluating
prototypes, and identifying social and technical considerations for
designing thermal imaging-based systems. Our explorations provided
deep insights into how users perceive thermal spectrum as an amplified
perception. Evaluating the built prototypes uncovered the technical
specifications of thermal sensors that should be provided in different context
and applications. Where perceptual mapping information is easy to specify
for traditional RGB imaging technologies, due to the direct mapping to
our normal perception. These technical specifications include for instance
the thermal sensitivity not perceivable to the users, hence unable to be
specified without prior knowledge or experience with thermal imaging.
Our exploratory prototypes coupled with reviewing the literature gave us
a detailed overview of these technical specifications. Thus, we provide a
set of technical and design recommendations which aims to guide future
designers, developers and end-user to inform their design decisions.
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1.4 Research Context

The research covered in this thesis was conducted during my employment between
2014 to 2018 at the University of Stuttgart, in the Human-Computer Interaction
group under the supervision of Professor Albrecht Schmidt. The research was
inspired by collaborations, publications, and discussions with many experts from
different areas.

FeuerWeRR The major part of this work was conducted within project,
FeuerWeRR ! with the German Federal Ministry of Education and Research,
under the Grant No. 13N13481. In FeuerWeRR, four partner research institutes
(Fraunhofer IPA, Fraunhofer IAF, Institute of Signal Processing and System
Theory University of Stuttgart, and Institute for Visualization and Interactive
Systems University of Stuttgart) set out to enhance Civil Security - Protection
and Rescue in complex Work situations through employing a thermal imaging
camera with extended reality using radar sensors. By combining technological
interventions with firefighters in the first line of operation, this three-year research
project (March. 2015 - May. 2018) focused on investigating and enhancing
the way firefighters operate and utilize tools, with especial emphasis on thermal
imaging and radar sensors.

University of Stuttgart Most of the research reported in this thesis was
conducted together with colleagues from the University of Stuttgart. Combining
the technical knowledge and scientific expertise of the group with my research
interests, resulted in a number of publications that are of great importance for this
thesis. The collaboration with Pascal Knierim, Stefan Schneegass, Niels Henze,
Alireza Sahami Shirazi, Tilman Dingler, Markus Funk, Katrin Wolf, Mariam
Hassib, Albrecht Schmidt led to publications within the scope of this thesis (e.g.
[3, 6,8, 11, 12, 39, 69, 70]) and further publications beyond the scope of this
thesis (e.g. [1, 7, 16, 71, 130, 179, 213, 275, 276, 277, 278, 279] ).

External Collaborations Part of the research covered in this thesis was
conducted in cooperation with external colleagues, including the following:

1. SocialNUI Microsoft Research, Melbourne, Australia
The collaboration with Eduardo Velloso. Joshua Newn and Frank Vetere
from the SocialNUI lab 2, University of Melbourne led to a series of
publications [4, 12, 179].

! https://wuw.feuerwerr.de/

2 nhttps://socialnui.unimelb.edu.au/
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Figure 1.1: Outline of this thesis.

2. German University in Cairo, Cairo, Egypt A further collaboration, with
the German University in Cairo in the context of set of research proposals,
included "Serious Games for Education and Sustainable Development",
"AffectMyLife" and "Character Computing". The conducted research led
to a list of publications in the context of the different research proposal
topics(e.g. [16, 17, 63,71, 130, 163, 211, 212, 213]).

3. LMU, Munich, Germany Working with Mohammad Khamis and Florian
Alt led to a publication [3], which was recognized by the community and
received an honorable mention award for CHI2017. Additionally, part of
the covered research in this thesis has been conducted in collaboration with
the AMPLIFY ERC project > [4, 6, 11, 12].

1.5 Thesis Outline

This thesis comprises eight chapters and is divided into four parts, the last two
of which contain the bibliography and the appendix. The structure of the thesis
closely follows the flow of contributions as depicted in Figure 1.1. The first part
introduces the topic of this thesis. The Background part provides an in-depth
introduction to thermal imaging and amplified visual perception. This is followed
by the two main parts; the study probes and prototypes and implications and
design recommendations. In the last part, the conclusion and suggestions for
future Work are presented.

3 http://amp.ubicomp.net
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PROTOTYPE DESCRIPTION CHAPTER

Understanding Thermal Imaging

Exploring the expert user perception of thermal imaging by 3
real firefighters. HMDs. Publication: [5]

DailyHeat. In a wuser study compromising of 3
Cultural-Technology probe and interviews we investigated
with novice users in daily home environment Publication:

[14]

Table 1.2: Research prototypes developed in the course of Chapter 3.

Part I: Introduction and Background

Chapter 1 - Introduction The first chapter describes the motivation and
vision for amplified human perception, states the context of the conducted
research, lists the research questions, and summarizes the contribution of our
research.

Chapter 2 - Background In the second chapter, we introduce the basic
foundations and concepts of thermal imaging. Also we present the evolution of
the application domains and usage of thermal imaging over the past 20 years.

Part II: Study Probes and Prototypes

Chapter 3 - Understanding Thermal Imaging The chapter introduces
two study probes which investigate the prerequisite step in our conducted research
of investigating how users both expert (Section 3.1) and novice (Section 3.2)
perceive and comprehend thermal imaging.
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PROTOTYPE DESCRIPTION CHAPTER

Amplified Environment Perception

5 FeuerWeRR. we investigated how they perceive amplified 4
. vision via thermal imaging in two forms: (1) Mobile and (2)
HMDs imaging. Publication: [5]

TriSight. A HMD prototype compromising of see through 4
using RGB, and amplified vision via thermal camera.

We used the amplified vision prototype to evaluate the
temporarlity of the amplified vision using set of tasks in three
environments; kitchen, office and basement. Publication:
[15]

ThermalMirrior.  Investigating Thermal Reflection for 4
Amplified Interaction Space Publication: [8]

ThermalAttacks Using the heat traces to infer PINs and 4
Patterns Publication: [3]

VID Identify and authenticate users based on their veins 4
patterns.

Table 1.3: Research prototypes developed in the course of Chapter 4.

Chapter 4- Amplified Environment Perception In this chapter we go
along with the first investigation of deploying thermal imaging to amplify
environment perception in both context-specific application (cf. Section 4.1)
and daily setup (cf. Section 4.2). Through two study probes covering two
different contextual scenarios.

Chapter 5- Amplified Cognitive Load Perception Different affect states
are correlated to our body temperature namely, facial temperature. In this
chapter, we explore these insights in the context of affective computing. We
aim to explore the usage of thermal imaging to unobtrusively estimate users’
internal states to increase humans’ awareness of others’ internal states. We
show that we can estimate the cognitive load level as well as the attention types.
Further, we highlight application scenarios of real time, unobtrusive estimation
and classification of internal states using thermal imaging.
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PROTOTYPE DESCRIPTION CHAPTER

Amplified Perception of Cognitive Load

CognitiveHeat. Unobtrusive approach to see through users 5
and estimate and quantify their cognitive load level remotely
in real time based on their facial temperature. Publication:

[12].

AttenTCam. Classifying users’ attention type by 5
augmenting thermal imaging with an eye-tracker.
Publication: [4].

Table 1.4: Research prototypes developed in the course of Chapter 5.

Part III: Design Implications & Guidelines

Chapter 6 - Implications and Design Guidelines In this Chapter, the
findings from the study probes are used to derive a set of design recommendations
on the user and technical levels. In the second section of this chapter, we
synthesize a conceptual architecture for thermal imaging-based systems. The
different possibilities and design recommendations are taken into consideration
through the different blocks of the architecture. Topics such as privacy, social,
and technical considerations are discussed.

Part I'V: Conclusion & Outlook

Finally, part IV summarizes the outcomes of the investigations of the study probes
and empirical research conducted, the proposed reference for technical and a
conceptual architecture, and a set of design recommendations. Finally, we present
our concluding remarks.

Chapter 8- Conclusion and Outlook This chapter summarizes the
contribution of this thesis. Furthermore, it outlines open questions that still
need to be tackled in future developments.
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Chapter

Background

The research presented in this thesis is located in the field of Amplified
Perception using Thermal Imaging. To understand and utilize thermal imaging,
we study the operation features of thermal cameras and the foundation of the
thermal spectrum. The main goals of this chapter are first to present basic terms
and notions about thermal imaging, and second to present a basic foundation about
the thermal infrared spectrum and technologies for thermal cameras. We further
discuss how sensing technologies have been used to amplify humans’ perception.
Related works that directly address the topic and field of the presented prototype
and method are further discussed in this and following chapters.

2.1 Discovery of Infrared Radiation

The initial discovery of thermal (infrared) radiation was introduced by Sir William
Herschel in 1800. In the process of testing the heating properties of different
colors of the spectrum, he accidentally discovered infrared radiation. He used the
blackened tip of a sensitive mercury thermometer and directed it to a tabletop
by having beams of light shine through a glass prism. When he moved the
thermometer in the dark area beyond the red end of the spectrum, he noticed
an increase in temperature while going down the spectrum from blue to red. A
significant increase in temperature was shown as he assessed the temperature of
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Figure 2.1: Radiation spectrum covering the thermal and non-thermal
infrared wavelengths and bands only part of the infrared radiation could
carry heat, highlighted in dash’

the spectrum further beyond the visible spectrum (beyond the red). From here
originates the name infrared (below the red).

2.2 General Principles

Throughout the thesis we use the terms and notions explained in this chapter. This
chapter is written for the reader who is unfamiliar with, or has limited knowledge
about thermal imaging.

2.2.1 Thermal Vs. Infrared Radiation

There is a common inaccuracy when referring to thermal and infrared radiation as
if they were interchangeable. Both terms are commonly cross used. However, the
term Thermal Radiation refers to heat transferred by electromagnetic radiation
due to an object’s temperature, whereas, Infrared Radiation is a sub-band of the

5 http://www.castool.com
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Figure 2.2: Classification of the Infrared Spectrum.

electromagnetic spectrum as depicted in Figure 2.2. The source of misconception
comes from the fact that the infrared electromagnetic waves can also transfer heat,
hence it is sometimes referred to as heat radiation. However, not the entire infrared
spectrum can transfer heat. Figure 2.2 depicts the thermal vs. the non-thermal
infrared radiation bands. Where the thermal band operating between 7.5 to 13
um is utilized in thermal imaging and heat visualization, non-thermal infrared is
used in other technologies such as depth cameras and infrared TV remote controls.
Figure 2.2 shows the infrared sub-bands including Near Infrared (NIR), Short
Wave Infrared (SWIR), Mid Wave Infrared (MWIR), FIR and Very Long Wave
Infrared (VLWIR). In this thesis, the focus is on the FIR operating between 7.5 to
13 um. Hence, we will use the following terms throughout the thesis:

¢ IR (infrared): The near, short wave, mid wave, and far infrared energy

¢ Thermal Radiation: The mid and far infrared energy

¢ Thermal Imaging: A device using mid or far infrared energy for imaging

2.2.2 Thermal Radiation Modeling

In this chapter we present only the basic thermal radiation properties and modeling
required to understand the upcoming chapters of this thesis. Further in depth
explanation about thermal radiation and the underlying theories and properties
can be found elsewhere in the literature, for example [232, 113].

Thermal radiation is generated by the thermal motion of an object’s particles. Any
object with a temperature above absolute zero ® emits thermal radiation. Thermal

© The lower limit of the thermodynamic temperature scale at —273.15%n the Celsius scale.
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radiation is emitted due to the object’s temperature; the higher the temperature the
more the object radiates. Max Planck, Josef Stefan, Ludwig Boltzmann, Wilhelm
Wien and Gustav Kirchhoff precisely defined and established qualitative and
quantitative correlations for describing infrared energy. This thermal energy and
radiation is modeled by the black body radiation model as explained below.

Black Body Model

The black body is an ideal body that absorbs all electromagnetic radiation
applied on its surface irrespective of the angle and frequency of the radiation.
In other words, a black body is an abstracted physical body which absorbs all
incoming radiation. In other words it does not have any reflective nor transmissive
properties. The name black body originates from the fact that it absorbs all visible
electromagnetic energy and is perceived as black in color. It changes to red
then orange to white hot when it heats up, as stated in the Wein Displacement
Law [136].

When the black body is in a thermal equilibrium state (i.e. at a constant
temperature) it emits radiation according only to its temperature. It is an ideal
absorber (i.e. absorbs all applied radiation) and ideal emitter of radiation over all
wavelengths (i.e. emits the maximum energy at all wavelengths) 2.1.

a=¢=1 2.1)

Where, « :absorption
€  :emissivity

The main properties of this model were defined by a set of laws introduced in the
1900 by Planck [197], Wien, Kirchhoff, Stefan and Boltzmann [205] as follows:

1. The spectrum of the emitted radiation M,g is described by Planck’s
law, which presents the basic correlation for non-contact temperature
measurements: It describes the spectral specific radiation M g of the black
Pody into the half space depending on its temperature T and the wavelength
I».

2. The quantity of emitted energy is given by Stefan-Boltzmann’s law.

3. The frequency likelihood of the radiation is defined by Wien’s displacement
law.
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Planck’s law Planck’s law defines a distribution that represents the energy
level of the radiation at each wavelength (spectral specific radiation M} ). The
representation is in terms of temperature T and wavelength A.

Ci 1

My = A5 C/AT _

2.2)

Where, C; 3.74-107'© W m?
C, 144-102Km

This distribution has peak values at a certain wavelength. This peak value has
shorter wavelengths for higher temperatures; in other words, the wavelength
of the peak of the object’s radiation is inversely proportional to its absolute
temperature [136].

Wien’s displacement law As illustrated, the wavelength at the peak
decreases as the temperature increases. Wien’s displacement law denotes the
wavelength at peak and states that it is inversely proportional to the absolute
temperature. By differentiating Planck’s formula a representation for Wien’s
displacement law could be derived as shown in equation 2.3.

MaxA = &ngum-K (2.3)

Stefan-Boltzmann law Finally the Stefan-Boltzmann law defines the
spectral radiation intensity at all wavelength values. By integrating these values
the emitted radiation of the full body is computed. As shown in equation 2.4 the
entire emitted radiation of a black body increases proportionally to the fourth
power of its absolute temperature [136].

Emitted radiation o< Absolute temperature 2.4

Gray/Real Body

As mentioned earlier the black body is an ideal model, hence few bodies in the
real world act like this; most radiat less emission than the black body given the
same temperature. Nevertheless, the black body model is very useful reference
to describe the radiation properties, including absorption/emissivity, reflectivity
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and transmissiveness. The total percentage of the radiation energy could be
represented by figure 2.3 and parameters equation 2.5.

a+p+1=1 2.5)
Where, o : Absorption
p : Reflectivity
T : Transmissivity

Absorption and Emissivity

Absorption refers to the amount of thermal energy absorbed by the body. Since
the absorbed energy increases the body’s temperature it is retransmitted (emitted)
to reach equilibrium. Hence:

Absorption = Emissivity (2.6)

e+p+t=1 Q2.7)

Where, € :Emissivity
Emissivity
Emissivity refers to the emitted radiation leaving the surface. It is dependent on
several factors including the temperature of the emitting surface, the material the
surface is made of, and the properties of the surface (for example roughness).

The emission from a surface is distributed among the wavelengths in the thermal
band.
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The emissivity values range from zero to one. Since the black body is an ideal
emitter it has the emissivity value of one. This property measures the radiation
ability of an object relative to that of the black body at the same temperature (i.e.
the ability of an object to mimic the behavior of the black body).

Transmissivity

Transmissivity refers to the ability of an object to pass through thermal energy.
Since most objects cannot transmit energy this property can be ignored, as
presented in equation 2.8 for simplicity.

etp=1 2.8)

Reflectivity

Finally, the property of reflectivity is concerned with the degree of reflected
energy off a body. From equation 2.8 we can deduce an inversely proportional
relation between the reflectivity and emissivity of an object (cf. Figure 2.5).

The reflectivity of an object’s surface depends not only on the direction of
the incident radiation but also on the direction of the reflection. Surfaces are
assumed to reflect in two manners: specular and diffuse. In specular reflection, the
angle of reflection equals the angle of the radiation beam. For diffuse reflection
the radiation is reflected equally in all directions regardless of the incident
radiation’s direction. The reflectance of a surface depends on its roughness
and the wavelength of radiation strikes [31].
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2.2.3 Thermal Properties

The thermal spectrum exhibits a set of phenomena that differs from the visible
light. In this section, we give a brief overview of the main phenomena that have
been used in this thesis.

Thermal Contact Conductance

One of the main thermal phenomena is the heat transfer from one object to another.
For instance when we touch a surface, heat transfers from the users’ hand to
surfaces they interact with, leaving traces behind that can be analyzed. This relies
on the surface’s material property know as thermal contact conductance [49],
which refers to the conductivity of heat between two objects (surfaces) that are in
contact.

As described earlier, according to the black body model [113], any object above
absolute zero (e.g. surrounding objects in our environment) emits thermal
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Figure 2.6: Types of reflection

radiation. This radiation is absorbed, reflected, and transmitted. However, for fully
opaque surfaces the transmitted portion is discarded [81]. This limits the portions
of interest to the reflected and absorbed radiation. Hence, thermal radiation can
be presented as in Thermal reflectivity + T hermal absorptivity = 1. Thermal
absorptivity depends on the temperature of the source that generates the radiation,
and is independent of the surface’s temperature.

As soon as an object contacts the surface of another object, thermal radiation is
transmitted and absorbed by the surface, causing a temperature change. This leads
to heat traces accumulating on the surface. Ray [207] built a well-established
model to compute the the transferred heat, in other words, the temperature at the
contact point of the two bodies.

babjectl Tobjectl + bohjethT()bjeth

(2.9)

Teontact =
bobjectl + b()hject2

b=VK.PC (2.10)

Teontaer depends on the temperature of the contact points (Tpjecr1 and Top jecr2)
as well as their thermal penetration coefficient (b). It is the amount of thermal
energy penetrated and absorbed by the surface. The b is defined in Equation 4.4.
It is composed of the product of thermal conductivity (K), thermal density (P),
and specific heat capacity (C) [190].
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Thermal Spectral Reflectivity

In the case of the existence of a radiating source, the apparent temperature of
the surrounding surfaces is affected as it influences the emitted and reflected
radiation from the body. The apparent temperature is directly proportional to the
temperature of the radiating source. In the manner that, if the radiating source
has a lower temperature than the real body, the apparent temperature will be
lower than the real one. Correspondingly, if the radiating source has a higher
temperature than the real value the apparent temperature will show a higher
temperature ’. Figure 2.7, illustrates the effect of the radiating source on the
apparent temperature computed by the thermal camera. The glass is the body of
interest, where three cups of different temperatures are placed on it as radiating
sources; one with the same temperature as the glass (room temperature), another
with a higher temperature (35°C) and the third with a lower temperature (12°C).
As revealed in figure 2.7 the glass’s apparent temperature is represented by the
middle cup as it has the same temperature as the glass (it is not affecting the
apparent temperature), unlike the others: For the colder cup a lower apparent glass
temperature and for the hotter cup a higher apparent temperature are detected. The
direction of the reflection is defined by the reflective surface properties namely the
surface roughness. Surfaces could reflect radiations either in specular or diffuse
manner. Surface roughness correlates with how surface reflectivity occurs, on
the grounds that any surface with roughness less than one eighth of the radiation
wavelength exhibits a specular reflection.

Reflectivity of surfaces differs in the visible and infrared spectra. For instance,
aluminum is not reflective in the visible spectrum although it is in the FIR
spectrum. Hence, we cannot depend on the behavior of surfaces in the color
spectrum and have to measure their roughness to specify the reflectivity in the
FIR spectrum, and measure or view them in the thermal spectrum.

2.3 Thermal Infrared Measurement Systems

Thermal images are formed from the emitted thermal radiation. Most infrared
cameras are built on the same model, as illustrated in Figure 2.8 8 where the
measurement chain integrates the following elements [283]:

7 http://www.optotherm.com/emiss-physics.htm

8 nttps://www.fluke.com/en-us/learn/best-practices/measurement-basics/thermography/
how-infrared-cameras-work
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Figure 2.7: Apparent temperature of the glass and the radiating sources
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Figure 2.8: Illustration of how thermal imaging are constructed

A special lens focuses the infrared emissions of all the objects in the field
of view of the camera. The focused infrared emission is than scanned by
the sensor which is also known as the infrared-detector.

¢ The sensor creates a detailed pixel-based temperature pattern called a
thermogram. This thermogram is then transformed unto electric impulses,
which are sent to the processor and translated into data for display.

» The processor sends the information to the display, where it is mapped
using various colors based on the temperature i.e. intensity of the infrared
emission.
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Thermal imaging measurement systems prices range from a few hundred dollars
up to hundred of thousands. The main factor behind the price difference is the
type of the sensor, i.e. the infrared detector. There are two main types of detectors:

¢ Un-cooled is the common, relatively cheap and consumer-grade thermal
imaging device. The sensor operates at room temperature with built-in
battery, and operates in real time.

« Cooled on the other hand is more expensive and operates at zero degrees
Celsius. The sensor is placed in a cooling container that cools down and
maintains the operating temperature. This type of thermal imaging operates
with very high resolution and sensitivity due to the cooling mechanism.
However, cooled systems are much more expensive and susceptible to wear
and tear than uncooled ones.

Over the past decades uncooled thermal imaging devices have advanced
drastically. As shown in Figure 2.9 °, thermal sensors, namely uncooled infrared
detectors, have decrease in cost and size. This makes them more widely available
and affordable. In the course of this thesis, all the developed prototypes utilized
uncooled thermal cameras in different forms including FLIR One, Optris PI160,
and Optris P1640 '°.

9 https://wuw.flir.com

10 https://www.Optris.com/
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Figure 2.9: Illustration of the sensor advancement over the four years.

2.4 Thermal Imaging Application History

This section is part of the following planned publication:

* Y. Abdelrahman and A. Schmidt. The history of thermal imaging in
human computer interaction TOCHI

In the last twenty years, thermal imaging has become more portable and
commercially available, thus drawing the attention of Human-Computer
Interaction (HCI) researchers to explore it in greater depth as sensing technology.
Researchers have explored a wide range of application domains. We briefly
summarize the most dominant of these. We are not the first to attempt to classify
work using thermal imaging: Ioannou et al. [117] classify thermal imaging usage
in Psychophysiology, identifying its potentials and limits. As stated earlier, the
early usage of thermal imaging was limited to medical and military use; however,
usage has now flourished to cover diverse domains as depicted in Figure 2.10.
For instance, Larson et al. used thermal imaging as novel interaction sensing
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Figure 2.10: Thermal imaging applications evolution.

technology based on the heat traces detectable by thermal cameras [150]. Wong
et al. used thermal imaging and proposed algorithms to detect a person’s head
positions and parameter ratios such as the height and the width of objects [281].
Such algorithm were not only used for anti-theft surveillance systems, but also
applied in nursing homes for monitoring Alzheimer patients and preventing them
from leaving the nursing home without being attended to. The same approach
is used for faint detection [280]. Pham et al. proposed a system for posture
analysis in a dense crowd of people to detect irregular behavior using thermal
imaging [195].

Despite the above-mentioned advances and the significant potential thermal
imaging creates both from a research as well as from a commercial perspective, a
holistic view of the research on thermal imaging based systems in the past decades
is missing as of today. Hence, in the context of this thesis, we aim to provide a
holistic view of the conducted research. We identify seven major applications
areas of thermal imaging research, namely 1) military, 2) medicine, 3) energy and
building, 4) affective computing, 5) 3D construction, 6) interactive systems, and
most recent, 7) enhanced sensing. We then summarize existing research in these
different areas over the last twenty years.

Our review focused on the research conducted under the umbrella of HCI rather
than general research on thermal imaging in different domains for instance in
medical field. Hence, we exclusively used Association for Computing Machinery
(ACM) and Institute of Electrical and Electronics Engineers (IEEE) digital
libraries as our source using the keywords Thermal Imaging, FIR and HCI.
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Another review and classification iteration was conducted on the cited papers in
each retrieved paper to ensure that we covered the related research conducted
over the past twenty years. We used the number of papers published in this
year as an indicator of the research conducted. Although medical and military
research is not usually published or accessible to the public, these were still
the leading fields of research in the early 2000s. Taking a deeper look into
thermal imaging-related publications, we find that the application domains move
more towards the human-centric. For instance, the domains evolved to include
interactive systems and focus on daily setups rather than special use cases. Yet
most of the conducted research in daily setups as of today misses the holistic
understanding of thermal imaging and there are no clear design guidelines for
thermal imaging application design.

In summary, to novice users, thermal infrared imaging has been associated with
complex and military based application. However, HCI researchers have showed
interest in exploring thermal imaging in diverse domains rather than focusing
on the military use cases. With the general advancement and miniaturization
of sensors, namely thermal imaging, their usage has migrated from limited
military-specific to daily and HCT applications. This opens up the opportunity of
deployment and interchange between the HCI domain and thermal imaging as
sensing technology. In the context of this thesis, we focus on the bidirectional
added value for both fields. Where thermal imaging would act as a novel
sensing technology in HCI context and domain; on the other hand, HCI would
provide a user-centered understanding of thermal imaging. Furthermore, HCI
researchers can study and provide human-centric guidelines for designing thermal
imaging-based systems, hence bridging the gap between the complex application
specific thermal imaging usage as well as the understanding of users’ perception
and requirements. This understanding will yield into the development of novel
thermal imaging-based systems in diverse domains governed by HCI field.
Additionally, this would pave the road to deploying thermal imaging in amplifying
our perception.

2.5 Amplified Visual Perception

Our eyes can only perceive light falling in the visible light spectrum, so the
information about our surrounding we can perceive through the electromagnetic
spectrum is naturally limited. Evolution shaped humans’ visual system making
it very well suited to enable their survival in nature. Other animals had other
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requirements and evolution consequently enabled them to perceive other parts of
the electromagnetic spectrum. However, modern society has radically changed
the environment we live in, placing additional demands on our visual capabilities.

Almost throughout the entire human history, tools have been built to extend the
limitations of human visual perception. Even before the invention of optics,
simple tubes were used to reduce stray light. The development of optics, which
enables a broad range of tools, can be traced back at least to ancient Egypt where
polished crystals were used as lenses. Over the last three millennia, a large
number of tools, including glasses, telescopes, and microscopes, have been built
to extend human visual perception.

Eyeglasses use lenses to correct human visual perception. Lenses can also be
used to amplify the visual perception. For instance, optical microscopes enable
us to perceive objects that would otherwise be too small. Binoculars are devices
that let us see things at a greater distance and in greater detail than would be
possible with our own bare eyes. Research has also been conducted on extending
our visual perception in additional ways, for instance Kimber et al. [135] used
mirrors to augment user’s perception. Others looked into extending the perception
via extending the field of view [78, 180, 181]. Recent research has explored the
visualization of non-visible waves such as wireless traffic [79, 95], which aims to
extend our perception to include non-visible waves, in this work we build upon
this research and investigate the thermal spectrum as a means to amplify human
perception through the non-visible waves.

Tools that enable sensing beyond the visual spectrum have a much shorter history.
Infrared rays were only discovered in 1800. In recent decades, novel tools were
developed that use cameras which capture images beyond the visual spectrum. For
example, thermal cameras are widely used in certain domains such as health care
or firefighting. Until recently, they were used primarily by firefighters to make
potential hazards such as gas leaks or hot objects visible and to search for persons
or sources of heat, as thermal radiation is less scattered by smoke. In addition,
researchers explored potential applications for thermal imaging. However, most
of these applications address specific domains ranging from augmenting the
vision in special scenarios [6, 11] to interactive surfaces [210].
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2.6 Chapter Summary

In this chapter, we presented an overview of the relevant domains to the work
presented in this thesis. Starting with the basic foundations of thermal imaging
and the infrared spectrum, we present its operation properties and modeling (cf.
Section 2.2). Additionally, in Section 2.3 we give a brief description on the
thermal infrared measuring systems and their evolution. In Section 2.4 we present
thermal imaging application history. Finally, in Section 2.5, we highlight current
approaches to amplify our visual perception.

In Chapter 1 we set the scope and the context of the presented thesis as thermal
imaging and amplified visual perception from a human centered, HCI perspective.
However, this thesis covers diverse domains, which are introduced later in the
relevant chapters and sections, illustrating their relevance and connection to our
work.
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In the following part of the thesis we investigate the understanding of thermal
imaging based on two different target groups, namely experienced firefighters
and novice everyday users. Thereby, we present work using interviews with
firefighters and in-home probes with novice users (cf. Chapter 3). Both
approaches aimed to understand how diverse users perceive and understand
thermal imaging. Our findings highlight a set of potential usages of thermal
imaging as means of extending our perception of the environment (cf. Chapter 4),
by utilizing the visualization of the heat distribution and thermal map of the scene,
i.e. amplifying our environmental perception to cover the thermal infrared. In
addition to amplified environment perception, we present work on how thermal
imaging can be used to reveal insights about the internal state of the surrounding
people (cf. Chapter 5). Since body temperature are closely connected to users’
states, different affect states can be inferred [116, 117]. Additionally, certain
temperature patterns act as biometrics and they are uniquely associated to each
individual. The uniqueness of a person’s biometrics has been used elsewhere
to identify and authenticate users [50, 123]. These patterns yield promising
biometrics which can be used as implicit user identification (cf., Chapter 5).

This part includes the following three chapters:

¢ Chapter 3 - Understanding Thermal Imaging. Thermal Imaging
operates in the non-visible to humans part of the spectrum, hence a crucial
prior step before presenting it to users is the investigation of their level
of thermal imaging understanding and perception. In this chapter, we
present a series of qualitative and quantitative investigations of thermal
imaging understanding. Our investigations show that users easily learn
and understand the presented thermal information via self exploration, yet
highlight the need of an application layer that informs users about the
presented information rather than the raw thermal data.
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¢ Chapter 4 - Amplified Perception of the Environment. Our visual

perception allows us to only perceive our environment in the visible
spectrum, which barely comprises 1% of the entire spectrum. Researchers
have built tools and optical solutions to increase users’ perception and
awareness of the environment. In this chapter, we present five prototypes
that enable users to perceive the environment in the thermal spectrum. In
an evaluation, we show that users intuitively used the thermal view when
the visible light perception failed to present sufficient information about
the environment.

Chapter 5 - Amplified Perception of Cognitive Load. Different affect
states are correlated to our body temperature, namely facial temperature. In
this chapter, we explore these insights in the context of affective computing,
to discover how thermal imaging can unobtrusively estimate a person’s
internal state and impart this awareness to others. We show that we can
estimate the cognitive load level as well as the attention types. Further, we
highlight application scenarios of real time, unobtrusive estimation and
classification of internal states using thermal imaging.



Chapter

Understanding Thermal

Imaging

"Heightened perception is the goal: becoming more
aware of how you see, not just what you see."

— Michael Kimmelman—

After setting up and introducing the research question in Chapter 1 and presenting
the foundation of thermal imaging and research conducted in amplifying human
visual perception in Chapter 2. In this Chapter, we start by investigating
the perception and understanding of the thermal spectrum as it is a crucial
component for designing thermal imaging based interactive systems to amplify
users’ perception.

A prerequisite step in our conducted research is to investigate how users both
expert and novice perceive and comprehend thermal imaging. Hence, we first set
out to understand how thermal images are perceived by the firefighters, given that
they are the expert group of using such a tool. We further present an approach
to investigate the perception of thermal imaging by non-technical novice users.
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Therefore, we conducted qualitative investigations in form of interviews and
focus groups with the firefighters to build a deep understanding of their thermal
imaging perception. Additionally, we deployed a mix-method technique in the
form of a technology-cultural probe to explore how novice users might perceive
thermal imaging.

Throughout two study probes targeting two user groups and profiles, we explored
various facets of thermal imaging perception from expert and novice perspective.
In Section 3.1, we explored the expert understanding of thermal imaging. We
extended our exploration to investigate the novice perspective as presented in
Section 3.2.

The research questions we address in the presented chapter are:

* RQ1: What is the expert user understanding of thermal imaging ?

* RQ2: What is the novice user understanding of thermal imaging ?

3.1 Expert Understanding

Firefighting is an activity that is highly dependent on the implicit knowledge
and perception of the personnel involved. Firefighters build personal knowledge
through training and service experience. The ordinary mode of operation of
firefighters includes entering buildings full of smoke with limited visibility.
Their task is to explore the environment and build a shared understanding of the
situation, and decide on the next steps. The availability of tools used e.g. thermal
cameras provides information about the environment and offers opportunities for
better coordination and improved safety. Hence, we first set out to investigate
their perception of thermal imaging being one of the tools used. Additionally, we
targeted the firefighters group as they are considered to be typical/exert users of
thermal cameras

3.1.1 Method

The main objective of our research was to get insights concerning the thermal
imaging perception, experiences and practices of firefighters, especially those on
the first line of operation. In order to understand how firefighters perceive and
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Figure 3.1: Tunnel fire exercise.

use imaging technology in their work, we conducted a series of empirical studies
with firefighters from Reutlingen, Germany, in the context of the FeuerWeRR !
project. In the following, we present the studies upon which we build our insights.

Initial contextual inquiry

We were invited to the fire station in Reutlingen and were introduced to the
firefighting process. During a tour of the fire station, the team leader explained
the typical process and tools used by the firefighters in the first line of intervention.
Additionally, he reported some main challenges regarding the current thermal
imaging visualization e.g. no depth information and thermal reflection from
mirrors and reflective surfaces. Next, we attended a tunnel fire exercise
(Figure 3.1), where we observed the firefighters in operation. We monitored
how they use different tools, with special focus on how they use thermal cameras.
The entire exercise was video recorded.

Interviews

To gain deeper insights into how firefighters in the first line of intervention
perceive current thermal imaging technology and its visualization, we conducted
semi-structured interviews. To that end, we visited the fire station and queried
participants while they were performing maintenance duties(cf. Figure 3.2).
We also conducted interviews during the tunnel exercise (cf. Figure 3.3).
The semi-structured interviews lasted an average of 13 minutes (SD = 4.10).
We interviewed six firefighters, two of whom were volunteers and four were
professionals. The participants were aged 24—45 (M = 35.17, SD = 6.54). All
interviewees were male. All the sessions were video and audio recorded upon
receiving consent from the firefighters.

"' https://www.feuerwerr.de/
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Figure 3.3: Interview setup, in a car parked at the tunnel entrance.

We first asked about demographic data and information about their profession
(years of experience, position in the team and if it was a volunteer job). Then,
we asked about their experience with firefighting and the tools they were using.
We focused on the challenges and opportunities of the used tools. We also
investigated how they perceived and used thermal cameras in their existing form
and visualization. Moreover, to acquire insights from real fire incidents rather
than the training context where the interviews where conducted, we asked them
to recall specific real life cases.
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3.1.2 Analysis and Results

We used thematic analysis to analyze the content of the interviews. Our findings
highlighted that all the firefighters showed a high level of understanding of
thermal imaging on the theoretical level rather than the technical level, as they
all responded with the exact definition when asked about thermal imaging. They
knew the color mapping of the temperature, and the challenges faced when
using thermal imaging such as thermal reflection and lack of depth information.
However, surprisingly they showed a lack of a deeper practical understanding. In
other words, they knew the information it provided, however they did not posses
extensive hands-on experience.

It’s a grayscale image with the dark and light gray color for cold and
hot temperatures respectively.(Firefighters definition)

Having analyzed the recorded data, we found that tools were shared and not
assigned to a single person e.g. each group had a single camera that was held
by one firefighter and could be shared with others. This might have led to the
lack of hands-on experience, as thermal cameras are a shared tool rather than a
personal one. One of the main challenges reported by the firefighters was the lack
of depth information in thermal vision. The ability of reporting this reflects their
concrete understanding of thermal camera capabilities. Indeed, thermal cameras
provide temperature visualization for the field of view of the camera and no depth
information.

3.1.3 Survey

Based on the interviews, we designed an online survey to explore visualization
preferences in a larger and more diverse population sample. Our online survey
further investigated different environment visualizations using thermal cameras
considering different color mapping as well as distance visualization. To that
end, we designed low-fidelity prototypes of different visualizations for thermal
data. The survey contained questions about whether the firefighters understood
the visualization. Further, we explored if the firefighters would use the presented
visualization during emergencies. Finally, we asked if they would change the
current visualization to the proposed visualization. The survey was distributed
to the firefighters in Germany. We collected n = 52 responses (aged 18-58,
M =33.36, SD =9.99).
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Figure 3.4: Focus group setup, in the fire station.

The preferred visualization was one with distance representation in the form
of a circle with changing diameter depicting different distances. Firefighters
highlighted the need for quick representation with minimal effort to comprehend
the distance, hence they discarded using numbers to represent distance. Further,
the survey responses reflected the willingness of the firefighters to adopt different
thermal images with distance visualization while maintaining the familiar
grayscale of thermal images.

3.1.4 Focus Group

Next, we conducted a focus group to explore, confirm and contextualize the
outcomes of the survey. We focused on how the top rated visualizations in the
survey were perceived by the firefighters. The focus group lasted for 90 minutes,
and it was conducted in the meeting room of the fire station in Reutlingen
(Figure 3.4). We provided colored sticky notes to document their ideas and
feedback. The structure of the focus group consisted of an introduction followed
by open discussion about the presented visualizations.

In the focus group firefighters interacted with the prototypes and discussed
possible usage scenarios for the devices. We had five male participants (aged
21-37, M =28.6, SD = 6.22). The focus group outcomes stressed the willingness
of the firefighters to adopt new visualizations and new tools. They highlighted
they would use the additional information as hints and still trust and rely on their
perception.
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Concerning the form factor they noted advantages and disadvantages for both
forms. For instance, having a head-mounted display would allow them to use both
hands for the operation, but hand-held prototypes allowed on-demand operation
of the camera. The firefighters rated their experience after using two different
prototypes, showing that the head mounted display prototype outperformed the
hand-held one. Additionally, they appreciated the distance visualization and
quickly grasped the concept with no prior training.

3.1.5 Discussion and Summary

In this work we aimed to reveal the understanding of the firefighters of the
working spectrum of thermal imaging. Surprisingly, our findings showed that
the firefighters have a theoretical rather than practical understanding of thermal
imaging, as thermal imaging is a shared tool and not used on daily basis by all
firefighters. Additionally our investigation reveled the design constraints and
opportunities for fighters from an HCI perspective. Our extensive design inquiry
into designing new artifacts for firefighters involved a variety of methods that
allowed us to build an understanding of everyday work at the fire station. Here,
we present our key observations and implicit lessons learned during our inquiry.

’

Trust Dynamics We observed that trust played a central role in the firefighters
experience of work. Even unprompted, our participants would often reflect on
trust and establish clear needs in terms of trust. Firefighters put extensive trust
not only in the skills of their immediate colleagues, but also in the way their
work was organized and the quality of their training. Most importantly from
an interaction design perspective, trust in the quality of professional tools and
attire was also very strong. This indicates that designers working with firefighters
should skillfully navigate trust dynamics and conduct extensive user studies to
ensure that new interactive artifacts evoke trust.

Team Dynamics Contrary to our initial expectations, we observed a flexible
management structure in firefighter units. While commanding officers were
strictly in control of high-level decisions, teams assigned to the same fire engine
had a rather flat structure. Firefighters would operate a rotating roster where
they performed different duties on different days. This also enabled balanced
skill development as teams often consisted of novice and experienced personnel.
Future tools for firefighters should reflect these flat structures and enable swift
resource and experience sharing.
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Procedures A high reliance on trained procedures was also prevalent in the
firefighter work that we observed. We suspect this was highly related to trust in
one’s training, which strengthened the ability to put oneself in danger for a greater
cause. While experienced firefighters saw procedures and handbooks as necessary
and providing a reasonable reference, less seasoned participants were determined
to adhere to procedures. Our work shows that engaging with firefighter training
and action handbooks (usually present in fire engines) is necessary for building
improved interactive tools for firefighting.

Practicalities Finally, our work highlights the specific practical aspects of
working with users such as active firefighters. The nature of their work implies
that they may be available, but may also suddenly quit any research activities.
For safety reasons, we were only allowed to see the essence of their work, for
example how they would save people in dangerous conditions only during an
exercise. Further, as the social environment of the fire station is heavily based
on trust, we also needed to build the firefighters’ trust in our skills and research
agenda. Consequently, we recommend that designers working with firefighters
invest time in building trust, make good use of firefighter exercises and allow for
enough time spent at the fire station to account for the unpredictable character of
firefighting work.
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3.2 Novice Understanding

This section is based on the following publication under review:

* Y. Abdelrahman, P. wozniak, N. Henze, and A. Schmidt. Exploring the
potential of thermal imaging usage at home by novice users CHI’19

After exploring how typical and expert users perceive and comprehend thermal
imaging, we aimed to extend our exploration to reach a wider group, namely
novice non-technical users. Thermal imaging operates in a different spectrum than
what is visually perceived by our eyes, making its perception and understanding
not that straightforward for humans as most do not understand how infrared
cameras operate, especially if they have not encountered thermal imaging before.
This contrasts with RGB cameras and images which confer a direct mapping to
human vision capabilities.

In this study probe we focused on perceiving and experiencing the technology,
and motivate the participants to engage with the thermal imaging to gain an
overview of their understanding of the technology in hand. We used interviews
to acquire a deeper insight into the users’ lives. We conducted the exploration
in the form of a technology-cultural probe, and as we aimed to gather results of
high environmental validity, we decided to use commercially available imaging
technology and deployed state-of-the-art consumer-grade thermal cameras in
households for 10 days. To fully explore the understanding and usage of thermal
imaging, we prepared a probe kit including diaries, note cards, and a commercial
mobile phone with an attachable thermal camera FLIR one as shown in Figure 3.5.

Our research methods build on previous research in using cultural design probes
and in-home experience [114, 162, 217, 225, 257]. Culture probes were first
introduced in 1999 by Gaver et al. [88]. They are a method to elicit creative
thinking by asking users to document their ideas and actively involving them in the
design process [258], and have been beneficial in exploring technologies before
they become widely available and are to be used by non-experts. On the other
hand, Schmidt [216, 217] highlights the importance of functional prototypes. In
this probe, we focus on thermal imaging, hence we combine technology-cultural
probes by using a functioning commercial device as well as diaries and notes for
our cultural probe deployed in participants’ homes.
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PROPERTY

JUSTIFICATION

Functionality

Our technology probe is a simple Android application, with a
single main function of capturing thermal pictures and other
easily accessible functions e.g. capturing videos.

Flexibility

We added the sticky notes and diaries to offer an open-ended
experience to encourage users to reinterpret the captured
images.

Usability

Technology probes usually are not concerned with usability,
hence we used the same kit with no iteration on the usability
based on the participants’ feedback.

Logging

Technology probes should help the researchers visualize and
analyze the usage of the participants and further discuss
innovative ideas of the technology. Our probe complies with
this factor, as we logged the captured data (photos, videos and
notes) as well as the time of use (timestamps).

Design Phase

Our probe was conducted in the early stage of the design
process.

Table 3.1: The probe properties.

3.2.1 Mixed-Method Probe Methodology

According to Hutchinson et al. [114], technology probes should have the following
properties: functionality, flexibility, usability, logging and design phase. Our
probe complies with these factors as presented in table 3.1. We chose an easy to
use form of the technology to encourage the participants to engage and interact
with it, as well as to explore how participants perceive and use it on their own. We
combined data from the technology-cultural probe with semi-structured interviews
before and after the experience.
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Figure 3.5: Probe kit: FLIR one, phone, notebook, pen and markers.

Probe Kit

Our participants were given a probe kit like the one shown in Figure 3.5 containing
the following:

1. Diary for on-the-go ideation,
50 empty cards to draw ideas on,
Pen and colored markers,

Motorola Moto G Smartphone to attach the camera to it,

wook v

FLIR One for Android '? thermal camera and the camera’s dedicated

application 3.

The probe kit enabled participants to easily use a thermal camera. The thermal
camera is easily attachable to the smart phone. Using the FLIR app, they can view
and record thermal photos or videos. Previous work aimed to prompt ideation
via identifying a set of activities to be performed [225]. However, in our work

12 http://www.flir.com/flirone/android/

13 https://play.google.com/store/apps/details?id=com.flir.flirone&hl=en
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we aimed to openly explore the understanding and usage of thermal imaging in
everyday settings. Hence, we did not use any prompts for activities.

Study Timeline

We designed our 10 day study as follows:

Pre-Interview

Before starting the study we visited the participants’ households. We collected
their consent for taking part, and conducted a pre-interview to collect their
demographics as well as their experience with thermal imaging and whether they
had taken part in any previous technology or culture probes.

Setting up the probe

Participants were asked to place their probe kit in a location in the home that
would be accessible to everyone. They were asked to document their ideas using
the cards and diary, and record thermal photos and videos. Additionally, each
participating household was presented with a brief introduction to the application,
the capabilities of thermal imaging as well as the common properties and features
of thermal radiation. We presented examples for the basic features of thermal
imaging including:

1. Viewing Thermal Information: by using the camera to view cups with
different temperatures.

2. Thermal transfer visualization: by showing the view from the thermal
camera while a person touches a cup.

3. Thermal reflection: by placing the camera in front of a reflective surface.

Semi-Structured Post Interviews

After 10 days, we revisited the participants’ households and gathered data
including photos, videos and notes. We conducted a semi-structured interview
to gain deeper insights into their experience and how they perceived and used
the thermal camera. All household members were invited to the interview. We
browsed the captured ideas and photos and asked them to provide explanations
and details of the situation/use-case in which they captured the thermal photos and
videos. Participants were encouraged to discuss the use-cases with the researchers
as well as among themselves to reflect on their understanding. The main goal
of the interviews was an in depth exploration of the level of understanding of
thermal imaging and the appropriateness of thermal cameras in everyday settings.
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Home Participant  Gender Age Occupation
1 Female 29 Dermatologist
| 2 Male 33 Radiologist
3 Male 62 Doctor
4 Female 2
1 Female 25 Dentist
) 2 Male 30 Dentist
3 Female 60 Doctor 60
4 Male 1
3 1 Female 27 PhD student
2 Female 27 Manager
1 Female 29 Housewife
4 2 Male 27 Student
3 Male 28 Engineer
4 Female 2
1 Female 21 Environmentalist
5 2 Male 22 Student
3 Male 27 Guitarist
6 1 Male 33 Researcher
2 Female 19 student
7 1 Male 27 Student
3 1 Female 22 Housewife
2 Male 23 Student
9 1 Male 27 Student
2 Male 21 Student
10 1 Female 21 Student
2 Female 23 Student

Table 3.2: Demographics of the technology-cultural probe participants.

Participants

We conducted the study with 10 households over 10 days. Nine households had
at least two individuals. We had 26 (23 adult) participants (11 female) with an
age range of 1-62 (mean:28.57, SD:16.97). Most participants held at least a
Bachelor’s degree. Three of the households had one child and two households
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had a dog. Only two participants were familiar with thermal imaging, and seven
were familiar with the term ’thermal cameras’ but had never seen one before.
We used numbers for the houses as well as for the participants in each house
for referral purposes. H13 means, household 1 and individual number 3 in the
household. Guardian consent was acquired for the participation of minors in the
study.

3.2.2 Analysis and Results

The interviews were audio recorded and transcribed for analysis. We used
thematic analysis [37] to analyze the content of the interviews. We analyzed
270 captured photos and 563 recorded interview minutes. Two coders coded
50% of the corpus independently using nVivo 4. Afterwards, they met to assess
differences and construct the final coding tree. The rest of the corpus was coded
by a single coder. Through iterative discussion, the final themes emerged from the
coded quotations. We present the four main themes reflecting thermal imaging
in the home: Understanding of thermal spectrum, Experiencing Extended Visual
Perception, Potential for domestication, Social Implications and When and Why
People use Thermal cameras?

Understanding of Thermal Imaging

Surprisingly participants showed a clear understanding of the technology by
exploration; there was no special training or instructions needed to understand
and use thermal cameras.

It took me couple of views to know the color meaning and then it
was easy to understand the hot and cold objects. (H41)

Additionally, they reported that their perception easily adapted to the new
spectrum. Furthermore, they expressed how their understanding of the thermal
images and views created sort of learning experience about the temperature cues
as reported by H61.

4 https://www.qsrinternational.com/nvivo/home
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It feels like my eyes and mind adapt to the temperature information.
(Hi12)

Surprisingly even when I don’t have the camera anymore I am using
the hints I already got from the camera, it like how your eyes adapts
to this kind of information. (H61)

Experiencing Extended Visual Perception

Participants reported a positive experience regarding accessing and experiencing
thermal imaging. They were interested in what thermal cameras allow them to see
and sense. Participants recognized the benefits and enhancement in perceiving
the environment through thermal cameras:

It was really cool to have a tool that can compensate what you can’t
see in hand. (H32)

One participant perceived thermal vision as a way to broaden their perception of
the world:

Being able to see the thermal view makes it a totally different
experience and makes me feel superior. It’s kind of a new dimension
of perception. (H11)

Others were positively surprised by the ability to notice more details of the
environment and thus being able to avoid danger more effectively. One participant
stated that they felt safer:

It felt as I can see the whole surrounding even in the dark which
made me feel a bit safe. (H22)

It was actually interesting it was quite nice to see the stream. I could
see stuff that normally I wouldn’t see. H31

I find it interesting because seeing it is the thing I have never done
before because you can feel I know it is warm or something but I
have never seen before it was very interesting and cool for me. H91
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Additionally, participants reflected on how using the camera changed their
perception of the surroundings. H21 and H61 remarked how using the camera
introduced an adaption on how they see the world:

Surprisingly even when I don’t have the camera anymore I am using
the hints I already got from the camera, it like how your eyes adapts
to this kind of information. (H61)

It makes us as human being sensitive to more than 3 colors. H32

Potential for domestication

Participants reported that they would appreciate having a thermal camera in the
home. They were comfortable with the mobile form:

I was fascinated that you can have such an imaging tool as simple as
a phone attachment. (H13)

However, they reported that the form factor depended on the use case. For
instance, some preferred to have the thermal camera as a stationary tool
monitoring a room. H22, wanted to have it as a substitute for the surveillance
camera and he reported the need to have it in a stationary form:

I can imagine if I have this camera in the ceiling I can monitor
my sleep and my body temperature during the day to reflect my
health.(H13)

One participant wondered if the technology will advance to have it in contact
lenses for implicit vision extension. It’s worth mentioning that participants also
wanted to have it in different forms and communicated this idea with each other:

It can be like Internet of things to communicate with anything. I
want to see it in my cellphone, in my computer also. So it should be
a separate thing but it has to communicate. (H92)
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Figure 3.6: Traces when touching a surface and a cup.

Social Implications

Most of the participants accept the idea of other people having thermal cameras
operating at home:

It is not problem if people want to use it. (H7)
Others reported being more careful to maintain the privacy of the house owner:

I will be cautious. Maybe they will get upset if I touched their stuff
as they can see when you touch something (Figure 3.6). (H82)

However, one participant reported to have privacy concerns:

This could be a real privacy invasion so I would like to know if
someone is having that advantage over me. (H32)

When and Why do People use Thermal Cameras ?

Participants used the thermal camera in diverse tasks. Based on our analyses, the
usage can be classified in four categories; enhancing their awareness about the
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Figure 3.7: Thermal view (right), RGB view (left)

environment, objects, people and substituting current techniques.

Environment Awareness

Participants used thermal cameras to better understand and perceive their
environment. For instance, H13 familiarized himself with the room’s wall to
know where to hang a frame away from the electric cables. H12 reported how he
was informed about damage in his ceiling, at an early stage, saving him money:

I figured out that my ceiling is damaged and fixing it at this stage
saved me tons of money. Also I used to monitor if they fix it right
and if the paint dried out. (HI2)

The thermal cameras were also used in bad lighting conditions (Figure 3.7). For
instance, H21 used it during the night in a dark room with her partner sleeping to
find objects.

T used the camera around the baby not to wake him up if I am looking
for something I don’t have to turn on the lights. And if I am looking
for my phone during the night I don’t have to turn on the lights and
disturb everyone in the room. (H21)

Object Awareness
Participants also utilized the camera to know the state of different objects.
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Figure 3.8: Sink trap blocked(left) and fixed (right).

We had a problem with the sink so I took a picture, there was
difference in colors. We called the specialist to fix it. At night I
took another picture which had a clearer color and there was no
difference in colors so we deduced that there was a problem and
fixed now (Figure 3.8). (HS82)

We had an electricity cut out and I could tell from the camera that
the freezer did not operate and it saved the food inside as well as the
hassle of cleaning up after the food is destroyed, at that point I felt
like we need this to be always monitoring the devices. (HI3)

I always open the dishwasher during its operation but I used it and
found heat getting out from the dishwasher when its operating. (H92)

H11 remarked the ability of thermal camera to check her daughter’s diaper.

Checking if she needs to change I had to run after her and stuck
trying to get her dressed again. It showed if the diaper has anything
without even touching her. It saved time and money. (H11)

An interesting use case reported by one of the participants who was a refugee
and had experienced war zones. He recognized the benefits of having a thermal
camera in the home to detect hidden objects such as bombs. He also envisioned
that the thermal camera could enable him to find monitoring devices such as
hidden cameras and microphones as well as to find people. Additionally, he
reflected on the ability of thermal cameras to detect invisible markers:
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Figure 3.9: House from outside to identify opened windows or doors.

They used to highlight the houses with wanted people using invisible
paint, I can imagine I will be able to see it using this camera. I think
having it might spare my life.

People Awareness
Participants also reflected the usage of the camera to know more about people’s
physical health state H92 or emotional state as reported by H11.

I have a knee injury, it is always warm and if you hurt part of your
body the injured part becomes warm (Figure 3.10) (H92)

I know you can tell emotions from the temperature of the person, if I
can hold the camera and know the unspoken feelings it kind of mind
reading. H11

Substituting Current Techniques
Interestingly, participants highlighted the usage of thermal camera as an advanced
substitution for existing techniques and technologies.

I would like to use it as an early fire alarm, because the smoke
detectors work when things are already on fire and smoke reaching
the ceiling which is too late. (H23)



3.2 Novice Understanding 57

Figure 3.10: Knee injury (left), person’s facial temperature (right)

We have a surveillance camera with blind spots, with this camera I
can see if someone passed by even if they are not around anymore
(Figure 3.11). (HI2)

If you replace the Xbox camera with a thermal camera it would be a
different experience. (H22)

H13 envisioned that a thermal camera could substitute health monitoring systems.

If we can replace all vital sensing technologies with thermal cameras
we could have a contactless health monitoring. HI3

In summary, participants utilized thermal cameras in different use cases. Further
examples include: kitchen tool, gaming camera, personal trainer, health
monitoring tool and educational aid. It is worth mentioning that participants
highlighted the need of applications to maximize the utility of thermal cameras.

I think if you deploy it in form of apps like snap chat, fitness tracker,
alarm systems its going to be really useful and maybe a necessity to
have. (H102)

Usage Behavior

We analyzed the logged time of use. Participants used the thermal camera for
an average of 20.4 min/day (SD: 4.7 min/day). A Pearson Product Moment
correlation reveled that there was no relationship between usage duration and
time (r = —0.03). This indicates continuous interest in using the technology.
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Figure 3.11: Traces of footsteps as surveillance technique.

CATEGORY EXAMPLE USE CASES

Enhanced Checking ceiling for damages, checking walls for power
Environmental lines before hanging a frame and finding objects in a dark
Awareness room

Enhanced Object Checking the state of the dishwasher, detecting issues

Awareness with the sink, checking electric devices’ states after
electricity blackout, checking diapers and detecting
invisible markers/paint

Enhanced People Checking injuries and detecting emotions
Awareness

Substituting Early fire alarm, surveillance camera detecting past actions
Current and replacing health monitoring devices
Techniques

Table 3.3: Summary of the usage categories.

3.2.3 Discussion

In the course of the conducted probe, we were able to gather insights from a
total of 26 individuals who lived with thermal cameras for 10 days in their home
settings. Here, we present insights drawn from our analysis of the results.
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Our participants considered thermal cameras as a pleasurable tool and further
considered it a vision extending tool that enabled them to see what they could
not perceive with their own eyes. They used thermal imaging in the home for
purposes including knowing more about their environment, determining the state
of an object and emotions of people around them as well as to overcome the
shortcomings of current technologies and techniques. They related their ability to
see the temperature and thermal information to extending their visual perception
as well as to compensate for environmental limitations. Finally, the extended
ability made participants feel safe and having advantage over the environment
and its limiting factors.

During our exploration, we encouraged the participants to envision use cases with
no restrictions. As a result, participants proposed use cases applicable to high-end
thermal cameras as well as an application layer, e.g. an application that detects
the emotions. While many of the use cases are not yet applicable to the current
state of the technology, this research suggest the need of future development of
thermal imaging applications for everyday users. Our study enabled us to gather
information from a diverse set of users. Furthermore, the home setups enabled
the participants to envision the usage of extending visual perception in daily life.
Participants reflected on how extended thermal view enhanced their perception
and how it built new understanding of their everyday surroundings, where we
observed that thermal imaging has a high potential for domestic appropriation.

Participants showed a clear understanding of the technology by exploration; there
was no special training or instructions needed to understand and use thermal
cameras. Additionally, they showed an awareness of the implications of the
technology at hand, in highlighting the possible privacy issues that might arise
during the usage of the thermal camera.

In summary, participants were excited about the use of thermal imaging to extend
their visual perception at home. They envisioned potential use cases, as well
as form factors. The collected insights reflect the importance of building and
evaluating possible visual perception extension devices.

Concerning the future design of domestic thermal cameras, participants reported
that the preferred form factor relates to the use cases, where a stationary form
was preferred for always-on and environmental monitoring. However, they
preferred the flexible portable form for real time explicit object exploration (e.g.
checking diapers). Participants envisioned the wearable form factor as flexible and
on-demand vision extension tool. These findings highlight that identifying ways to
embed thermal imaging is an emerging challenge for HCI. Our exploratory study
enabled us to gather information from diverse users; additionally the home setups
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enabled the participants to envision the usage of extend visual perception in daily
setups. Participants reflected on how alternative vision modes provided a new
information layer, enhancing their perception and understanding of their everyday
surroundings. Interestingly, participants were eager to utilize the extended visual
perception when their own vision was a limiting factor like in a dark basement
with hidden objects and non-visible traces.

Participants used thermal imaging in the home for many purposes including
enhancing their perception about their environment, the emotions and health
state of people around them as well as to overcome the shortcomings of current
techniques. In particular, participants reported that the thermal camera led them to
detect sources of dissipating heat as hints for re-arranging objects in their house,
spot dysfunctional domestic appliances, and locate and gauge sources of heating
loss. These findings demonstrate the potential of the thermal imaging to reduce
costs for household heating by detecting insufficient insulation and increasing
energy saving awareness (e.g. checking if all windows are closed when leaving
home). Surprisingly, in one case, the thermal camera was even reported as a tool
that could potentially save/protect one’s life in home settings when in a war zone.
This shows that hardware miniaturization and democratization made it possible
for thermal cameras (commonly only available to military personnel) to reach
civilians, assisting them in escaping life threatening situations. Participants also
reported the potential for eliciting emotions (e.g. anxiety) during interpersonal
encounters, health state or disease symptoms (e.g. fever). Participants displayed
increased awareness on the privacy implications of having such a layer of extra
information at hand and commented on how it could be a potential means
of discrimination (i.e. detecting and avoiding fevered peers). Although we
anticipated participants would deploy thermal cameras in gaming as an alternative
or addition to the Kinect depth technology, only one participant envisioned using
it in a gaming scenario. However, it will be interesting to explore thermal imaging
in the gaming context aiming to penetrate the gaming market in a similar way to
how Kinect was introduced and is now adopted in a vast set of applications.

3.24 Summary

Through our review of related work, we concluded that no prior work explored
the use of enhanced vision in everyday settings with the use of thermal imaging.
Consequently, in this work we began our inquiry by exploring the users’
perception of thermal spectrum and the potential use cases in daily life.
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This research probe represents the first explorative study of the potential
domestication and home uses of thermal imaging, in real homes by everyday users.
While our findings are limited by the sample size and the technical limitations
of the employed prototype, we were able to gather insights from a total of 26
individuals, who lived with thermal cameras for 10 days. Here, we present
insights drawn from our findings.

Our findings imply the acceptance of the usage of thermal imaging. In the study
we encouraged the participants to envision use cases with no restrictions, and
they proposed use cases applicable to high end thermal cameras as well as an
application layer, (e.g. an application that detects emotions). While many of
the use cases are not yet applicable with the current state of the technology,
this research suggests the need of future development of thermal imaging
applications for everyday users and to identify implications for future extending
visual perception systems using thermal cameras. These include identifying use
opportunities, negotiating privacy, managing awareness and limiting dependence
on enhanced vision.

We assured high ecological validity via the conducted technology-cultural probe
in the home. We had the cameras provided in the home to allow creative and
continuous ideation by the participants. In turn, participants highlighted their
vision to have such a tool in their home to be used in a daily fashion. As a result
we had insights concerning participants’ preferences regarding the form factor.
We hope our work can serve as an initial building block to understand what role
enhanced vision can play in our future lives. We also hope that designers of future
thermal imaging systems can use our insights to build enhanced vision interfaces
with a high user benefit in everyday usage.

3.3 Chapter Summary

In summary, in this chapter we presented our exploration of the understanding
of thermal imaging by two user groups; expert and novice. Our findings show
that both expert and novice users of thermal imaging showed a high level of
understanding of the presented thermal imaging technology: While the expert
had a prior knowledge of the mapping, novice users acquired their understanding
by exploring the scene and learning by doing (i.e. viewing). We concluded this
chapter by presenting our reflection of the user reported experience with thermal
imaging. In the next chapter we proceed to investigate the feasibility of the
potentials of thermal imaging as well as the accompanied challenges.
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Chapter

Amplified Perception of the

Environment

Our eyes can only perceive light falling in the visible light spectrum, limiting
the information perceived about our surroundings. In some cases, there are also
hazards that tend to occur to us when we are not fully aware of our environment
e.g. hot objects, gas leakage...etc. This is inevitable due to human’s limited visual
senses. However, as highlighted in the previous chapters, tools namely imaging
technology paved the way for amplifying our perception, hence enhancing our
awareness.

In this chapter we go along with the first investigation of deploying
thermal imaging to amplify perception in both context-specific application (cf.
Section 4.1) and daily setup (cf. Section 4.2). Through two study probes covering
two different contextual scenarios, we explore and evaluate various facets of
amplified perception. In section 4.1, we examine a firefighting context. We built
two prototypes for FeuerWeRR. A hand-held devices, a sensing, a traditional way
of utilizing thermal cameras by the firefighters. As well as, a HMDs alternative.
Both prototypes provide the user with the thermal feed visualization.

The research questions we address in the presented chapter are:

* RQ3: How can thermal imaging be used to amplify perception of the
environment ?
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In Section 4.2 we present amplified environment perception in daily setup. Our
environment holds a lot of cues that can inform us about our vicinity and enhance
our awareness. Being aware of one’s surroundings can enhance our awareness and
the decision making process. By using TriSight a HMDs augmented with thermal
camera and a depth sensor, we explore the feasibility of amplifying our visual
perception using the current state-of-the-art technology. We provide abstracted
feedback to the user in the form of the default color mapping of thermal feed. We
ensured ecological validity by simulating daily setups.

Furthermore, section 4.3 investigates the thermal properties of different material
that allows amplified interaction space, rather than the limited space by the field
of view (FOV). Additionally, in this section, we investigate the influence of
changes in the environment setup (indoors vs. outdoors) on the performance of
the amplified interaction space.

In section 4.4 we explore the accompanied threats of the amplified perception.
We investigate the feasibility of thermal imaging to infer users’ smart-phone PINs
and Patterns entry. Using a thermal camera and computer vision technique, we
built ThermalAnalyzer to evaluate the performance of thermal attacks.

In the final section, We conclude with the a counter example of thermal attacks.
In particular we introduce VID a vein based identification system, utilizing the
ability of thermal cameras to capture the temperature difference between the
blood in the veins and skin.
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4.1 FeuerWeRR: Amplified Perception for
Firefighters

This section is based on the following publication:

* Y. Abdelrahman, P. Knierim, P. W. Wozniak, N. Henze, and A. Schmidt.
See through the fire: Evaluating the augmentation of visual perception
of firefighters using depth and thermal cameras. In Proceedings of the
2017 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2017 ACM International Symposium
on Wearable Computers, UbiComp ’17, pages 693-696, New York,
NY, USA, 2017. ACM

Firefighting is an activity that is highly dependent on the implicit knowledge
and experience of the personnel involved. Firefighters build personal knowledge
through training and service experience. The ordinary mode of operation of
firefighters includes entering buildings full of smoke with limited visibility.
Their task is to explore the environment and build a shared understanding of the
situation, and decide on the next steps. Roles change frequently within the team
to account for dynamic changes in the circumstances of the intervention. During
an intervention, cognitive processing and time are key resources. Firefighters
must actively manage their attention as they often perform multiple parallel tasks.

The availability of tools used e.g. thermal cameras provides information about the
environment and offers opportunities for better coordination and improved safety.
As aresult the key resources time and cognitive processing could be supported.
However, designing devices that can be appropriated and integrating them within
existing procedures still remains a challenge. Designing devices for supporting
time-critical collaborative work in hazardous environments is a recurring theme
in HCI research [201, 202].

Mackay [161], identified design challenges for time-critical work. Kyng et
al. explored the challenges of designing interactive systems for emergency
response [145]. Previous work highlighted that designing for such complex
environments confronts researchers with a set of constraints. Thus, understanding
the ways to design devices and solutions for firefighting remains an open
challenge [60].
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As firefighter tools are mainly safety-critical systems, interaction techniques and
methods that are suitable for this challenging environment are limited. Research
conducted to date has aimed primarily at supporting commanders.

The work presented here is conducted within the scope of the FuerWeRR project.
We focus on the human computer interaction aspects for designing for firefighters
at the front line of an operation. The goal of the project is to build interactive
tools for this complex environment that supports emergency operations, with a
special focus on visualization modalities and environment perception. In our
research, we consider the state of the art of thermal imaging technology and
visualization being used by the firefighters. Currently, the firefighters use gray
scale representation of the scene with minimal distance information. Hence,
we aim to enhance and augment the presented information by designing and
evaluating different visualizations and prototypes.

Our initial steps involved exploring how firefighters operate, current tools and
technologies used and how they use and perceive these tools. We conducted a
series of ethnographic methods including interview and participatory observation.
In the following we discuss our findings and provide insights for future work.

4.1.1 Related Work

Firefighting is an activity that is highly dependant on the implicit knowledge and
experience gained by training and real experiences. The common operation of the
firefighters includes going into buildings full of smoke with limited visibility and
their task is to explore the environment and build a shared understanding of the
situation, as well as decide on the next steps. The role of the firefighters changes
frequently within the team, and they have to deal with unforeseeable situations.
Information resources are considered to be scarce in many ways, for instance the
attention and processing time for available information are usually limited, as the
firefighters must focus their attention on a set of tasks during operation.

The availability of tools used e.g. thermal cameras provides information about
the environment; however, there is still the need of technology and tools
appropriation process. While it might be considered to be straightforward to
build devices to support firefighters, designing devices and solutions remains an
open challenge [60]. There are limited interaction techniques and methods that are
suitable for this challenging environment. As most of the research conducted aims
to support commanders for instance, Landgren [148] investigated evolutionary
design of large displays for collaborative work between commanders [125].
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Figure 4.1: Map of the Basement.

Researchers identified communication patterns, highlighting the importance
of verbal communication [149], and suggest system to enhance and improve
communication practices [43]. On the other hand, work involving the firefighters
in action usually focuses on the technology rather than the interaction aspect [60].
Recent work [176] focused on the interaction aspect of firefighting, however it
does not consider all the collaborative aspects of firefighters’ operations.

There is research conducted relevant to this work —Designing devices
for supporting time-critical collaborative work in hazards environment.
Mackay [161], identified design challenges for time-critical work. Other
researchers further explored the challenges of designing interactive systems for
emergency response [145]. Designing for such complex environments confronts
researchers with a number of constraints. In this section, we present our findings
of the studies that we conducted with the firefighters, including lab studies,
interviews, and a survey.

4.1.2 Study I: Depth Vs. Thermal Vision Amplificat

In our first study, we aimed to assess the usage of the amplification mode; in other
words the benefit of augmenting depth as opposed to thermal information. We
used a simulated challenging fire environment, by using a dark basement with
obstacles as depicted in figure 4.1.
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Participants and Procedure

We invited 16 participants aged between 20-30 years; 12 males and 4 females.
None of the participants had been to the basement before or had prior experience
with depth cameras.

We used the hand held prototype shown in figure 4.2, where participants could
change the views either using the depth or thermal view. We focused on a
navigation task, as this is one of the most challenging tasks of firefighters.
Participants were asked to perform two tasks:

» Estimate the size of the basement

¢ Find the warm bottle

After task completion, the participants were interviewed to rate the usage of the
depth and thermal camera to perform the tasks. Additionally, we logged the view
they used to perform the tasks as well as the camera feed.

4.1.3 Results and Discussion

We analyzed the views and the recorded feed from both cameras to identify the
camera used to perform the tasks. We found out that 87% of the participants
used the depth camera to perform the navigation task to estimate the size of the
basement. On the other hand, all participants switched to the thermal view to
locate the warm bottle.

Our findings from the interview confirms our findings. All participants reported
that they had an enhanced experience using the extended views and the difficulty
of the tasks was drastically reduced. Additionally, six participants recommended
the usage of both imaging technologies in the same view through combining the
depth and thermal information via sensor fusion.

The first study reflects the importance of both imaging technologies, where
extending the visual perception to the depth band allowed better navigation skills,
and the thermal layer allowed sensing non-visible information (i.e. temperature
of the bottle) as well as performing fine search tasks. Accordingly, we performed
a second user study with three different views: (1) Thermal, (2) Depth and (3)
Thermal and Depth fused view. Additionally, we used two different form factors.
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Figure 4.2: HMD (left) and Hand-held (right) prototype used by firefighters.

4.1.4 Study II: Hand Held Vs. Head Mounted Display

The firefighters are used to the hand held form given it is the typical form of the
currently used devices. However, we wanted to evaluate different form factors,
namely hand held and head mounted Display.

We invited 11 participants aged between 19-51 years. None of the participants had
been to the basement before and all had no prior experience with depth cameras.
Six participants used the HMD and the other five used the hand held setup. The
participants were asked to perform the same tasks as in study I. We logged the
time spent in each view of the thermal, depth and fused views. Additionally, we
conducted post-interviews with the participants.

4.1.5 Results and Discussion

We computed the time spent in each view, and found that 39% of the time was
spent using the thermal and depth fused view, followed by 35% and 26% in the
depth and thermal views respectively. This confirms the effectiveness of the fused
view, and the usage of both imaging technologies to maximize the augmentation
of human visual perception. Additionally, the interviews reflected the preferences
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for using the HMD. However, all participants mentioned that the prototype should
be integrated in the firefighters’ helmets to be usable in real fire scenarios.

4.1.6 Summary

We presented two studies conducted with firefighters to investigate the potential of
augmenting and amplifying their visual perception using both depth and thermal
cameras. We covered in this section the evaluation of the potential form factors
for amplified vision, using HMDs and hand-held. We aimed to evaluate the
impact of using thermal vs. depth; and additionally, the preferred form factor.
Our findings reflect the effectiveness as well as the acceptance of the amplifying
prototypes, where all participants reported an enhanced experience while using
the prototypes. Moreover, participants from study I recommended the use of the
combined thermal and depth fused view. Hence, we modified them to include
the fused view in study II, and it was the most used view confirming the reported
user preferences. We also found out that the firefighters preferred the HMD to the
Hand-held, due to its hand-free operation.
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4.2 TrSight:  Amplified Perception for
Novice Users

This section is based on the following publication:

* Y. Abdelrahman, P. Wozniak, P. Knierim, N. Henze, and A. Schmidt.
Exploration of alternative vision modes using depth and thermal
cameras. In Proceedings of the 17th International Conference on
Mobile and Ubiquitous Multimedia, MUM 2018, pages 245-252, New
York, NY, USA, 2018. ACM

As shown in the previous section, imaging technology has shown promising
advancement in visualization and perception of the environment, for specific
contexts such as firefighting. Recently, thermal imaging (far-infrared) has become
affordable for commercial and personal use in terms of cost and size, to the extent
that thermal imaging has been integrated into some mobile phones, enabling
an extension of how we perceive, visualize and interact with the surroundings.
Thermal imaging provides a heat map of a scene to the user in a contact-less, real
time, and robust manner (e.g. it is light independent). Moreover, infrared imaging
(including both near- and far-Infrared) enhances and extends the perception of our
visual sensing. By using these cameras, we are capable of perceiving light outside
the limited visible spectrum. Concurrently, HMDs and augmented reality (AR)
have shown significant advancement in visualization and interaction challenges in
multiple domains, e.g. gaming, medicine, and manufacturing. However, despite
the advancement of AR applications, it is under-explored in daily life.

In contrast to traditional RGB cameras integrated in HMD and glasses, the design
and integration of infrared cameras, especially in daily usage, have not been
explored yet. We investigate the potential of thermal and depth imaging for daily
use. We build an initial prototype to explore the feasibility of vision extension and
a switching system with currently available technology. We conducted a study
using the prototype to explore task scenarios and how users switch between vision
modes. We determined practical and technical challenges for the development of
tools that augment visual perception. We are using a TriSight proof-of-concept
prototype and created situations and environments. This work aim to inform
technology and human factor design decisions towards a real interactive vision
extension system for evaluation. We chose our approach to achieve the fullest
involvement of the users in the design of the vision amplification systems.
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42.1 Related Work

Previous research proposed several systems that enhance human visual perception
in special scenarios and setups. In the following, we present prior work in research
aimed to provide an extended visual perception using depth and thermal cameras.

Extending visual Perception

Research has been done to extend our visual perception, for instance Kimber et
al. [135] used mirrors to augment user perception. Others looked into extending
the perception via extending the field of view [78, 180, 181]. Recent research
explored the visualization of electromagnetic radiation emitted from wireless
technology such as Wi-Fi hotspots or cellular towers [79, 95].

One of the limiting factors in visual perception is the ability to infer exact
depth information, for instance for navigation and obstacle avoidance. Biswas
and Veloso used depth information for obstacle avoidance for autonomous
navigation [36]. Their system works on the depth information alone and does
not require RGB data. Izadi et al. presented KinectFusion, a system that allows
users to hold a Kinect to generate 3D models of a scene in real-time [121].
Researchers argue that 3D maps have many applications, ranging from elderly
support [286] robotics, telepresence, gaming and AR. They further state that they
believe that the price of RGB-D cameras will decrease in the future, allowing the
cameras to enhance different kinds of application scenarios, as well as human
perception. Depth cameras have been explored and utilized in various applications
and domains. However, there is limited research investigating the domestication
of depth cameras beyond gaming.

Concurrently, thermal cameras operating in the far-infrared spectrum and can
be used to extend the spectrum that is perceivable. Researchers highlight that
thermal cameras are continuously getting cheaper and more and more cameras
are appearing on the market. This enables thermal cameras to be used in a
diverse set of applications, by enhancing existing application scenarios and
opening new ones. Matsumoto et al. use KinectFusion and combine RGB-D
camera with a thermal camera. This system allows a visualizing the thermal
distribution in the environment [159, 168]. Vidas et al. combined a range
sensor with a thermal-infrared camera in a hand-held system to generate dense
3D models of building interiors. Combining a low-cost RGB-D camera and
a thermal-infrared camera enables generating 3D models that contain surface
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temperature information [247]. Van Baar et al. highlight how thermal cameras
can be used to improve object segmentation [243]. Using thermal cameras has
also been explored for expert users. Previous work explored how to extended
visual perception in special situations and environments. For instance, it has been
targeted for firefighters usage [6, 21, 22]. On the other hand, there is limited work
on the usage of imaging technologies for novice users.

Past research shows that while users can benefit from additional vision modes,
solutions that effectively deliver additional vision information are yet to be
delivered. Thus, understanding if and how interactive systems can convey content
beyond the regular vision spectrum emerges as a challenge for HCI. Here, we
perform an initial exploration of this design space by building a proof-of-concept
prototype and evaluating in a study. We conducted a mixed-methods lab study
to explore initial reactions to an extended vision system and investigate its
potential for domestication. Consequently, we explore the What is the potential
for domesticating augmented vision systems as well as What are user attitudes and
design challenges for developing systems that support alternative vision modes.

4.2.2  Trsight: A Proof-of-Concept Prototype

We built TriSight that extends the user’s visual perception. It enables users to
perceive the environment in three different modalities; visual view recorded
through RGB cameras, depth view recorded by a depth image sensor, and a heat
view recorded by a thermal camera. Through the attached different cameras;
RGB, Depth and Thermal cameras, the HMD presentes the camera feed to the
user, where the RGB is used to allow having a see-through experience, to be able
to see the environment, the depth and the thermal viewed the heat information of
the environment. Users can select one view at a time using a wireless controller
depicted in Figure 4.3. Users can freely switch back and forth between the three
views with a simple click. TriSight puts three different image sensors into service.
We use two Matrix Vision mvBlueFOX-MLC202b cameras to enable stereo
vision. The cameras operate at a resolution of 1280x960 pixels with a FOV of
118°x87°, running at 90 frames per second (FPS). For thermal imaging, we used
an Optris PI450 camera with a resolution of 382 x288 pixels. The spectral range
is between 7.5 and 13um with a noise equivalent temperature difference of 40 mK
at 80 FPS. The thermal camera is equipped with a 7.3 mm lens with 80° horizontal
and 58° vertical FOV. The third sensor is the structure sensor from Occipital 3.
It operates with a resolution of 640x480 pixels and FOV of 58°x45° at 60 FPS.

15 www.structure.io/
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Thermal Camera

RGB Cameras

Controller

Figure 4.3: TriSight: OculusRift, two RGB cameras and a thermal camera.

All image sensors are attached to a custom designed printed chassis (yellow part
in Figure 4.3). This frame connects all sensors with the Oculus Rift CV1 which
we used as the output device. We ordered the sensors in a way that enabled the
largest view overlap as shown in Figure 4.3. The dimensions of TriSight were
20x 16x 14 cm (wxhxd) and total weight of 1.2 kg including the HMD. Both the
Oculus Rift and all imaging sensors were connected to a MSI-GT72 !¢ notebook.
The notebook powered the attached hardware and did all the processing. The
notebook was placed in a backpack.

16 https://wuw.msi.com/Laptop/GT72-6QD-Dominator-G.html
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We used the Unity 3D game engine for image stream processing since this offers
powerful Oculus Rift support. The image processing pipeline consists of three
steps. Each stream from one of the camera systems is loaded separately, cropped
to compensate the different FOVs and lastly rendering a split-screen stereo with
distortion correction for each eye. Only one stream is visible at a time. The
user can switch between the streams with a press of one of the 2-buttons of an
ergonomic finger mouse (controller in Figure 4.3).

4.2.3 Evaluation

We used a proof-of-concept prototype in created environments aiming to achieve
the fullest involvement of the user’s in the design of the vision extension
systems. It allows the investigation and evaluations of user experience, and
makes qualitative as well as quantitative measurements of usage, e.g. the time
spent in each view.

The study was comprised of two parts. In the first part, we studied the usage
of the three different views in daily tasks, by creating three lab environments:
kitchen/home, office and basement. In the second part, we interviewed the
participants for usage insights.

1. Office Tasks:

(a) organizing and archiving files.

(b) identifying connected plugs.
2. Basement Tasks:
(a) locating an object

(b) detecting leakage

(c) detecting a disconnected pipe
3. Kitchen & Home Tasks:

(a) finding a pet

(b) checking a plant

(c) preparing a hot drink
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Figure 4.4: Participants while performing kitchen and office tasks.

The second part was a post-task interview evaluating their experience with
TriSight. We conducted the interview in the lab after the participant explored
the three home-like setups. In the interview, participants were asked about their
experience with TriSight, and how a similar device could be used in their daily life.
Additionally, they reported their reasoning for the view selection to perform the
task. The post-task interviews were recorded for later transcription and thematic
analysis, to better understand the content of the interview.

Participants and Procedure

We recruited six participants (3 female, with an average age of 29.17 years,
SD=10.83). Participants had a diverse background; we had one secretary, one
doctor and four students in different majors. Two participants had previous
experience with augmented reality, one had experience with depth cameras and
none had any experience with thermal cameras.

After welcoming the participants in the lab, we asked them to sign a consent
form and explained the purpose of the study. The experimenter then asked them
to fill in a questionnaire concerning their experience in using HMDs, RGB and
thermal cameras. Throughout the study we recorded the views displayed to the
participants as shown in Figure 4.5.
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Figure 4.5: Images taken with TriSight by participants during the study.

We recorded their state using the Positive and Negative Affect Schedule
questionnaire(PANAS) [262] before the start of the study and after each
environment. Moreover, we logged the time spent in each view. The participants
were encouraged to speak their thoughts out loud, and comment on the views
used to perform the tasks. These notes where recorded by the experimenter
for later analysis. The order of the environments was counterbalanced using a
Latin-square. The study took approximately 120 minutes ( 30 minutes in each
environment and 30 minutes for the post-task interview) per participant. The
whole experiment was recorded using a Gopro Hero3 RGB video camera.

424 Results

We collected 540 minutes of video: 199.53, 158.51, and 181.56 minutes in
RGB, Depth and Thermal views respectively. Further, 163 minutes of qualitative
interviews were collected along with the comments recorded during the study
from the participants. We analyzed the PANAS scores after using 7riSight in the
different environments, (2) time spent in each view, (3) the views used to perform
the given tasks and (4) the conducted interviews.

PANAS

We assessed the positive and negative affect at the beginning of the experiment
as an indicator for the initial/baseline of the user’s state. Scores were recorded
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Positive Affect | Negative Affect

Baseline 23.83+£5.93 21.67+£4.07
Office 26.00+£8.29 21.17+5.67
Basement 29.33+9.57 21.00+£6.44

Home & Kitchen 29.00+7.96 21.17+5.54

Table 4.1: Mean and standard deviation of the PANAS scores.

after each environment aiming to assess the experience of Trisight and whether
it influenced the user’s state negatively or positively. As shown in Table 4.1,
participants’ overall positive affect increased and their negative affect score
dropped.

Time Spent in Each View

We used the logging of switching between views to compute the time spent in
each view. Figure 4.6 presents the percentage of time spent in each view. In
the home and office environments, participants spent most of the time using
RGB view 42% and 47% respectively. However they still spent time viewing the
surroundings with thermal and depth view.

However, when the information provided by their visual sense failed to provide
sufficient information they tended to switch to the other views as depicted by the
time spent in the other views. For instance, participants used the thermal view to
check the soil of the plants to know if it had been watered or not, others used it to
search for the pet, by utilizing the heat emitted from the cat-shaped bottle.

Interestingly, participants utilized the depth and thermal views in the situation
where the normal RGB view has limited capability. As shown in table4.1, in
the basement, where there was limited light, they only spent 23% of the time in
the RGB, and the rest was spent in the depth and thermal views, 34% and 43%
respectively. As observed in the views used to perform the tasks and time spent
in each view, thermal imaging showed a higher potential as an alternative vision
mode.
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Percentage of Time Spent in Each View in the Three Setups
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B RGB 47% 23% 42%
M Depth 22% 34% 26%
M Thermal 31% 43% 32%

B RGB M Depth ™ Thermal

Figure 4.6: Time spent in each view, where the total time is 30 minutes.

Views used

Participants were instructed to name the views used to perform the tasks in each
environment. The experimenter recorded the views used to perform the tasks,
aiming to access the potential usage of the presented views. Figure 4.5 depicts
examples of the different views used to achieve the tasks. As shown in table 4.2,
participants used different and sometimes combined views.

Confirmation for the time spent in each views, the RGB was mostly used in the
familiar environment (office and home), however, participants also utilized other
views. For instance, one participant used the thermal view to identify the last
used file, utilizing the heat trace left behind. Anther used it for detecting if the
plants need to be watered based on the temperature of the soil. One participant
used the thermal and RGB views to prepare a hot drink, viewing the hot spots
of the cup and the water to better handle it. The comments of the participants as
well as the views used reflect the potential benefits of extending the human visual
perception beyond the limited light spectrum.
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Home & Kitchen Office Basement
Find the Pet | Check Plant | Prepare Drink | Organize Files | Identify Connected Plugs | Locate an Object | Leakage Detection | Find Disconnected Pipes
Pl Thermal Thermal Thermal+RGB RGB Thermal Thermal Thermal Depth
P2 | RGB+thermal Thermal Thermal+RGB RGB RGB Depth+Thermal Thermal Thermal+Depth
P3| Depth+RGB | RGB+Thermal RGB Thermal+RGB RGB+Depth Thermal Depth+Thermal Depth
P4 | Depth+thermal Thermal RGB+Depth RGB Thermal+RGB Thermal Thermal Thermal
P5 RGB RGB+Thermal RGB RGB+Thermal RGB Depth Depth+Thermal Depth+thermal
P6 RGB Thermal Thermal+RGB | RGB+Thermal RGB Depth+Thermal Thermal Thermal

Table 4.2: Views used by participants to perform the given task.

Interviews

The post-task interviews were recorded and transcribed for analysis. We used
thematic analysis to better understand the content of the interview. Overall, 163
minutes of recordings were analyzed. Two coders coded 15% of the corpus
independently using nVivo !7. Afterwards, they met to assess differences and
constructed the final coding tree. The rest of the corpus was coded by a single
coder. The final themes emerged from the coded quotations in a final session with
two researchers. We present the four themes below.

Future form factor

The users noted that our current prototype was rather bulky and difficult to wear
over extended periods of time. However, participants were also eager to envision
what a future device offering multiple vision modes could look like, and what
they would see as key features of such a device. P3 reflected that effectively using
multiple vision modes would require highly developed wearable technology:

[It should] look like normal glasses, light weight, the setup doesn’t
need much space or doesn’t have problems with mobility. It doesn’t
drain power. (P3)

Participants also anticipated that devices that offer alternative vision modes will
soon be offered as smartphone accessories. One participant assumed this and
speculated on how the device would connect with their mobile device

It has to be smaller, lighter and something wireless. The data can be
send over... wirelessly over Bluetooth or the Internet for example.
(PI)

17 http://www.gsrinternational .com/nvivo-product
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Reflecting on future use

Participants were eager to speculate on how alternative vision modes could be
useful in their future everyday lives. P2 commented they often struggled with
leaks and excessive humidity and would benefit from easily accessible thermal
vision. P5 noted that they would happily turn on thermal vision when under stress,
in order to identify objects quickly:

It would be useful to have a device like that in stress situations where
I have to find something very quickly, when I am under time pressure.
(P5)

Participants remarked that tangible benefits of introducing alternative vision
modes in specific settings could result in swift acceptance. They often related the
new capabilities of our prototypes to tasks they perform regularly. For instance,
P6, a physician, remarked:

I would use it in the future, as it is a good additional way to examine
my patients. (P6)

Sensing the environment

Users often reflected on how they understood the different properties of the
environment that they could perceive by using multiple vision modes. They were
eager to illustrate possible benefits with scenarios:

If I were on holiday I could check the water temperature and decide
if I want to swim. I could look at a bench that’s far away and check
its temperature, if it were super hot I wouldn’t go over there. (P2)

Similarly, they appreciated how alternative vision modes allowed for enhanced
perception of environments with which they were already familiar. The
participants wondered how additional vision modes could build their new
understanding of their everyday environments:

[in the basement] I could finally know how these pipes are connected.
(P4)
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Social aspects

Finally, users wondered how head-worn enhanced vision devices would affect
social encounters. One participant recognized that thermal images may be linked
to one’s physiological state and thus may generate privacy issues:

Maybe it will generate another [type of] discrimination — I walk
down the street and I have a fever so people will try to avoid me.
(P2)

Some participants were also worried that thermal vision may create issues related
to gender and sexuality

It will embarrassing, because, I think, if wear something thin, people
will be able to see through. (P2)

Furthermore, participants agreed that others should not be made aware if one
were using augmented vision. One participant remarked that transparency was
not an issue:

In the future, maybe, everyone will be using it on daily basis, so we
shouldn’t show [what mode one’s using]. (P1)

While another believed that showing the state of an augmented vision device was
needed as it is only a sensor:

I don’t think they need [a way to show status] as it has nothing to do
with other people, it won’t invade others privacy or harm them. (P3)

4.2.5 Discussion and Summary

Our study demonstrated that augmented reality technologies may be appropriate
for communication augmented vision information. We observed that non-expert
users were able to easily understand and utilize the way thermal cameras work
through an HMD. As users reported no major difficulties performing the tasks and
exploring the environment, we can conclude that AR offers the potential for easy
and fast deployment of thermal imaging. Further, HMDs may reduce the need for
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training. Further, we found that 7riSight improved the participants’ subjectively
reported affective state as reflected in the PANAS scores. This indicates that an
amplified vision technology may be perceived as beneficial while performing
domestic tasks, thus showing potential in amplified perception.

Our study also revealed a number of opportunities and challenges for future
development of augmented vision systems. As we observed in the views used
to perform the tasks and time spent in each view, thermal imaging showed a
higher potential as an alternative vision mode. Thus, future designs should
explore how to offer an experience balanced between different vision modes
and offer vision mode changes when appropriate. The usage of different views
reflects the participants’ understanding of the other spectrum bands, although
most of them did not have previous experience with this technology. Interestingly,
all participants used the extended vision in the basement. It appears that they
used extended vision when the RGB (i.e. our visual perception) shows limited
capabilities as reflected in the time spent in each view, as participants spent more
time in using the depth and thermal cameras in contrast to the RGB. Thus, we
see an emerging need for finding ways to communicate the properties of different
augmented vision modes to users effectively to foster their implicit awareness of
enhanced perception available. An intuitive understanding of alternative vision
modes appears to be a necessary condition for effortless vision mode switching.

Where we only considered explicit vision mode switching, our findings highlight
the need to explore implicit and context-aware switching techniques, for instance
based on the lighting conditions. As the explicit switching relies on the
understanding of the user of the technology in hand, having an implicit mechanism
would enhance the understanding of the imaging technology as well as assist in
the appropriation of the extended vision.

In summary, our findings highlight the potential of alternative vision modes.
Participants reflected on how these modes provided a new information layer,
enhancing their perception and understanding of their everyday surroundings.
Interestingly, they were eager to utilize the extended visual perception when
their own was a limiting factor like in a dark basement, with hidden objects
and non-visible traces. However, researchers and designers must consider the
challenges and considerations while designing such vision amplification tools.
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4.3 ThermalMirror: Amplified Interaction
Space

This section is based on the following publication:

* Y. Abdelrahman, A. Sahami Shirazi, N. Henze, and A. Schmidt.
Investigation of material properties for thermal imaging-based
interaction. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 15-18, New
York, NY, USA, 2015. ACM

In the previous sections, we presented the work done in amplifying our visual
perception. Another modality to consider is the non-visualized amplified
environment, where the thermal view is not presented to the user but rather
to the system to allow amplified interaction space. As a novel sensing technology
for human-computer interaction, thermal imaging offers exciting opportunities
for the development of interactive systems. Prior work investigated the usage of
thermal imaging to amplify the interaction space as depicted in Figure 4.7 [210].
Building upon our previous work, in this section we investigate the material
properties that enables such amplified interaction space.

In this section, we present a study that assesses the recognition accuracy of mid-air
gestures sensed through thermal reflection using different surfaces in indoor and
outdoor setups to complement the work presented by Sahami Shirazi et al. [210].
Further, we provide holistic insights on the surfaces’ properties that should be
considered when it comes to sense interactions on the surface and/or mid-air
using a thermal camera. Based on the identified properties, we provide a material
space describing surfaces that enable interaction on the surface and/or mid-air
interaction through thermal reflectivity. The guidelines enable to select materials
for creating interactive surfaces using thermal imaging.

4.3.1 Related Work

Enabling natural gestural and touch-based interaction techniques is one of the
main goals of human-computer interaction research. In the following, we discuss
prior work in three different areas aimed to provide natural interaction using (1)
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thermal imaging, and techniques used for recognizing human gestures to interact
with (2) stationary as well as (3) mobile projected screens.

Thermal imaging has recently also been used as a sensor for enabling the
interaction with arbitrary surfaces [118, 119, 150]. This is achieved by integrating
thermal imaging and existing computer vision techniques to improve user surface
interaction by utilizing advantages of thermal imaging to overcome common
RGB and depth cameras’ drawbacks. Daisuke and Koskue, for example, used
short-lived heat traces that result from the heat transfer from one object to another
as means for interaction and created an interactive tabletop surface [118]. Larson
et al. used heat traces caused by fingers touching a surface and detected pressure
for interaction on surfaces [150]. They reported that the thermal reflectivity of
surfaces induces noise for their system.

Touch and mid-air gestures are common techniques to interact with projections.
These are typically detected using either RGB, infrared (IR), or depth cameras.
There exists a large body of work focusing on detecting and tracking hands and
fingers to enable multi-touch and mid-air gestures using RGB cameras [48, 137,
127, 166]. Such systems typically use skin color detectors [127] or template
matching [137] to segment the hand and then calculate contour and convexity
defects [166] to identify fingers.

Infrared imaging is a popular technique to enable multi-touch and mid-air gesture
when interacting with projection screens [107, 105, 120, 267, 268]. In such
systems, the space behind the screen is typically illuminated with an infrared
source and all except the infrared light is blocked from the camera using an
infrared-pass filter. This technique has been widely used for tabletop interaction
by combining a rear-mounted IR camera and a projection unit. Using the depth
map provided by depth cameras is another approach for detecting touch and hand
gestures on projected screens [175, 269, 270, 271]. These systems generally
utilize either a 2D view above the surface [175, 270] or a selective 2D projection
of 3D sensed data [271] for processing users input on or above the surface using
common 2D computer vision techniques.

Our research is also related to previous work on interaction with mobile projectors.
According to the work by Rukzio et al. [209], interaction with mobile projected
displays can be divided into four categories. A common approach is to separate
input and output and use the touchscreen of a mobile phone [94] or a touch sensor
for input [38]. Researchers have also investigated input for mobile projection
by moving and gesturing with the projector itself [38, 45, 266] or by aiming
with the projector at objects in the environment [218]. Although these solutions
allow users to focus on the projection and perform intuitive gestures, tracking the
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projector’s movements requires additional hardware equipment to be installed in
the room or mounted on the projector unit.

Directly touching the projection screen with the fingers [273, 100] or using a
stylus [44] is another approach to interact with mobile projections. However,
such a setup requires users to be very close to the projection leading to a small
projection area and large shadows on the projection. Another solution is to use
mid-air finger pointing and hand gestures to interact with the projection [172, 51].
The SixthSense system [172], for example, offers a set of mid-air hand gestures to
support interaction with the projection. The system uses a color-based approach
to track fingers. ShadowPuppets [51] provides shadow gestures as input to a
handheld projector system by casting hand shadows for co-located collaborative
scenarios. Winkler et al. [272] have argued that it is preferable to perform gestures
besides or even behind the projector. This is not possible with current handheld
projector-camera systems as both face the same direction and the projection and
sensing spaces overlap. Thus, users occlude the projection while performing
mid-air gestures in front of the camera. A thermal camera, however, can detect
direct interactions on a surface and mid-air gestures as well as a user’s interaction
out of the camera’s direct field-of-view, for instance behind the camera.

A large body of work combined projectors and sensing cameras to build interactive
projected surfaces. Initially, RGB cameras were used to detect hands and
fingers [127, 166]. Such systems typically use skin color detectors or template
matching to segment the hand and then calculate contour and convexity defects to
identify fingers. A major challenge of such systems is the sensitivity for different
light conditions. Research prototypes have used infrared imaging [107] and
depth cameras to enable multi-touch and mid-air gestures when interacting with
projection screens and tabletop setups. In such systems, the space behind the
screen is typically illuminated with an infrared source. Using an infrared-pass
filter, all lights except the infrared light are blocked for the infrared camera.
Using a depth camera, the depth information can be used to detect touch and hand
gestures on projected screens [175, 271]. Such systems generally utilize either
a 2D view above the surface [175] or a selective 2D projection of 3D sensed
data [271] for processing users’ input on or above the surface using common 2D
computer vision techniques.

Using existing computer vision techniques, thermal imaging can be used to detect
interaction on surfaces as well as mid-air gestures. Two thermal properties have
been leveraged for monitoring interactions. First, heat traces that are left on a
surface due to the temperature difference and the heat transfer between hands
and surfaces. Such traces have been used to detect interactions and pressures
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Figure 4.7: Amplified Interaction Space

on surfaces [119, 118, 150].The second property is thermal reflectivity which
is the result of radiation reflection when striking a surface. Sahami Shirazi et
al. [210] propose to use specular reflectivity for extending the mid-air interaction
space behind the camera’s direct field-of-view and detecting mid-air gestures.
However, they did not report the recognition accuracy of mid-air gestures in the
extended space. In contrast, we investigate the recognition accuracy of mid-air
interaction using thermal reflectivity. Further, we provide a holistic overview on
surface properties which should be considered for creating an interactive setup
using thermal imaging as the sensing technology.

4.3.2 Thermal Reflectivity

Thermal radiation, as a result of energy transitions of molecules, atoms,
and electrons of a substance, is continuously emitted by all matter whose
temperature is above absolute zero. The spectrum and intensity of black body
radiation depends on the object’s temperature as expressed by the Planck’s and
Stefan-Boltzmann laws. The radiation emitted by objects at room temperature
falls into the infrared region of the spectrum, which extends from 0.76 to 100
micron. The human body’s net radiation is, for example, around 142 watts (W),
with a skin temperature of 33°centigrade (C), at an ambient temperature of 22°C,
and a peak wavelength of 9.5 micrometer (Um).

When radiation strikes a surface it is partially absorbed, partially reflected, and the
remaining part, if any, is transmitted. Based on the first law of thermodynamics
the sum of absorbed, reflected, and transmitted radiation is equal to the incident
radiation. For fully opaque surfaces the transmissivity is zero, thus, the sum of
absorptivity and reflectivity is one. The absorptivity is independent of a surface’s
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temperature. However, it depends on the temperature of the source at which
the incident radiation is generated. The reflectivity of a surface depends not
only on the direction of the incident radiation but also on the direction of the
reflection. Surfaces are assumed to reflect in two manners: specular and diffuse.
In specular (mirror-like) reflection, the angle of reflection equals the angle of
the radiation beam. For diffuse reflection the radiation is reflected equally in all
directions regardless of the incident radiation’s direction. The reflectance of a
surface depends on its roughness and the wavelength of radiation strikes [31]. If
the wavelength is smaller than the surface roughness, light is scattered diffusely.
For wavelengths much larger than the roughness dimensions, the radiation is
specularly reflected as from a mirror [250]. Beckmann & Spizzichino reports that
reflectance is specular if the roughness (R,) is smaller than one eighth (!/3) of the
wavelength and otherwise diffuse [30]. The smaller the roughness, the higher the
reflectivity: reflection from smooth and polished surfaces is mirror-like, whereas
it is diffuse from rough surfaces [250]. Surfaces with roughness smaller than
approximately 1.18 micrometer (um) reflect a human’s radiation (with a peak
wavelength of 9.5 m) in specular manner.

A thermal camera produces thermograms of a surface based on the incident
radiation from the surface. This radiation includes the energy the surface emits
(based on its temperature) as well the reflection of objects’ radiation from the
surrounding. If the reflectivity of all objects is diffuse the camera only views
the objects in its direct field of view. However, if a surface reflects radiation in
a specular manner, it acts as a mirror for the thermal camera. Thus, the camera
is additionally able to view objects which are out of its direct field of view but
visible through the surface’s reflection. With such surfaces it is possible to extend
the camera’s field of view and the space of interaction, respectively.

Objects reflect thermal radiation and visual light differently. Surfaces made of
different metals or with a smooth paint can act as a mirror in the thermal spectrum
and can still be used for visual projection. Other materials such as transparent
glass and plastic are transparent for visual light but still a mirror for thermal
radiation. In the following, we show how the reflection of thermal radiation can
be exploited to build interactive systems that can sense body gesture in front,
besides and even behind a thermal camera. We show that a wide range of materials
exist that diffuse visual light and can thus be used for projecting visual content
but still reflect thermal radiation. As the human body radiation is in the F-IR
range, we are interested in surfaces that have high specular reflectivity for F-IR
radiation but diffuse reflectivity in the visual spectrum.
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Figure 4.8: Feature extraction for on surface and in-air gesture.

4.3.3 Evaluation

We conducted a study in both indoor and outdoor settings to assess the detection
accuracy of mid-air gestures performed in the reflected space using thermal
reflectivity. We replicated the system reported in [210]. We recruited 30
participants (11 female, with an average age of 26 years, SD=3.8) using our
university’s mailing lists. All participants were students in different majors.
Three participants were left handed. None of the participants had experience with
thermal cameras. The participants were divided into two groups of 15; one group
used the indoor setup, and the other used the outdoor setup.

Apparatus

The indoor and the outdoor setups were identical, including a projector and an
Optris PI160 contactless thermal camera with 23° x 17° field of view(Figure 5.1).
The projector was connected to a PC and displayed the tasks on a surface. The
camera was mounted on a tripod and faced toward the surface from distance
of 50 cm to cover the surfaces with a dimension of 30x60 cm. Since the setup
was stationary no dynamic calibration was required. No special light source or
illumination conditions were requisite as the thermal camera operates independent
of illumination. We considered four common surfaces, also used in [210], for the
experiment: glass, tile, MDF, and aluminum.
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To detect mid-air gestures we implemented the algorithms described in Figure 4.8.
We used OpenCV used for the hand and finger tips extraction. The frame
extraction from the thermal imaging was done through the dynamic link library
(DLL) the Optris camera provides. The image analysis covered the steps reported
in [210] included the pre-processing, noise and background removal, and
thresholding. The feature extraction, i.e. the hand and finger information, was
computed from the hand contour, convex hull, and convexity defects. The mid-air
gesture detection was based on a view-based approach where the fingers’ positions
and their relative distance were used to match the predefined gesture.

Tasks & Procedure

To assess the detection accuracy we considered three different gestures: (1)
mid-air touch interaction using one finger, (2) continuous interaction using one
finger, and (3) mid-air hand postures using two fingers. We considered different
tasks for each gesture. For the mid-air touch 5 points were randomly projected
on the surface. Participants were asked to touch the points in-air. We considered
the dragging task for the continuous interaction. A pair of points were projected
and users were asked to drag an object from the start point to the end point.
Users repeated this task three times. For the mid-air posture, users were asked to
perform a pinch and a pan gesture. For this task, users had to use two fingers.

After welcoming participants, we described the purpose of the study. We showed
them where they had to stand and where to preform the gestures. Each participant
performed the tasks for four different surfaces resulting in 12 tasks (3 tasks x 4
surfaces). The order of the tasks and surfaces where randomized per participant.
The light condition of the indoor setup was constant during the whole study. The
outdoor setup was in a shadow for the projection to be visible and the temperature
was constant (24°C). The study took approximately 30 minutes per participant.
We recorded the study on video and stored the thermal video for later analysis
as ground truth. The time between the camcorder and the thermal camera was
synchronized. To calculate the accuracy, an experimenter watched the videos and
counted the number of times a gesture was correctly recognized by the software.
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. Task

Surface Setup Ra Touch Continuous Posture burface Turface e
Tndoor 97% SD=.17 95% SD=22 93% SD=26 17 21

Glass Outdoor " 196% SD=20 95% SD=21 93% sD=26 %% 27 29

il Indoor  © 86% SD=35 88% SD=33 89% SD=31 .o 13 21
Outdoor 87% SD=34 88% SD=33 89% SD=31 205 229

MDE Indoor ||~ 85% SD=35 86% SD=33 88% SD=36 19 2
Outdoor 83% SD=37 86% SD=35 87% SD=36 " 27.05 279

Aluminum __Indoor 7 56% SD=50 67% SD=48 46% SD=51 . 14 24
Outdoor 58% SD=50 64% SD=48 47% SD=51 1407 243

Table 4.3: The recognition accuracy and the contact point temperature.

4.3.4 Results and Discussion

Table 4.3.3 shows the recognition accuracy for all tasks, surfaces and setups.
We found very similar results for indoor and outdoor setups. Using the glass
surface resulted in the highest accuracy followed by tile, MDF, and aluminum.
Considering the roughness of the surfaces reported in [210] the Pearson coefficient
revealed a strong inverse correlation between the accuracy and the roughness
(r="-.98). Surfaces with smaller roughness result in more mirror-like reflectivity,
respectively, sharper images and higher recognition accuracy. Whereas, surfaces
with higher roughness have hazy reflectivity, hence, lower accuracy.

In this study, we investigated the recognition performance of the gestures
performed by single and multiple fingers. However, our system could support
any arbitrary gestures by feeding the tracked fingers positions to either $1 or
$N gesture recognizers which recognize arbitrary gestures formed of single or
multiple strokes [26, 274, 90].

Thermal Imaging & Interactive Surfaces

The result of our study and reviewing prior work reveals that surfaces with specific
properties should be used to detect interaction and create interactive surfaces
using thermal imaging. We divide the interaction into two spaces: interaction
on the surface through touch, and mid-air gesture interaction. In the following,
we discuss which properties of surfaces should be considered to support these
interactions.
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On surface interaction using heat traces

Tracking interaction on a surface using a thermal camera relies on heat traces left
behind by the contact of the finger with the surface. Based on the thermodynamic
laws the heat goes from the warm object to the cold object. Hence, the heat
transfer between the finger and surface occurs as far as their temperature differs.
The amount and direction of heat transferred principally relies on the surface’s
material property, known as the thermal contact conductance [49]. The thermal
contact conductance refers to the conductivity of heat between two objects in
contact. The amount of heat transferred (conducted) between the hand and the
surface in contact could be either reflected or absorbed by the surface.

To determine on-surface interaction, we are interested in the heat trace and the
temperature change at the point of contact. Ray suggests a simple model that
calculates the temperature at the contact point [207]. In our case, the contact
point is between the user’s skin and the surface. Hence the temperature at the
contact point (7;) in °C is as follows:

bskin 7}kin + bsurface Tmrface

T, = @.1)
bskin + bsurface

b=VK.PC 4.2)

The T. depends on the temperature of the two contact points (T, and Ty race)
as well as their thermal penetration coefficient (b). The b depicts the amount
of heat penetrated and absorbed by a surface. It is expressed in terms
of thermal conductivity (K), thermal density (P), and specific heat capacity
(C) [190] (Equation 4.2). The b of human skin for short contact is 1000
JS™Y/2m=2K =1 [190]. On the other hand, the detection of temperature changes
at the contact point depends on the camera’s sensitivity. The changes must be
higher than the camera’s temperature sensitivity to be visible by the camera.

To detect heat traces, it is necessary to consider its decay time. Based on
the Netwon’s law of cooling, the rate of heat loss of a body (Ratecooring) 18
proportional to the temperature difference between the body and its surrounding.
The higher the difference is, the lower is the cooling rate, thus, the trace lasts
longer. If the cooling rate (Ratecooling) is smaller than the time one frame lasts
(1/FrameRateqmera), the camera can not sample the trace before it decays. It
should be mentioned that the cooling rate depends on other additional factors such
as the surface area of the heat being transferred and the heat transfer coefficient
between surfaces.
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We calculated 7, for the surfaces used in the study by measuring the Ty;,, the
Tsur face and obtaining the by, r4c. from [190] (Table 4.3.3). The sensitivity of
the camera used is 0.08°C and it’s frame rate is 120Hz. Based on our camera
property, the change in temperature at the contact point should be bigger than
0.08°C and should last at least 8.3 milliseconds. The result unveiled that the
difference between T, and Ty, f4ce is more than threshold for all surfaces except
for the aluminum. Thus, the temperature changes on an aluminum surface is
invisible to our the camera. In [210], it is empirically tested and reported that no
trace can be detected on the aluminum using this thermal camera. A camera with
higher sensitivity and/or a higher frame rate may reveal other results.

Mid-air gestures through thermal reflectivity

Previous work discussed how the camera’s FOV can be extend through thermal
reflection [210]. This allows one to observe in-air interaction in the direct FOV
as well as behind the camera. It has been discussed that the thermal reflectivity
should be specular and depends on the roughness of a surface. Based on the
thermal radiation of human body, it is reported that the roughness (R,) of the
surface should not exceed 1/8 of the human body radiation, i.e. 1.18 micrometer,
to recognize interaction behind the camera’s direct FOV. The results of our study
reveal that the lower the roughness the sharper the rendered image from the
reflection, respectively, higher is the recognition performance. Otherwise, the
interaction in extended space is too blurry and cannot be used.

Material Space for Interactive Surfaces

Knowing certain information about a surface enables us to determine if on-surface
interaction and interaction through thermal reflection can be used. To support
touch interaction on a surface, we need the thermal penetration coefficient (b) of
the surface to calculate the temperature at the contact point (7¢). The difference
between 7. and the environments plays an important role to determine how fast
a trace decays. The higher the difference the longer the trace lasts. When 7 is
higher than the camera’s sensitivity and the trace lasts at least for one frame, it is
possible to detect interaction on the surface. Based on our setup and our thermal
camera, surfaces such as glass, MDF, tile, etc. can be used for touch interaction
on the surface. Aluminum cannot be used as the trace decays faster than one
frame lasts (8 ms). Figure 4.9 shows the material space for an Optris PI160.
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Figure 4.9: Material space for Optris PI160-Based Interaction

A surface with roughness below 1.18 micrometer is required for using thermal
reflectivity to extend the mid-air interaction space (Figure 4.9). For our setup,
surfaces such as glass, aluminum and MDF have this property, but wood or matte
acrylic cannot be used to extend the mid-air interaction space. Furthermore, the
higher the roughness is the lower is the recognition accuracy of interaction in the
extended space. For example, MDF results in a lower accuracy than tile.
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4.3.5 Summary

Thermal imaging has shown promising potential for interactive systems. However,
there are still limitations and constraints concerning deploying thermal cameras
as sensing technologies. Sensitivity of the camera and its frame rate are the
main constraints. These affect the sharpness of reflected images rendered. The
resolution of the camera should be also considered. We report the material space
(Figure 4.9) for a specific thermal camera (Optris PI160). Using the approach
described above, it can be easily derived for cameras with improved properties.

In this work we assessed the recognition accuracy of mid-air interactions sensed
through thermal reflectivity using surfaces with different reflection characteristics
in indoor and outdoor setups. We further derived the material space and the
constraints of interaction enabled through thermal imaging. The guideline allows
identifying whether a surface supports on-surface interactions and/or mid-air
gestures using a thermal camera as the sensing technology. Knowing the thermal
penetration coefficient of a surface, it is possible to determine if heat traces last
long enough at the contact point on the surface to be detected by the thermal
camera. Further, it is possible to find out if the mid-air interaction space can
be extended beyond the camera’s direct FOV through thermal reflectivity by
knowing the roughness of the surface.

Our work as well as previous work that uses thermal imaging for interactive
systems uses standard computer vision techniques originally developed for
the visual spectrum. This approach already provides reasonable performance.
However, significant improvements can be expected when using algorithms
specifically designed to exploit the characteristics of thermal imaging. To sense
users through thermal reflection techniques that were initially designed to remove
reflections from recorded thermal images [250] could be applied. By separating
the scene sensed through reflection and the directly observed, both scenes could
be analyzed independently. A further improvement could be achieved by using
more advanced thermal cameras. While such cameras were once only available
for the military, they are now also becoming available for normal use.
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4.4 ThermalAttacks: Detecting PINs and
Patterns

This section is based on the following publication:

* Y. Abdelrahman, M. Khamis, S. Schneegass, and F. Alt. Stay cool!
understanding thermal attacks on mobile-based user authentication.
In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, pages 3751-3763. ACM, 2017

Threats and privacy concerns emerged as an important topic, brought up from
our investigation of the users’ perception of thermal imaging (cf. Section 3.2).
Chapter 4 and 5, showed the opportunities of having amplified perception. As
imaging technology, we can imagine a scenario where technology misuse is
exercised.

While in previous sections we utilized thermal conductance to recognize touch
points for amplified interaction space, in this work we investigate its reliability to
infer passwords from heat traces left on touch screens after authentication.

The degree to which the user’s privacy is threatened will determine how accepted
and acceptable thermal imaging will be in the future, as privacy concerns are
known to influence users’ technology use decisions [198]. Thus, users need to
be aware of the potential threats and means to overcome them. In this section,
we investigate thermal attacks against PINs and patterns on mobile devices. We
studied Thermal Attacks, their feasibility, and potential means and guidelines to
overcome them.

Thermal cameras allow thermal attacks, where heat traces resulting from
authentication can be used to reconstruct passwords, presenting a new threat
to user privacy on mobile devices. In this work we investigate the viability
of exploiting thermal imaging to infer PINs and patterns on mobile devices
and evaluate how the properties of PINs and patterns influence their thermal
attack resistance. We conclude by recommendations for users and designers of
authentication schemes on how to resist thermal attacks.
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4.4.1 Related Work

Our work builds on two strands of prior work: (1) thermal imaging and (2) the
different types of threats to user authentication on mobile devices.

There are multiple differences between properties of thermal imaging and those of
visible light. The first thermal property is heat radiation. Compared to visible light,
heat radiation has different reflection properties that depend on the surface [8].
Thermal reflections were exploited in previous work to enable body-worn and
hand-held devices to detect mid-air gestures [210].

The second unique property is that thermal imaging is independent of light
and coloring conditions, which allows thermal cameras to be used for face and
expression recognition [134, 138]. Thermal cameras can provide information
about the sensed body’s temperature, which can be used to infer the physiological
and cognitive state of users in a contact free manner [208] by, for example,
evaluating their stress levels [131].

A third unique property is that thermal imaging is capable of detecting input that
has been performed in the past. When a user touches a point on a surface, heat is
transferred from the user to the surface, generating heat traces that slowly fade
away. These traces can be detected using thermal imaging. Heat traces have been
utilized for input [86, 150, 210] and to authenticate users based on their thermal
hand print [47].

In this work, we investigate the use of thermal imaging to infer passwords entered
on mobile devices, exploiting the fact that heat traces take time to fade away. We
investigate the thermal properties of state-of-the-art touch screens and study the
impact of password properties on the heat trace and, thus, the successful retrieval
of passwords via thermal imaging.

Threats to Authentication on Mobile Devices

Mobile devices, such as tablets and smart phones, allow access to a plethora of
private content. Prior work investigated a number of threat models that put the
user’s private data at risk.

One of the most discussed threats is shoulder surfing attacks, in which an observer
attempts to eavesdrop a user to uncover private information, among which are
login credentials [66]. Different approaches have been introduced to mitigate
shoulder surfing attacks, ranging from adding random cues [33, 34, 35, 251],
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splitting the attackers’ attention by requiring them to observe multiple cues [57,
133], and disguising the user input [58, 96]. In addition to focusing on login
credentials, research has also investigated methods to protect users from shoulder
surfing text messages [67] and pictures [255]. Most of the schemes that counter
shoulder surfing address a threat model where the attacker can clearly observe the
password entry once. Other threat models cover multiple observation attacks [103,
133, 184, 265] or video attacks [57, 251].

Another type of attack that has been addressed by previous work is smudge
attack, in which an attacker exploits the oily residues left on the touch screen after
interaction to uncover the password [28]. Smudge attacks perform particularly
well against patterns, as smudges give hints on where the pattern started. However
they can hardly provide any useful information about the order of PIN entries.
Approaches to mitigate smudge attacks include graphically transforming the
visual cue on which the password is entered [220, 256], introducing a random
element that leads to different smudges at every authentication attempt [256], or
using multiple fingers to increase the complexity of the pattern [183]. Threat
models that consider smudge attacks assume that the attacker has access to the
mobile device, in addition to clearly visible smudge traces and optimal lighting
conditions to see the smudges clearly.

4.4.2 Thermal Attacks

Thermal image attacks exploit properties of thermal imaging. Namely, heat traces
are transferred from the user’s hands to the touch screen during authentication.
These traces fade away slowly [150], allowing thermal cameras to perceive which
parts of the display have been touched even after the user had already entered the
password. Similar to shoulder surfing, thermal attacks leak information about
the order of entered PINs and patterns [28]. In contrast to shoulder surfing,
however, thermal attacks can be performed after the user has left the device.
This gives attackers an advantage as they no longer need to observe the user
while authenticating, which makes the attack more subtle and eliminates hand
occlusions. Although thermal images can be distorted by interaction, a user who
performs limited interactions or leaves the device after authentication is still
vulnerable to thermal attacks.

Mowery et al. investigated the effectiveness of thermal attacks on ATMs with
plastic keypads [174]. They found that thermal attacks are feasible even after the
user authenticated. While Mowery et al. investigated thermal attacks on plastic
keypads of ATMs, little work was done regarding thermal attacks on mobile
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devices and other touch screens devices. In a preliminary study, Andriotis et
al. [24] were able to observe heat traces resulting from entering a pattern for 3
seconds after authentication. This allowed them to retrieve parts of the pattern.

We perform an in-depth analysis of how well thermal attacks perform on PINs
and patterns on mobile device touch screens with respect to different password
properties. We also consider duplicate digits in PINs, and overlaps in patterns.
To do this, we implemented ThermalAnalyzer, which automatically retrieves
passwords from heat traces. Thermal Analyzershows that thermal attacks can be
successful even if they take place 30 seconds after authentication (i.e. 10 times
longer compared to previous work [24]).

4.4.3 Understanding thermal attacks

Our work relies on the phenomenon of heat transfer from one object to another.
Heat transfers from users’ hands to surfaces they interact with, leaving traces
behind that can be analyzed. This relies on the surface’s material property know
as thermal contact conductance [49], which refers to the conductivity of heat
between two objects (surfaces) that are in contact.

According to the black body model [113], any object above absolute zero (e.g.
surrounding objects in our environment) emits thermal radiation. This radiation
is absorbed, reflected, and transmitted. However, for fully opaque surfaces the
transmitted portion is discarded [81]. This limits the portions of interest to the
reflected and absorbed radiation. Hence, thermal radiation could be presented as
in Thermal reflectivity + T hermal absorptivity = 1.

As soon as an object contacts a surface, thermal radiation is transmitted and
absorbed by the surface, causing a temperature change. This leads to heat
traces accumulating on the surface. To compute the transferred heat and identify
whether or not it is detectable by commercial thermal cameras, we measured the
temperature at the contact point (T¢onracr)- We used a well-established model by
Ray [207] to compute the temperature at the contact point of the two bodies. In
our scenario, the two bodies are the human skin (i.e. the user’s finger), and the
mobile device’s touchscreen (i.e. a plate of Gorilla glass).

bskin Tskin + bgorilla glassTgorilla glass

(4.3)

Teontact =
bskirz + bgorilla glass

b=VK.PC 4.4)



100 4 Amplified Perception of the Environment

Teontaer depends on the temperature of the contact points (T, and Tyoririagiass)
as well as their thermal penetration coefficient (b). It is the amount of thermal
energy penetrated and absorbed by the surface. The b is defined in Equation 4.4.
It is composed of the product of thermal conductivity (K), thermal density (P),
and specific heat capacity (C) [190]. The b of human skin and the gorilla glass for
short contact are 1000 JS~'/2m~2K =1 [190] and 1385 JS~'/2m~2K " [241] '8
respectively.

Additionally, the detection of temperature changes at the contact point depends
on the camera’s sensitivity. The change in temperature must be higher than
the camera’s temperature sensitivity to be distinguishable by the camera. For
example, if the touch screen’s glass has a temperature Tgoij1ag1ass Of 23°C and the
user’s hand temperature Tz, is 30°C, then T oprqc¢r Would be 25.9°C according
to Equation 4.3. This results in a temperature difference of 2.9°C (T onrac: —
Tyoritiaglass)- Hence, a thermal camera with thermal sensitivity < 2.9°C would be
able to recover the order in which a PIN/pattern entry was performed by utilizing
the heat trace decays. In our work, the thermal camera has a thermal sensitivity
of 0.04°C, allowing different hand temperatures to be sensed.

Threat Model

In our threat model, the attacker (i.e. a person who wants to access a device
without permission) waits for the victim to complete the authentication process
and to leave the mobile device. This could be the case when the user quickly
checks his latest messages before getting something to drink from the coffee
machine, while leaving the device on his/her desk. To ensure optimal conditions
for the attacker in our threat model, the user does not interact with the device
but merely authenticates (e.g. to check an update from a notification or a
widget) then leaves the device idle. The attacker then uses a thermal camera
(e.g., integrated into a smart phone) to take a thermal image of the device’s
touchscreen. The attacker then analyzes the thermal image in a manner similar to
our analysis presented in the following section to identify the PIN/pattern. Similar
to previously discussed threat models [103, 184, 133, 265], the attacker exploits
a chance where the device is unattended to login and access the user’s private
information.

18 This value was confirmed by lab measurements by the Institute of Applied Optics in our university
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Figure 4.10: Recognition pipeline of PINs (top) and patterns (bottom).

4.4.4 ThermalAnalyzer

In the following, we describe the design and implementation of the
ThermalAnalyzer. The Thermal Analyzerconsists of a thermal camera capturing
an image and a recognition pipeline used to extract the PINs and patterns.

Recognition Pipeline

The recognition pipeline consists of six steps, performed to extract a PIN or
patternsfrom an image (Figure 5.2). The steps are performed using OpenCV!®
and include frame extraction, pre-processing, noise and background removal,
and thresholding. The final step is feature extraction to deduce the touch points’
location and temperature information.

Frame Extraction and Camera Configuration We captured the thermal
image through the Optris thermal camera API?’. Using the interprocessor
communication, we capture the frames in a 16-bit color format along with the
encoding of the temperature information. We configured the camera using its API
to capture temperature values between 19°C to 32°C. This was done to achieve
higher contrast of colors that represent different temperature values as depicted
in Figure 5.2. For each captured frame a pre-processing procedure is performed.
This included noise filtering, background subtraction, and thresholding.

Noise Filtering We adapted the noise filtering process used by [8, 150, 210]
by applying a 5x5 px median filter, converting the image to grey scale and
reapplying the filter for enhanced noise reduction.

19 http://opencv.org/

20 nttp://wuw.optris.com/software
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Background Subtraction We built a semi-static background model for
background subtraction. A static model is preferred in our case as we want
the heat trace detected to last over the frames and not to be adsorbed by a dynamic
background model. Yet, on the other hand a dynamic model is required to tolerate
slight temperature difference of the device along the operation. Hence, we built
a semi-static background model, where the update is controlled by the learning
rate (o) parameter, which is a value that controls the rate of background model
updates. An o value of 0.001 showed the best result in preliminary tests. As a
result, the latest heat trace stemming from password entry stays in the foreground,
whereas heat traces from slight changes from the environment temperature are
merged with the background.

Thresholding To segment the regions that are relevant to identifying heat
traces (Figure 5.2), we used Otsu’s thresholding method [187]. The frame is
classified into two sets of pixels with minimum overlap between them based on
a dynamically computed threshold by Otsu’s algorithm. Then, we applied an
additional morphological closing operation to highlight the boundaries of the
thresholded foreground and reduce the background.

Feature Extraction Our features are classified into (1) circular fitted traces
for PIN detection and (2) line fitted traces for patternsdetection.

The heat trace is detectable via extracting the contours from the binary images,
where the image is scanned to detect arrays of contours. Similar to the work of
Sahami et al. [210], we used a circular fitted contour detection to identify the PIN
entries. The contour center is computed as the spatial moment of the extracted
contour. Using the same approach for detecting the circular fitted heat traces,
we used the Hough Transform [65] for extracting line fitted contour detection to
identify the entered patterns, as depicted in Figure 5.2.

PIN and Pattern Sequence Detection At this point in the processing
pipeline, the PIN or patternentry has been extracted from the captured frames but
with no information about the sequence of entry. To infer the sequence for the
PINs, we utilized a pre-set frame with the keypad to identify the PIN location
using squares. The squares represent the entire set of regions of interest (ROI).
Mowery et al. [174] reported that representing the ROI with the mean temperature
yields best performance for recovering the order of the entry sequence. Hence,
we compute the mean temperature for each ROI, and sort them based on their
weights.

To identify duplicate entries, we compute the overall average temperature of each
digit. Thereby, the background temperature is subtracted. Hence, a digit that
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was never pressed would have a temperature value of almost zero. Consequently,
duplicate entries (i.e. the digit that was touched multiple times) have a value that
exceeds the overall average. The number of duplicates can be inferred from the
relative temperature values of the overall number of detected presses. In summary,
given a four-digit PIN, there would be four detection scenarios:

¢ Four different heat traces: This means there are no duplicates. Hence,
ordering the traces based on their temperature in a descending manner
would infer the sequence.

Three different heat traces: The heat trace that has a temperature of T.opract
is the last entry in the PIN, as it will maintain the T,,sqc; value. This leaves
only 3 possibilities for the remaining sequence, which are sufficient for
the attacker to try without being locked out. This approach, however, will
work with recently captured frames as the heat trace, i.e. Tpopiacr, decays
over time.

» Two different heat traces: According to the relative ratios of the weights, the
number of repetitions of each digit is identified. Normalizing the weights
would then show the last touched digit. Once the last digit is identified, the
attacker can tell whether it is the duplicated one (i.e. the other duplicate is
either in position 1, 2 or 3, while the remaining digits are ordered according
to their heat traces), or the last digit is a non-duplicated digit, hence the
attacker has only 3 possibilities to try without being locked out.

¢ One heat trace: This means that the PIN consists of the same number
repeated 4 times.

One of the former three conditions could be experienced due to heat trace decay.
In that case, we identified the missing digit to be unidentified and set it to be
the beginning of the PIN (e.g., if 3 traces where detected with no evidence of
duplicates, the first digit is labeled unknown and the remaining three are sorted
by their temperature weights).

The same approach was followed for the patterns, where the extracted lines are
analyzed and ordered by their mean temperature. Additionally, the temperatures
of the tips of the extracted lines were compared to identify the direction. Our
algorithm does not account for a specific patternlength, hence we present the
available heat trace to be the regenerated pattern.

For a more conservative analysis, ThermalAnalyzeris not optimized for detecting
patternsof specific length (max of 9). This is because in our threat model, and
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most likely in a real scenario, the attacker does not know the pattern length. This
means that in cases where the Thermal Analyzergenerated a guessthat is of length
n instead of 9, the heat traces of the remaining 9—n had already decayed by the
time of the attack.

4.4.5 Evaluation

Despite the variety of authentication schemes that were introduced in past years,
personal identification numbers (PINs) are one of the most commonly used
schemes [254]. Moreover, as Android devices dominate the market, there is an
increasing adoption of patterns, which is an Android graphical password scheme
where users draw a line pattern that connects dots displayed in a 3 x 3 grid [242].

The aim of this study is to analyze thermal images of a smart phone screen after a
user has entered a password. These images are evaluated using ThermalAnalyzer.
We particularly focus on understanding how (1) different authentication schemes
(2) the time between password entry and attack, and (3) different password
properties influence the feasibility of thermal attacks.

Design

The study uses a repeated measures design, where all participants were exposed to
all conditions. We studied the effect of three independent variables on the success
of thermal attacks: (1) the password type: whether the used scheme is PIN or
pattern, (2) the age of the heat trace: we recorded the heat traces continuously for
60 seconds to investigate for how long they remained exploitable by an attacker,
and (3) the properties of the PINs and patterns.

In case of PIN, the property we studied was the number of duplicates in the PIN.
On one hand duplicates distort the heat traces, making the differences between the
first entry and the last entry less distinguishable. On the other hand the presence
of duplicates reduces the password space, which means that less information from
the thermal attack would be sufficient to uncover the password. We studied the
influence of having No-duplicates, 1-duplicate, and 2-duplicates(e.g., 1234, 1233,
and 1222 respectively).

In case of patterns, we investigated the effect of the number of overlaps [253] in
the pattern. An overlap occurs when the user’s finger passes through a node that
is already selected. We expect that overlaps can distort the heat traces enough to
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Figure 4.11: Setup with the thermal camera capturing the phone’s screen.

make it infeasible to reconstruct the entered pattern. We studied the influence of
having one, two, or no overlapping lines in the patterns.

Apparatus

Our setup included two Samsung Galaxy Note Edge smartphones, a thermal
camera (Optris PI450 2!), and an RGB camera GoPro Hero3 each mounted on a
tripod. One smartphone was used for practicing the passwords and the other one
for the actual input. The thermal camera has an optical resolution of 382 x 288
pixels and a frame rate of 80Hz. It is able to measure temperatures between -20°C
and 900°C, and operates with a thermal sensitivity of 0.04°C represented by the
noise equivalent temperature difference (NETD)??. The wavelengths captured
by the camera are in the spectral range between 7.5um and 13um. The lens we
used provides a 80°x 58°field of view. The thermal camera uses USB as power
source as well as to transfer data. It provides temperature information in the form

21 http://www.optris.com/thermal-imager-pi400

22 NETD refers to the electronic noise that is interpreted as a temperature difference of an object
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of 16-bit color values encoding the temperature information. The marker in front
of the camera (cf., Figure 5.1) indicates the optimal position of the smart phone
to video-tape the heat trails with the thermal camera while minimizing thermal
reflection. Additionally we recorded the whole study using an RGB video camera.
The RGB video feed was later used to determine the time at which the users
fingers were no longer in contact with the screen.

Participant and Procedure

We recruited 18 participants (10 female, 8 male) with an average age of 28.3 years
(SD = 4.7) using our University’s mailing lists. All participants were students
in different majors. Two participants were left handed. None of the participants
had any previous experience with thermal cameras. After the participants arrived
in the lab, we first asked them to sign a consent form and explained the purpose
of the study. Next, we handed out a set of PINs and patternsprinted on cards
as well as the two smartphones to the participants. To avoid errors and pauses
during entry, we asked the participants to familiarize themselves beforehand with
the passwords by entering them multiple times on the practice smartphone first.
We instructed the participants to enter the password, then immediately place the
study smartphone on a place mark on the table in front of them (cf., Figure 5.1).
We waited for three minutes between each entry, to ensure full heat trace decay
of the previous entry. Each participant entered three passwords of each type (i.e.,
18 passwords). The order was counterbalanced using a Latin-square.

The study took approximately 40 minutes per participant We recorded the whole
study on video for post-hoc analysis of the password input times. Throughout the
experiment we recorded the temperature of the participant’s dominant hand (i.e.
the hand used to enter the password), in addition to the phone’s temperature. The
experiment was conducted in a maintained room temperature of 24°C.

To analyze the thermal attacks, we considered two approaches: (1)
visually inspecting heat traces and (2) using our computer vision approach
ThermalAnalyzer. The visual analysis was done by one of the authors who was
not aware and had not been exposed to the list of entered passwords. Additionally,
the feed was analyzed from the thermal cameras. Using the approach explained
earlier, the author reported the regenerated PINs and patternsin csv file defining
all possible PIN combinations in cases where there were duplicates.
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4.4.6 Results

To evaluate the success of thermal attacks against PINs and patterns, we measured

1. The success rate: the percentage of cases in which the thermal attack
successfully revealed the entire password correctly.

2. The Levenshtein distance: the distance between the generated guesses and
the correct password.

The success rate and Levenshtein distance were used in previous work to reflect
how successful attacks are (success rate) and how close the guess is to the
original password (Levenshtein distance) [59, 133, 252]. We only considered the
PINs and patternsfrom the ThermalAnalyzer. We investigated the effect of three
independent variables: (1) authentication scheme, (2) age of the heat trace and
(3) password properties. The tasks performed during the study typically require
between 26% to 44% CPU usage.

Statistical Analysis

As we have three independent variables, we analyzed the data using a three-factor
repeated measures ANOVA (with Greenhouse-Geisser correction if sphericity
was violated). This was followed by post-hoc pairwise comparisons using
Bonferroni-corrected t-tests.

Figures 4.12 and 4.14 show the success rate per age of the heat traces and
password property. Additionally, Figures 4.13 and 4.15 show the Levenshtein
distances per age of the heat traces and password property. The results show that
thermal attacks are more successful against PINs than against patterns.

PIN Pattern
Age Levenshtein Success Rate Levenshtein Success Rate

immediate M=0.222, SD=0.76 ~ M=0.89, SD=0.08  M=0.222, SD=0.76 M=0.46, SD=0.40
15 seconds trace ~ M=0.222, SD=0.76 ~ M=0.87, SD=0.09 M=0.315, SD=0.139 M=0.44, SD=0.40
30 seconds trace  M=0.407, SD=0.134 M=0.78, SD=0.08 M=0.407, SD=0.134 (M =1, SD =0.39)0.44
45 seconds trace M=1.39, SD=0.2 M=0.35, SD=0.14 M=1.39, SD=0.2 M=0.20, SD=0.14
60 seconds trace M=1.94, SD=0.23 M=0.22, SD=0.12 M=3.8, SD=0.32 M=0.11, SD=0.09

Table 4.4: Success rate and Levenshtein distances for different ages.



108 4 Amplified Perception of the Environment

100%

Q 80%

e

©  60%

w  40%

7]

8 20%

3 0% 2-duplicates | 1-duplicate | No-duplicates |

A -duplicates -duplicate o-duplicates overall

(e.g. 1222) (e.g. 1233) (e.g. 1234)

B Immediate 100% 83% 83% 89%
M 15 seconds 100% 83% 78% 87%

30 seconds 89% 72% 72% 78%
M 45 seconds 50% 17% 39% 35%
M 60 seconds 28% | 6% | 33% | 22%

Figure 4.12: The success rate of thermal attack against PINs.

Authentication Scheme: PINs vs Patterns

Overall, thermal attacks were more successful for PINs (M = 0.62, SD = 0.31)
than for patterns (M = 0.32, SD = 0.16). Similarly, the Levenshtein is shorter for
PINs (M = 0.856, SD = 0.127) than for patterns (M = 3.14, SD = 0.28). We found
a significant main effect of password type on the Levenshtein distance between
the guess and the entered password Fj 17 = 91.923, p < 0.001. Post-hoc analysis
showed significant differences (p < 0.001) between passwords of type PIN (M
=0.856, SD = 0.127) compared to those of type pattern (M = 3.14, SD = 0.28).
This means guesses against PINs are generally closer to the original password
compared to those against patterns.

Age of Heat Traces

PINs Looking at the age of the heat trace, the results show that the earlier the
heat attack is performed, the higher the success rate and the lower the Levenshtein
distances are (cf., Table 4.4.6). The results of the ANOVA revealed a significant
main effect of the heat trace’s age on the Levenshtein distance between the correct
password and the guess Fj 79 3045 = 41.7, p < 0.001. Post-hoc analysis using
Bonferroni corrected t-tests showed statistically significant differences between
60 seconds and all other durations (p < 0.001) as well as between 45 seconds
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Figure 4.13: The mean and standard deviation Levenshtein distances.

and all other durations (p < 0.001). This shows that thermal attacks against PINs
that take place within the first 30 seconds after authentication result in guessesthat
are significantly closer to the correct password compared to those done after 30
seconds. This is also reflected in the success rate as shown in Figure 4.12. Overall,
this suggests that thermal attacks are very effective against PINs when performed
within 30 seconds after authentication.

Patterns Similar to the results of the PINs, the results for the patternsshow
that the older the traces are, the less likely a thermal attack is successful and the
higher the Levenshtein distances are (cf. Table 4.4.6). We found a significant
main effect of the heat trace’s age on the Levenshtein distance between the correct
patternand the guess F 18 38,876 = 13.295, p < 0.001. Post-hoc analysis using
Bonferroni corrected t-tests showed significant differences (p < 0.05) between
60 seconds and all other durations.

This shows that thermal attacks against patternsthat take place 60 seconds after
authentication result in guesses that are significantly farther away from the correct
password, compared to those done within the first 45 seconds. This is also
reflected in the success rate shown in Figure 4.14. Overall, this suggests that
thermal attacks are very effective against patternswhen performed within 45
seconds after authentication.



110 4 Amplified Perception of the Environment

100%
9 30%
(L]
= 60%
%)
g 40%
3 o
=
N oy - =
Two-overlaps One-overlap No-overlaps Overall
B immediate 5.56% 33.33% 100.00% 46.30%
W 15sec 5.56% 27.78% 100.00% 44.44%
30 sec 0.00% 16.67% 100.00% 38.89%
M 45 sec 5.56% 16.67% 38.89% 20.37%
W 60 sec | 0.00% 22.22% 11.11% 11.11%

Figure 4.14: The success rate of thermal attack against patterns.

Hand and Screen Temperature

We found that the difference in temperature (D;) between the hand and screen
influences the success of a thermal attack. The higher D;, the more successful
is a thermal attack, since more thermal energy is transferred to the screen (cf.
Equation 4.3). Using Pearson’s product-moment correlation, we found that the
correlation between D, and the successful thermal attack rates increases from
0.55 (at 0 seconds) to 0.85 (at 60 seconds). This means that there is a strong
correlation between D, and the success of an attack and that D; is particularly
important for attacks happening some time after authentication.

Password Properties

PINs Duplicates We found a significant main effect of number of duplicate
digits on resistance to thermal attacks > 34 = 13.23, p < 0.01. Post-hoc analysis
revealed statistically significant differences (p < 0.05) between No-duplicates (M
= 1.23, SD = 0.25) and 2-duplicates M = 0.47, SD = 0.08) and between
1-duplicate M = 0.87, SD = 0.15) and 2-duplicates (M = 0.47, SD = 0.08).
This means that the more duplicates a PIN has, the closer the guessis to the
correct PIN.
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Figure 4.15: The mean and standard deviation Levenshtein.

This shows that although the presence of duplicate digits makes it harder to
determine the order of the detected touches, the approach is able to determine if a
digit is repeated two or three times. As a result, the security added by overwritten
heat traces in case of duplicate PINs is outweighed by the significantly reduced
password space.

Patterns Overlaps We found a significant main effect of the number of
overlaps on the distance between the correct patternand the guess Fi 441 24.503 =
28.563, p < 0.001. Post-hoc analysis showed significant differences between two
pairs (p < 0.001): patterns with no overlaps (M = 0.48, SD = 0.08) compared
to those with one overlap (M = 3.67, SD = 0.68), and between patterns with no
overlaps (M = 0.478, SD = 0.08) compared to those with two-overlaps (M =
5.29, SD = 0.43). No significant differences were found between the third pair
(p>0.05).

This shows that although patternscan be successfully uncovered using thermal
attacks up to 30 seconds after authentication (100% success rate), the presence of
overlaps significantly increases its resistance against thermal attacks.
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Recommendations to Resist Thermal Attacks

There are ways to resist thermal attacks. We present three categories: (1) based on
the results of our study, we are able to guide users in selecting PINs/patterns that
are resistant to thermal attacks, (2) based on a literature review, we recommend
schemes that are theoretically unaffected by thermal attacks, and (3) we present
novel approaches that distort the heat traces, reducing the chances for successful
thermal attacks.

Selection of PINs and Patterns Our results indicate that adding a single
overlap in an authentication pattern significantly increases the resistance to
thermal attacks. When it comes to PINs, although duplicates distort the heat
traces thermal attacks rely on, other factors also contribute to the ease/difficulty
of uncovering duplicate PINs.

We recommend to increase the resistance of PINs against thermal attacks by
increasing the number of digits in the PIN. The longer the PIN the longer it takes
the user to enter it, which would in turn decrease the intensity of heat traces of
the first digits by the time the user authenticates.

Thermal Attack Resilient Schemes Many authentication schemes have
been proposed to resist different types of attacks. We are not aware of systems
built with the main aim of resisting thermal attacks on touch screens. However,
some existing knowledge-based schemes do resist them by design.

One group of authentication schemes resilient against thermal attacks relies on
one or more modalities other than touch input. For example, biometrics schemes
(for example, [42, 56, 109, 111]) rely on data collected by sensors, such as
accelerometers, to identify the user. Since they do not use the touch screen for
dedicated input, they are not vulnerable to thermal attacks.

Similarly, authentication schemes that combine touch input with another
modalites increase the resilience towards thermal attacks. PhoneLock [33],
SpinLock [34], TimeLock [35], and ColorLock [35] augment PIN entry by using
auditory and haptic cues the user needs to respond to when authenticating. These
cues are randomized to counter shoulder-surfing attacks. Other examples utilize
eye movements. For example Liu et al. [157] and Bulling et al. [41] used gaze
input to authenticate. Similarly, Khamis et al. [133] introduced GazeTouchPass
which combines gaze gestures and touch-input. Depending on the authentication
scheme, the use of thermal cameras can still help the attacker to reveal the part
of the input made on the touch screen. Being untied to the touchscreen, thermal
attacks against these schemes would fail to uncover the PIN.
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Figure 4.16: Approaches for resisting thermal attacks.

Moreover, novel authentication schemes designed to resist smudge attacks also
increase the resilience towards thermal attacks since smudge attacks exploit
a similar weakness in touch-based input. For example, SmudgeSafe [220]
complicates smudge attacks against graphical passwords by randomly
transforming the underlying image, causing the smudges to be different at every
login attempt. Von Zezschwitz et al. [256] proposed three token-based graphical
password schemes, two of which were significantly more secure against smudge
attacks compared to patterns. The schemes rely on randomly positioned dragable
objects. Hence thermal attacks are not expected to perform better than smudge
attacks against these.

Physical Protection Measures While novel authentication schemes
increase the resistance towards thermal attacks, increasing the security of current
PIN and patterninput against thermal attacks is still an important aspect. Placing
the hand on the display might remove all thermal traces on the screen as shown
in Figure 5.3b. However, there are different procedures that decrease the success
rate of thermal attacks without involving the user. For example, increasing the
brightness of the display to the maximum for a few seconds heats up the display
temperature and, thus, reduces the time thermal traces are visible, as depicted in
Figure 5.3a. Similarly, running computationally heavy processes on the phone
quickly heats the phone up, resulting in a similar effect as shown in Figure 5.3c.
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4.47 Discussion and Summary

The results of our study and a review of prior work reveal that surfaces with
specific properties can be used to detect on-surface interaction using thermal
imaging. On this basis, in the previous sections, we presented the results
from collecting and analyzing thermal traces of authentication processes, which
we summarize and discuss grouped by the most important observations in the
following.

We particularly focused on PINs and patternssince they are currently the most
common knowledge-based authentication schemes [99, 254]. However, other
authentication schemes may be vulnerable to thermal attacks as well. We expect
attacks on graphical passwords that rely on cued-recall [19, 20, 220] to be
similarly effective compared to the patternswe investigated. PINs are typically
easy to uncover using observation attacks (De Luca et al. report 95% successful
attack rate for PINs [58]). Our results indicate that PINs poorly resist thermal
attacks as well, with overall success rates ranging from 78% to 100% when
attacks are performed within the first 30 seconds after authentication (Figure 4.12).
Although smudge attacks against PINs can uncover which digits were entered,
hence significantly reducing the password space, thermal attacks can additionally
uncover the order in which the digits were entered.

Without overlaps, patternsof maximum length are uncovered in 100% of the
cases when thermal attacks are performed within 30 seconds after authentication
(Figure 4.14). However, just adding one overlap significantly increases resistance
to thermal attacks, as it influences the direction detection and the order of the
performed patterns. Overlapping patterns did not have the same effect as duplicate
PINs, as they also influence the detected direction and the order of the performed
pattern. Hence we recommend including an overlap movement in patternsto
increase resistance against thermal attacks.

In contrast to overlaps, knight moves do not distort the heat trace of pattern points
but only the path at intersections. Hence, knight moves are as ineffective in
making thermal attacks more difficult as they are against smudge attacks.

Moreover, unlike smudge attacks, thermal attacks do not require finding an
optimal angle at which the traces are visible. Thermal attacks were shown to be
tolerant to viewing angle/distance, as reported by Mowery et al. [174]. Mowery
et al. evaluated different distances (30-70 cm) and did not observe changes in the
detection. In our setup the camera was placed at 80 cm above the phone, hence
we expect minimal to no influence of the distance on the results.
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In contrast to observation attacks, thermal images are taken after authentication,
hence the attack is less obvious to the victim and is not influenced by
authentication speed. Additionally, the operation of thermal imaging allows
seamless attacks, as it operates in a light invariant manner, where lighting
conditions do not influence the capturing of thermal information [174].

Using a thermal camera with high temperature sensitivity and an automated
computer vision approach to detect the traces, outperformed the results reported
by prior related work [174]. Our approach unveils PINs/Patterns with high success
after 30 seconds while previous work was successful up to only 3 seconds after
authentication. While a higher sensitivity camera might have led to better results
in manual analysis, we believe the main enhancement to come from the automated
computer vision approach which allowed detection of heat traces despite being
invisible to manual visual inspection.

In summary, we investigated the viability of thermal attacks on state-of-the-art
touch screens and authentication schemes of mobile devices. To analyze the
thermal images we implemented the ThermalAnalyzer, which was capable of
uncovering 72%—100% of PINs in the first 30 seconds, and 100% of patterns that
do not have overlaps. We additionally found that pattern overlaps significantly
increase resistance to thermal attacks. Our work validates that thermal attacks
are indeed a threat to mobile devices and should be considered by users and
authentication scheme designers alike. We also furnish several solutions to
protect from thermal attacks that are based on our results, previous work, and
approaches to distort heat traces.
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4.5 VID: Veins Patterns for User
Identification

"New technology is not good or evil in and of itself. It’s
all about how people choose to use it."

— David Wong —

In the previous section, we presented an example of the potential threats thermal
imaging may introduce. However, thermal imaging also opens novel opportunities
for user identification based on the individual’s vein patterns. In the following
section, we present VID, contact-less vein-based identification.

Current biometric authentication mechanisms typically require the user to perform
an explicit action. Fingerprint authentication, for example, requires a finger on
a fingerprint sensor, and iris scanning requires looking into a camera. Another
biometric authentication approach is the use of vein-patterns of the palm dorsal.
Using vein patterns underneath the human skin has several advantages: Every
person has a unique pattern of veins, which is stable from the age of ten and
unique even for twins. Furthermore, as veins have a different temperature than
the surrounding skin [52], thermal cameras can capture these patterns from a
distance without interfering with the user’s current task.

We investigate using veins on the back of the hand for contact-less and
seamless user identification and authentication. In this section, we present
the implemented vein-based authentication mechanism by combining thermal
imaging and computer vision. Through a study we show that the approach
achieves a low false-acceptance rate and a low false rejection rate. It is invariant to
changes of the hand pose as well as to changes of the environment. Being accurate
and invariant, vein-based authentication has the potential to be used to seamlessly
authenticate users of desktop computers and tabletops. We demonstrate the
potential of the approach through two prototypes that require no explicit action
from the user.
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4.5.1 Related Work

The uniqueness of the person’s biometrics has been used to identify and
authenticate users [50, 123]. Biometrics are classified into behavioral and
physiological biometrics [282]. Behavioral biometrics relay on the behavioral
cues to authenticate users, for instance their touch and keystroke patterns

Physiological biometrics is based on “something you are" and includes person’s
physiological information such as iris, face, voice, fingerprint, and hand
geometry [231]. Various systems have been proposed which leverage these
physiological information to identify users. A recent example is Bodyprint [110]
that uses body parts like ear, finger, fist, and palm prints on a mobile phone
touchscreen as an authentication scheme. Veins patterns are another biometric
feature that has been proposed for identification and authentication. Since these
pattern are unique for each users and stable for a lifetime, they are well suited as
a biometric id. For example, finger veins can be captured under IR-lights [23] or
vein pattern on the palm using VGA [259] or near IR imaging [83].

Researchers also explored using thermal (far IR) imagining to extract the veins on
the palm [141, 260]. As veins have different temperature than the surrounding
skin [52], they are visible to thermal cameras without any additional illumination
sources. Vein triangulation and knuckle shapes are used to differentiate between
users. Previous work, however, used a fixed hand pose recorded in controlled
environments and even reported the inapplicability for outdoors environment.
Being robust to pose variations and environment is, however, necessary to enable
seamless and thereby usable identification and authentication.

4.5.2 Vein Identification

Identifying and authenticating users on the fly while interacting with interactive
system is still a challenging task. We propose using a thermal camera that
is already used for creating interactive systems [150, 210] to identify and
authenticate users based on their vein pattern. Previous work shows that thermal
imaging is well suited to detect vein pattern in a static setting by taking a thermal
image of the user‘s hand while sitting in an controlled environment [260]. We
focus on interactive systems that are controlled using different gestures and are
deployed at different environment.
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Figure 4.17: Veins extraction algorithm.

We propose a vein-based authentication approach, called VID. Using thermal
imaging, the approach consists of a recognition pipeline that extracts vein patterns
and authenticate users. For testing the approach we use an Optris PI450%3
contactless thermal camera. It has a 62° x 48° field-of-view, 382 x 288 optical
resolution, and temperature sensitivity of 40 mK. It should be noted that the
temperature resolution is the most important criteria due to the small temperature
differences between veins and the body.

Recognition Pipeline

For extracting the hand veins, we are using the OpenCV library>* for image
processing and features extraction. We apply in total six steps to a thermal image
stream to a identify a user as shown in Figure 4.17.

1. Image extraction: First, an image is extracted from the livestream of the
thermal camera. This is currently done every 10 seconds but can be adopted to
get faster identification.

2. Noise filtering: A 5 x 5 median filter is applied to smooth the image.
The output is converted to grayscale and a 2D Gaussian filter is applied to
further remove high frequency noise. Then, the image is normalized for better
thresholding.

3. Thresholding: Extracting the veins (temperature contrast) using global
thresholding did not yield in good results, as the vein-skin contrast changes
over the hand. Hence, we use adaptive thresholding. The threshold value changes
dynamically across the image with a kernel size 13 x 13. After this step, the result
is a binary image of a user’s hand.

2 http://www.optris.com/thermal-imager-pi400

24 OpenCV: http://opencv.org/
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4. Region Of Interest (ROI) extraction: Our ROI covers the palm dorsal.
To extract it, we detect the hand by finding the largest contour in the image.
We compute the hand contour (depicted in green in Figure 4.17), convex hull,
convexity defects, and the hand center (red circles in Figure 4.17). The ROI is
computed to be the circle around the hand’s center and a radius that is the distance
between the center to farthest convexity defects. Hence, we can automatically
compute the ROI without restriction to the angle of approach of the hand nor it’s
orientation.

5. Veins Extraction: After identifying the ROI, we segment the veins pattern
and applied a morphology operation to reduce the thickness of the veins to a
single pixel. Thus, the resulting image consists only of thin lines representing the
veins. We use these images as features for our classification approach.

6. Vein Classification: For matching the extracted vein patterns, we calculated
the Hausdorff distance [54] as a measure of similarity between two vein pattern.
Based on a distance threshold, we determine the matching veins pattern using a
nearest-neighbor approach.

4.5.3 Evaluation

To evaluate our VID approach, we conducted a user study in which we focused
on two crucial aspects that are important for interactive systems. First, we
investigated four different postures that are typically used when interacting
(Figure 4.19) and, second, we looked into two different environmental settings,
namely, indoors and outdoors. We chose these settings since we strive to have
different setups that are especially challenging (e.g., for interaction in public
spaces).

Participants & Procedures

We recruited 29 participants (14 female, with an average age of 23 years, SD =
3.6) using our university’s mailing lists. All participants were students studying
different majors. We setup our VID system next to a table. The thermal camera
was mounted on a tripod and faced toward the surface from a distance of 90 cm
to capture the participant’s hand (see Figure 5.1) similar to an interactive tabletop
setup. The light and temperature conditions of the setup were constant during
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Figure 4.18: Study setup indoor and outdoor.

the whole study with ambient temperature of 23°C, 37°C for the indoors and
outdoors setups respectively.

After welcoming the participants, we described the goal of the study and handed
out consent forms as well as demographic questionnaires. We introduced the
four different hand poses (Figure 4.19), but did not restrict them during the study
with regards to neither the angle nor orientation of their hand. The study was
conducted over two sessions in two days. During the first day, we captured
thermal videos of the all participants’ hands in 4 different poses indoors. The
order of the performed poses were randomized per participant. We recorded a
thermal video of 30 seconds length for each pose. We deliberately chose to record
videos rather than doing live authentication because of the reproducibility of our
evaluation. The study took approximately 20 minutes per participant. The second
day, 15 of the participants where re-invited to repeat the same poses using the
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Figure 4.19: Thermal view and extracted veins pattern for the four hand
poses.

same setup but outdoors, aiming to evaluate the environmental influence on our
system. The procedure was identical to the first day.

4.5.4 Results

We replayed the recorded videos to assess our proposed approach. Our analysis
included the evaluation of the influence of (1) different hand poses, and (2)
environmental changes on the authentication accuracy.

Analyzing Hand Pose In the first step, we analyzed the influence of the
different hand poses. We trained our system using fourfold cross validation with
one specific hand pose in each fold. For each user, we had 9 recordings of 3 hand
poses in the training set and 3 recordings of one hand pose in the test set. Next,
we used this data to determine the False Rejection Rate (FRR).

In the second step, we calculated the False Acceptance Rate (FAR). We followed
the same approach as above but left additionally one participant completely out of
the training set. Thus, this unknown potential user (attacker) tried to authenticate
with all poses (i.e., with 12 recordings). We repeated this procedure for all
participants.

Based on the computed FAR and FRR, we calculated the Equal Error Rate
(EER) which is typically used to quantify the performance of an authentication
system [123]. The results of the FRR and FAR against different threshold values
are depicted in Figure 4.20. We achieved an EER of 17%. Over total 29 users,
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Figure 4.20: False acceptance and the false rejection rates.

with the acceptance threshold of 9, this authentication scheme can achieve an
identification accuracy up to 100%.

Analyzing Environmental and Temporal Influences We further
investigated the influence of the environmental and temporal changes. We used
the recordings from the 15 participants that have been re-invited on the second
day of the study. We trained our system using cross validation with one setup
and session in each fold. In contrast, we used the recordings from the first day
for training the users and the recordings from the 2nd day for querying. The
FAR and FRR are computed using the same procedure described earlier. We
achieved an EER of 7%. With the acceptance threshold equal to 9, we achieved
an identification accuracy of 100%.

Application Scenarios

We envision two different application scenarios in which our approach can
implicitly identify and/or authenticate users.

Tabletop Multiuser Identification . Realizing interactive tabletops using
thermal imaging yields several advantages such as the possibility to detect the
amount of pressure applied on the surface or the traces made by the user [150].
In addition to that, our approach might enrich such a system by providing user
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Figure 4.21: False acceptance and the false rejection rates.

identification so that multiple users are able to interact at the same time and the
system is capable of differentiating them (Figure 4.22). Further, it is possible to
easily differentiate between input from the left and right hand since their veins
pattern differs for the same user. This could be used to extend the gesture space,
where the hand used to perform the gesture specify the action performed. For
instance, if the user authenticates with the left hand the system logs him/her in
to the public account and if the user uses the right hand it logs into the private
account.

Laptop Authentication. Since thermal cameras are becoming smaller®, we
envision that the integration of this type of cameras into the display of a laptop
will become a reality. Having a thermal camera that faces down the keyboard
as shown in Figure 4.22, our system is able to track who is using the laptop and
can reject the access for unknown users to specific information. At the same
time, it preserves the privacy of the user since thermal imaging is perceived as a
temperature sensor, which is more accepted compared to RGB ones.

25 http://www.flir.com/
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Figure 4.22: Potential Use-cases.

4.5.5 Discussion and Summary

The results of the conducted study, highlights the potential of using veins patterns
as bases of implicit biometric authentication for interactive systems. We show
that it’s possible to distinguish users regardless of their hand pose and the ambient
temperature of the surroundings with an EER that is on par with recently proposed
approaches [110]. Hence, a convenient, usable, continuous authentication scheme
can be considered. It doesn’t interrupt the user’s task, as it seamlessly capture
the veins on the palm dorsal. It also address hygiene issues, as the veins are
captured in a contactless manner. Relying on the vein pattern underneath the skin
makes it tolerant to skin conditions such as grease and wet hands. However, user
acceptance should be investigated, as user have concerns about the storage of
their physiological biometrics [198].

Relying on biometric features, as replacement of passwords and token, enhances
the convenience of authentication. Users usually interact with devices like
laptops and interactive tabletop without occluding the back of their hand. Thus,
deploying thermal camera, which currently become affordable and small, to
capture their veins pattern allows user identification and authentication. It is
seamless, contactless, and continuous authentication scheme. Based on the
approach proposed the user identification can be up to 100% precision with
different hand poses both in indoors and outdoors settings.



Chapter

Amplified Perception of
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This chapter is based on the following publications:
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A. Bulling, F. Vetere, and A. Schmidt. Classifying attention types with
thermal imaging and eye tracking. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technology, Sept. 2019

Humans exhibit great abilities and social intelligence in their ability to discern
emotions and internal states. According to Picard et. al, emotional intelligence
consists of "the ability to recognize, express, and have emotions, coupled with the
ability to regulate these emotions, harness them for constructive purposes, and
skilfully handle the emotions of others" [196].
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However, the limited awareness of our cognitive load levels can have a great
effect on our health, rational thinking, intelligence, and ability to react and adapt
to what is important. Currently, we as well as digital systems are largely blind to
users’ cognitive states. Systems that can assist in this respect show great potential
for augmenting cognition and for creating novel user experiences. However, most
approaches for sensing cognitive states, and cognitive load specifically, involve
obtrusive technologies such as physiological sensors attached to users’ bodies.

Building systems that extend our cognitive abilities, augment our intellect
[72], work in symbiosis with humans [155], and provide ubiquitous access to
information [264] has been a core theme in human-centered computing since
its inception. These aspirations have carried on through multiple research
programs, including Affective Computing [196], Physiological Computing [75],
and more recently Symbiotic Interaction [122] and Human Amplification [215].
These cognition-aware systems aim to sense users’ internal states and to adapt
their interface and behaviour accordingly. Such systems offer opportunities
to tailor educational activities in online learning environments, to dynamically
optimize work-flows for knowledge, to improve performance for assembly line
workers [85], and to focus users’ attention in critical systems. A crucial step in
building cognition-aware systems is capturing different aspects of users’ mental
states, such as their cognitive load, loci of attention, and affect. Despite over 50
years of work in the area, how to sense cognitive load in a robust, accurate, timely,
and unobtrusive way is still an open challenge.

Cognitive load has been measured traditionally in two ways: (1) by subjective
self-reporting and (2) by observing user performance in a task or in a set of
parallel tasks. The NASA TLX is a common example of the first category, where
participants are asked to report their own load with regard to 6 different categories.
Another example where study participants are asked to report their own estimates
can be found in Sweller et al. [239]. The drawback of these approaches is that
the answers are highly subjective. Furthermore, the self-reporting itself adds to
the cognitive load. Measuring cognitive load through the performance in the
task itself or in a secondary task (e.g. Lane Change Task for Automotive user
interface, ISO 26022) only provides a rough estimate and is typically only suitable
to laboratory studies and not for creating cognition-aware real-time systems. For
interactive systems to be able to adapt their behavior accordingly, cognitive load
information must be captured continuously and automatically. Introspection is
often not sufficient. Physiological sensors such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and galvanic skin response
(GSR) sensors show potential as possible solutions to this problem, but are
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limited in their application in ubiquitous computing environments since they
require users to wear obtrusive additional hardware (e.g. electrodes on their skin).

By adding sensing capabilities to the environment rather than burdening the
user, thermal imaging is a strong candidate for the task of measuring cognitive
load. Thermal cameras are both unobtrusive and able to capture information
from multiple users at a distance and at the same time. Previous research
has shown that thermal patterns reveal different aspects of our internal states,
including affect [117, 235], stress [203], and deception [206]. Further, advances
in miniaturization and mass production have continuously brought down the
prices of these devices. With consumer-grade cameras readily available in the
market for a few hundred dollars, measuring cognitive load at a larger scale
becomes feasible.

In this chapter we present our exploration to assess the effect of different levels of
cognitive load on facial temperature. Two study probes target cognitive load levels
estimation. In Section 5.1, we explore a novel method for estimating cognitive
load based on users’ facial temperature patterns using a commercial thermal
camera. We then extend our exploration to investigate the effect of different
attention types on the cognitive load, hence, acquiring additional cue to classify
attention types as presented in Section 5.2.

The research question we address in the presented chapter is:

¢ RQ4: How can thermal imaging be used to amplify perception of cognitive
load?
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5.1 CognitiveHeat: Estimating Cognitive
Load Level

This section is based on the following publications:

* Y. Abdelrahman, E. Velloso, T. Dingler, A. Schmidt, and F. Vetere.
Cognitive heat: Exploring the usage of thermal imaging to
unobtrusively estimate cognitive load. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technology, 1(3):33:1-33:20, Sept. 2017

Our cognitive and affective states strongly influence how our blood flows through
our bodies. When we are scared, blood flows to our legs in reaction to the
fight or flight response; when we are embarrassed, blood flows to our face,
making us blush. Because blood carries heat, as it flows through our bodies it
changes the temperature distribution in our skin [229], underlying tissues, and
vessels [223, 229]. Therefore, monitoring changes in this distribution can give us
an insight into the changes in cognitive load or arousal that caused them.

Previous works have suggested several points in the body to measure this
temperature fluctuation, such as the nose, the cheeks, the areas around the eyes
(periorbital and supraorbital), the jaw, the neck, the hands (fingers and palms), the
lips, and the mouth [117]. Thus the face is particularly promising for this task for
several reasons. First, it is often exposed, making it easy to observe with a thermal
camera. Second, it features a thin layer of tissue, making temperature changes
more pronounced. Therefore, in this work we explore how facial temperature
fluctuations can give us an insight into changes in cognitive load. We focus on
two of the points of interest suggested in the literature—the forehead and the
nose—as these can be monitored even if the user is wearing glasses. In summary,
in this work we focus on the following:

1. Can we distinguish different cognitive load levels using a relatively
low-cost, commercially available thermal camera? More specifically, do
the changes in facial temperature correlate with the level of difficulty of
the task?

2. If so, how long after the increase in cognitive load can we detect the
corresponding temperature fluctuation? In other words, what is the latency
of our method as a cognitive load sensor?
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5.1.1 Related Work

Awareness of cognitive load and processes is an ongoing challenge for HCI
research. Our work builds on two strands of prior work: (1) cognitive load
estimation and (2) thermal imaging.

Cognitive Load Inference

A technology with the capability of sensing and inferring cognitive load has the
ability to provide a "window into our mind" that can further be used to adapt
system behavior accordingly [245, 92, 91]. However, capturing cognitive state
information is a challenging task—cognitive processes are largely invisible from
the outside of the users’ brain and introspection often fails to reason about them
in a unbiased and objective way.

Monitoring users with the help of sensors can give us clues about different
cognitive states. Though certain physiological sensors can be highly specialized,
expensive, and therefore only applicable under lab conditions, advances in sensor
technology have led to inexpensive solutions that can be easily integrated into
personal devices.

Different approaches have been introduced to infer cognitive states ranging from
using facial expressions [261], eye movements [98] and pupil size [29, 194], skin
conductance [106, 146, 226], brain signals [53, 227, 228], Electrodermal activity
(EDA) [188, 189, 93], heart and respiration rate [146].

EEG: Haak et al. [98] reported that the blinking rate is directly proportional to
cognitive load. They extracted the blinking rate from Electroencephalography
(EEQ) signals by isolating events from the signals. Hosni et al. [112] used EEG
signals for task classification. Shirazi et al. [228], classified reading and relaxing
tasks based on EEG signals retrieved from a single electrode BCI. Petersen
et al. [193] used the EPOC to distinguish emotional responses when viewing
different content.

Galvanic Skin Response (GSR): Analysis of GSR data from user experiments
has shown that GSR across users increases along with cognitive load [71]. Yu
et al. explored the applicability of using GSR as an indicator of cognitive load
[226]. Elise et al. used heart rate, respiration rate and GSR as an indicator [146].

Respiration Rate: Parnandi et al.considered real-time adaptive biofeedback
games [188, 189] . They monitored players’ EDA to infer their arousal
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states [188]. Additionally, they used biofeedback sensors (respiration rate sensor
and adaptive games) to manipulate their behavior [189].

Combined Sensors: Wang et al. [261, 71] explored how to build an adaptive
system that helps workers who use computer heavily on a daily basis by extracting
a user’s features, such as face pose, eye blinking, yawn frequency and eye gaze
from a recorded video, in order to monitor the users state. Healey et al. [104] and
Schneegass et al. [219] used physiological monitoring for driver stress indication.

A major limitation of both voice and facial-based approaches is that users can
be quite skilled at manipulating the parameters being sensed by the system. On
the other hand, physiological metrics, such as heart rate, GSR, Blood Volume
Pressure (BVP), and Electromyography (EMG) have the advantage that they are
primarily under the control of the Autonomic Nervous Systems (ANS) and are
therefore less susceptible to conscious manipulation. However, a major limitation
of current physiological approaches is the need for sensors to be in direct contact
with the user, or to be implanted. As a result, such sensors are impractical for
most routine user environments. For instance, the long setup time and contact
requirements of BClIs, or the drift over time [153] and fluctuations due to arm
movements in GSR.

As promising tools within the HCI domain, thermal cameras show high potential
for estimating cognitive load. They overcome the limitation of using contact
sensors utilized in previous research and are more robust than other contactless
approaches, since the temperature signature is more resistant to conscious
manipulation [117]. We investigate the use of thermal imaging to estimate
cognitive load, exploiting the fact that cognitive load influences the skin
temperature (which is directly related to the conduction of heat from the blood
to the facial skin [191]) as a reflection of the activation of the ANS [73]. We
therefore aim to leverage the correlation between cardiovascular physiology and
mental state, where they are capable of reliably differentiating between levels of
cognitive load [229].

Thermal cameras can provide information about the observed body’s temperature,
which can be used to infer the physiological [117] and cognitive state of users in
an unobtrusive manner by, for example, evaluating their stress levels [203]. The
reason why this is possible is because our skin temperature is modulated by ANS
activity. ANS controls the organs of our body, such as the heart, stomach, and
intestines. It is responsible for activating glands and organs for defending the
body from threats. Its activation might be accompanied by many bodily reactions,
such as an increase in heart rate, rapid blood flow to the muscles, activation of
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sweat glands, and increase in the respiration rate. These physiological changes
can be measured objectively by using sensors [143, 222].

Temperature changes on the forehead have been shown to be linked to changes in
brain temperature [89, 169]. There is a direct relationship between workload and
facial temperature based on the involvement of the autonomic nervous system
(ANS) [115]: increased brain activity causes a surge in blood supply. Hence,
higher workloads lead to blood flowing from the adjacent facial areas to the brain
causing the facial temperature to vary. Zajonc et al. [288] showed different facial
areas to be effective temperature indicators, namely the tip of the nose, above the
eyes, and at the center of the forehead.

Previous works have explored the usage of thermal imaging to observe users’
mental states. We particularly build upon previous work that assessed stress based
on the variations in forehead and nose temperature [73, 192, 224]. Emotions
like stress [203], fear [170], startling [223], empathy [165], anxiety [290], and
guilt [116] could be detected by monitoring facial temperature changes. Ioannou
et al. summarized these states and how they correlate to the facial temperature in
terms of region of interest and direction of temperature change (i.e. increase or
decrease in the temperature) [116].

Compared to previously established sensors, the great advantage of thermal
imaging is its contactless and non-invasive operation. The contact-free recording
of facial temperature with an thermal camera allows us to isolate unsystematic
data variation (e.g. users’ bias due to their awareness of being monitored, the
movement of the sensor or the stressful attachment of the sensor on the users’
body). Additionally, instrumenting the environment is more user-friendly and
allows the tracking of multiple users. Most of the research so far has used
MWIR thermal cameras. For instance, StressCam [203] used the Indigo Phoenix
thermal camera costing over 20,000 USD. Jenkins and Brown [124], utilized the
supraorbital region to identify cognitive state, yet they used a non-commercial
thermal camera. However, because FIR thermal cameras are commercially
available and relatively affordable, they present a compelling opportunity for
expanding the reach of these applications. For instance, it is now possible to
buy smartphones with built in thermal cameras 2. These cameras are becoming
increasingly smaller, with sizes as small as a 20mm 27, yet maintaining high
thermal sensitivity around 0.05° degrees. This enables thermal cameras to be
used in a diverse set of applications, by enhancing existing application scenarios
and exploring new ones. Previous research has shown that thermal imaging in the

26 http://www.catphones.com/en-gb/phones/s60-smartphone

27 http://www.flir.com/cores/lepton/
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NIR and MWIR bands can be used to reveal different cognitive states. Stemberger
et al. [235] explored the use of FIR to estimate cognitive load levels, but they
used a wearable tracking headset to identify the region of interest, and a neural
network to build a user dependent classification to three-levels of workload based
on six region of interest. Or and Duffy [186], and Kang et al. [128, 129], used the
variation in the nose temperature as an indicator of cognitive workload. However,
they didn’t report on how different levels of workload influence the temperature
change. Additionally, their findings are confounded by facial temperature stress
indicators.

In this work, we explore thermal imaging operating in the FIR band. We leverage
the advances in miniaturization and reduction in the prices of these devices, to
explore the feasibility to not only detect the cognitive load, but also to estimate
four levels of cognitive load, while maintaining the unobtrusive operation manner
of thermal imaging. We aim to investigate the possibility of using thermal
imaging as a user-independent cognitive state detector. Additionally, we also
explore different metrics to avoid any possible overlap between other states e.g.
stress.

In summary, the aim is to address two major shortcomings of previous work
concerned with estimating cognitive load: The obtrusive and contact nature of
traditional physiological sensors and the limitation in detecting different cognitive
load levels in a user-independent manner.

5.1.2 Thermal Imaging for Cognitive Load Estimation

We built a system that monitors users’ facial temperature (see Section 5.1.3)
and observed how it changed as users performed two tasks with four levels of
difficulty each (see Section 5.1.3). We hypothesized that the higher task difficulty
will result in a greater temperature difference. Further we conducted a second
study and measured how long before the temperature started to change after the
task started or ended, and how long it took for it to reach its maximum level
(see Section 5.1.4). We present our results regarding the applicability of thermal
cameras as a cognitive load sensor.
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5.1.3 Cognitive load and Facial Temperature

To test our hypothesis of the ability of thermal cameras to elicit cognitive states
and classify tasks based on face temperature variation, we conducted a user study
in which we recorded the temperature of participants’ nose and forehead in three
activity states:

1. Relaxing as the baseline.
2. Reading four different types of text.

3. The Stroop test [236] with four levels of difficulty.

Design

We applied a repeated-measures design, where all participants were exposed to
all three task conditions. We studied the effect of the tasks on the facial thermal
print. For the baseline we asked the participants to relax. For the reading task
we provided four types of different content types: 1) a comic, 2) an easy blog
article, 3) a scientific article and 4) a literary piece. We chose these content types
because of their presumed differences in cognitive demand. Additionally, we
computed the readability index 2® for each text, which indicates the text difficulty:
the higher the value the more difficult the text is to read. The text found in the
comic, easy blog, science article and literary piece reported 26.6, 52.9, 68.2 and
77.9 respectively.

The Stroop test is a classic Psychology task for evaluating executive
functions [236]. During the test, users are asked to name the color of the font in
which different words are written. The difficulty of the task lies in the fact that
the words displayed represent a different color to the one in which it is colored.
For example, the word ’red’ would appear colored in blue, and the participant
had to say ’blue’. In our study we also introduced four levels of difficulty in
the task by adding four levels of increasing time pressure: the higher the level,
the less time users had to respond. For varying the difficulty of the Stroop test,
we considered four levels of difficulty provided by the app Magic Colors®®. To
overcome the effect of the repeated-measures experimental design, namely order
effect, the order of the tasks was counter-balanced using a Latin Square.

28 https://www.psychometrica.de/lix.html

2 https://play.google.com/store/apps/details ?id=com.accountmaster.in.MagicColors
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Figure 5.1: Study setup.

Apparatus

Our setup consisted of a 13.3" laptop in front of a thermal camera (Optris PI160°°)
mounted on a tripod. The optical resolution of our camera was 160x 120 pixels
and its frame rate was 120 Hz. It is able to measure temperatures between -20°C
and 900°C, and operates with a thermal sensitivity of 0.08°C represented by the
noise equivalent temperature difference (NETD)3!. The wavelengths captured
by the camera are in the spectral range between 7.5um and 13um. The lens we
use provides a 23°x 17° field of view. The thermal camera uses USB as power
source as well as to transfer data. It provides temperature information in the form
of 16-bit color values encoding the temperature information. The participants
were asked to look to the front facing the thermal camera placed at 1m from the
participants and the screen as shown in figure 5.1.

Implementation

We built a system that recognizes and analyzes the user’s facial temperature.
Our application receives the data from the thermal camera, and extracts the
temperature of the forehead and nose as follows:

3 nttp://wuw.optris.com/thermal-imager-pil60

31 NETD refers to the electronic noise that is interpreted as a temperature difference of an object
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Frame Extraction Noise Filtering Face Recognition Forehead & Nose
Recognition

Figure 5.2: Nose and Forehead ROI extraction.

1. Frame extraction: We sample each frame of the camera feed at 120fps,
based on the cameras frequency.

2. Noise filtering: We apply a 5 x 5 median filter to smooth the image. We
convert the output to gray-scale and apply a 2D Gaussian filter to further
remove high frequency noise as performed by Shirazi et al. [210].

3. Face Recognition: We detect faces in the frame using the Viola-Jones
classifier [248] built into OpenCV.

4. ROI Identification: We identify the nose tip and forehead as the ROI.
These ROI are computed relative to the face coordinates extracted as shown
below. We used a simple ROI identification approach to maintain a fast
frame rate for the algorithm.

xForehead = xFace + (4 * face.Width / 7);
yForehead = yFace + (face.Height / 6);

xNasal = xFace + (4 * face.Width / 9);
yNasal = yFace + (face.Height / 2);

5. Temperature Recording: We record the average temperature of the 5x5
window CSV file to represent the temperature of the nasal tip and forehead,
as well as the difference in temperature between the two.
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Figure 5.3: The application interface used during the study.

Participants and Procedure

We recruited 12 participants (7 females) with an average age of 28.3 years
(SD = 4.6) using university mailing lists. None of the participants had any
previous experience with thermal cameras. After arriving in the lab, participants
signed a consent form and received an explanation of the purpose of the study.
Next, we asked participants to perform the set of reading tasks, video watching
and Stroop tests, each for 12 minutes (3 mins x 4 levels). The order of the
tasks was counter-balanced using Latin-square. The study took approximately
60 minutes. During the entire experiment, we recorded the temperature of the
participant’s face, extracting the forehead and nasal temperatures.

We recorded the whole study using an RGB video camera. The experiment was
conducted in a maintained room temperature of 24°C. Participants were rewarded
with 10 EUR. All the data was visualized by the experimenter in real-time in an
accompanying application developed in C# (see Figure 5.3).
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Reading Task | Nose | Forehead | Forehead-Nose Temperature
Comic -0.69 0.23 0.92
Blog -0.92 0.33 1.25
Article -1.11 0.37 1.48
Literature -1.49 0.44 1.93

Table 5.1: Mean temperature change in the Reading tasks.

Results

We analyzed the effect of the task difficulty on the recorded facial temperature.
We used three metrics as our dependent variables:

1. Decrease in nose temperature.
2. Increase in forehead temperature.

3. Difference between nose and forehead temperature.

We defined the temperature change as the difference between the mean
temperature during the baseline recording and the mean temperature in the final
minute of the task.

Effect of Reading task on ROI Temperature

Nose Temperature We tested the effect of the CONTENT DIFFICULTY on
the NOSE TEMPERATURE with a one-way ANOVA. Mauchly’s test showed
a violation of sphericity against CONTENT DIFFICULTY (0.07, p<.05), so
we report Greenhouse-Geisser-corrected (GGe = 0.45) values. We found a
large significant effect of CONTENT DIFFICULTY on the NOSE TEMPERATURE
(F135,149 = 14.0,p < .0001, ges = 0.29). Bonferroni-corrected pos-hoc tests
found a statistically significant difference between all content types (p < .05),
except between the blog and the science article, and between the science article
and the literary piece at p < .05. The mean decrease in temperature between
levels was of .27 degrees Celsius.

Forehead Temperature We tested the effect of the reading CONTENT
DIFFICULTY (4 levels) on the FOREHEAD TEMPERATURE (difference to the
baseline) with a one-way ANOVA. Mauchly’s test showed a violation of sphericity
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Figure 5.4: Temperature change between the baseline and the Reading tasks.

against difficulty (0.01, p < .05), so we report Greenhouse-Geisser-corrected
(GGe = 0.37) values.

We found a significant large effect of CONTENT DIFFICULTY on the FOREHEAD
TEMPERATURE (F 12,12.33 = 19.78, p < .001, ges = 0.16). Bonferroni-corrected
pos-hoc tests found a statistically significant difference between all content types
(p < .05), except between the science article and the literary piece. The mean
increase in temperature between levels of difficulty was .07 degrees Celsius.

Forehead-Nose Temperature Difference We tested the effect on
the difference between forehead and nose temperature (difference to the
baseline) with a one-way ANOVA. Mauchly’s test showed a violation of
sphericity against CONTENT DIFFICULTY (0.09,p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.44) values. We found a large significant
effect of CONTENT DIFFICULTY on the FOREHEAD-NOSE DIFFERENCE
(F1.32,14.54 = 23.26, p < .0001, ges = 0.38). Bonferroni-corrected post-hoc tests
found significant differences between all levels of difficulty. The mean increase
in temperature difference between the forehead and the nose between levels was
of .34(40.12) degrees Celsius.

In summary, our reading tasks exhibited a significant increase in the forehead
temperature and decrease in the nasal temperature. We found a significant
difference between all contents for the increase in the forehead-nose temperature
difference, and a larger effect size of the task difficulty on this metric. The
difference between levels of difficulty in the order of .34 degrees Celsius.



5.1 CognitiveHeat: Estimating Cognitive Load Level 139

FOREHEAD NOSE-FOREHEAD DIFFERENCE

0 TEMPERATURE CHANGE PER TASK DIFFICULTY TEMPERATURE CHANGE PER TASK DIFFICULTY 5 TEMPERATURE CHANGE PER TASK DIFFICULTY
° ° o I
g . g7 3!
5 5 5 |
S 9 S (S} ‘
g L 50 g |
8 g g |
g i g, |

-4 [

LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL1 LEVEL2 LEVEL3 LEVEL4
“Task Difficulty ‘Task Difficulty “Task Difficulty

Figure 5.5: Temperature change between the baseline and the Stroop tasks.

Effect of Stroop Task Levels on ROI Temperature

Nose Temperature We then tested the effect of the TASK DIFFICULTY (4
levels) on NOSE TEMPERATURE (difference to the baseline) with a one-way
ANOVA. Mauchly’s test showed a violation of sphericity against TASK
DIFrFICULTY (0.08, p < .05), so we report Greenhouse-Geisser-corrected (GGe =
0.68) values. We found a large significant effect of task difficulty on NOSE
TEMPERATURE (F 52257 = 29.1, p < .0001, ges = 0.14). Bonferroni-corrected
post-hoc tests found significant differences between all levels of difficulty. For
each increase in the level of difficulty we found an decrease of 0.33 (£0.12)
degrees celsius in nose temperature as estimated by a linear regression model.

Forehead Temperature We tested the effect of the TASK DIFFICULTY (4
levels) on the FOREHEAD TEMPERATURE (difference to the baseline) with a
one-way ANOVA. A Mauchly’s test showed a violation of sphericity against
Difficulty (0.06, p < .05), so we report Greenhouse-Geisser-corrected (GGe =
0.58) values. We found a large significant effect of TASK DIFFICULTY on
FOREHEAD TEMPERATURE (F] 73,19.01 = 14.99, p < .001, ges = 0.31). However,
Bonferroni-corrected pos-hoc tests did not find a significant difference between
levels 1 and 2, and between levels 3 and 4. For each increase in the level of
difficulty we found an increase of 0.09 (£0.02) degrees Celsius in the forehead
temperature as estimated by a linear regression model.

Forehead-Nose Temperature Difference We tested the effect of the
TASK DIFFICULTY (4 levels) on the difference between forehead and the nose
temperature (difference to the baseline) with a one-way ANOVA. Mauchly’s
test showed a violation of sphericity against TASK DIFFICULTY (0.18, p < .05),
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Stroop Level | Nose | Forehead | Forehead-Nose Temperature
Level 1 -1.11 0.29 1.40
Level 2 -1.45 0.42 1.87
Level 3 -1.68 0.48 2.16
Level 4 -2.12 0.57 2.69

Table 5.2: Mean temperature change in the Stroop tasks.

so we report Greenhouse-Geisser-corrected (GGe = 0.68) values. We found a
large significant effect of TASK DIFFICULTY on FOREHEAD-NOSE DIFFERENCE
(F2.03,22.36 = 37.97, p < .0001, ges = 0.20).Bonferroni-corrected post-hoc tests
found significant differences between all levels of difficulty. For each increase in
the level of difficulty we found a difference of 0.42 (+0.13) degrees Celsius in
the difference between forehead and nose temperatures as estimated by a linear
regression model.

In summary, we found statistically significant effects of task difficulty on
temperature measures on (1) forehead, (2) nose, and (3) the difference between
the forehead and the nose. The largest effect was found in the difference between
the forehead and the nose.

Informed by previous work, we hypothesized that an increase in the task difficulty
would lead to a change in the participants’ facial temperature patterns. Because
forehead and nose are two of the most visible points on users’ faces and are
two points recommended deemed feasible for temperature measurement by
previous work [117], we tested the effects of different tasks and their difficulties
on temperature changes in these points.

We elicited increases in cognitive load both through an abstract task and through
a naturalistic task. Our abstract task consisted of a variant of the classic Stroop
test, in which we increased the task difficulty by introducing a time pressure. In
this task, we found that an increase in the task’s difficulty lead to a change both
in forehead and nose temperature. The corresponding changes were related—an
increase in task difficulty lead to an increase in forehead temperature and a
decrease in nose temperature. We therefore combined both metrics by calculating
the difference in temperature changes between the two. This proved to be the
most robust metric, with a statistically significant average increase of 0.42 (4-.13)
degrees Celsius between each difficulty level.

We confirmed the validity of this finding in a naturalistic scenario, consisting
of reading four pieces of text with varying levels of difficulty as measured by a
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readability scale—a comic book, a blog post, a scientific article, and a snippet of
Old German literature. Again, we found a significant effect of the task difficulty
for all metrics, in the same directions as in the Stroop task. Though this difference
was not significant for all pairs of tasks in the forehead and nose temperatures
alone, they were significant for all pairs when combining the two by subtracting
the latter from the former. We found an average increase in the temperature
difference between the forehead and the nose of .34 degrees Celsius for between
each level of difficulty.

The forehead temperature increases are correlated with metabolic increases in
this ROI. This is presumed to be due to the influence of muscle activation
of the forehead muscle group [185, 229]. In parallel, the vessels in the nose
region experience vasoconstriction (tightening in the blood vessels) as response
to increased cognitive load [124, 229], reflecting a decrease in nose temperature.

5.1.4 Temporal Latency of Facial Temperature
Change

Our first study validated the suitability of using the temperature differences
between forehead and nose as a metric for cognitive load sensing. We found
that the temperature changes are large enough for some of the cheapest thermal
cameras in the market to capture. In the first study, we were interested in the
magnitude of the temperature changes and therefore, we were only concerned
with the average temperature at the end of the tasks. However, in a realistic
scenario, we would be interested in pinpointing specific times in which changes
in the facial thermal pattern could be detected. This would allow us to build
cognition-aware systems that detect user state changes in real-time. For this
purpose, it is crucial to understand the temporal response of these changes, which
was the focus of our second study.

Other physiological sensors like GSR exhibit response times around three
seconds [142]. The response latency achieved in previous works with thermal
imaging include 10secs [142] on monkeys subjects and 3.8secs using functional
thermal imaging [170]. The high latency found in previous works are not ideal
for real-time applications. In our work, we wanted to investigate the latency,
thereby investigating whether the current state of commercially available thermal
imaging is appropriate for measuring cognitive load levels in real-time and in
real world cognition-aware applications. To the best of our knowledge, no
work has been done in evaluating the temporal latency of temperature changes
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Figure 5.6: Example for one study sequence.

using commercial thermal cameras which operate in the far infrared spectrum,
particularly considering different stimuli duration. We evaluated the response
time of the temperature change while considering different task duration ranging
from 5 to 60 seconds.

Design

For this, study we applied a repeated-measures design, where all participants were
exposed to all conditions. We studied the effect of the duration of the task on the
latency of the temperature change. We chose the Stroop test as the task/stimulus,
with task duration of 5, 15, 30, 45 and 60 seconds. Each duration value was
repeated three times.

Apparatus

The general setup was the same as in the first study, except that we used a more
precise thermal camera with higher thermal sensitivity: the Optris P1450°? with
an optical resolution of 382x288 pixels and a frame rate of 80 Hz. It measures
temperatures between -20°C and 900°C and operates with a thermal sensitivity of
0.04°C represented by the noise equivalent temperature difference (NETD). The
lens we use provides a 38°x 29° field of view.

Participants and Procedure

We recruited 24 participants (13 females) with an average age of 30.8 years (SD =
9.6). The participants were two groups: native Egyptians and Canadians. None of
the participants had any previous experience with thermal cameras. Participants
first signed a consent form and the purpose of the study was explained to them.
Next, we asked them to relax for 10 minutes to ensure no other factors influencing

3 nttp://wuw.optris.com/thermal- imager-pi400
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Stroop Level Nose Forehead | Forehead-Nose Temperature
Onset 0.7(£0.2) | 1.2(£0.3) 0.7(£0.2)
Saturation 3.1(£1.2) | 2.3(£0.9) 2.3(£1.2)
Offset 1.1(£0.5) | 1.6(x0.9) 1.1(£0.5)

Table 5.3: Summary for the onset, saturation and offset in seconds.

the facial temperature for instance rushing into the study room. We recorded
baseline temperature measures while participants were relaxing. They were then
introduced to the Stroop task with different exposure duration, each with three
minutes break between them. The order of the duration was counter-balanced
using a Latin square. The study took approximately 60 minutes. During the entire
experiment we recorded the temperature of the participant’s forehead and nasal
area. The experiment was conducted in a maintained room temperature of 26°C.

Results

We analyzed the effect of the different durations of the stimuli/tasks on the latency
of facial temperature variations. As in study I, We used the same three metrics as
our dependent variables: nose temperature, forehead temperature and differential
temperature. We investigated the following:

1. Temperature change onset, refers to the time taken to first observe a
change in temperature after the commencement of the task. It is the time
between the start of the task and the temperature reaching 3 xstandard
deviation above the forehead baseline temperature or below nose baseline
temperature. We picked this method, as 99.73% of the data should be within
=+ 3 times the standard deviation, hence values outside this range reflects
temperature increase/decrease in the forehead and nose respectively.

2. Temperature change saturation is the time taken to reach saturation in
temperature change. This measure describes the time between the onset to
the time the temperature lies between + 3 xstandard deviation.

3. Temperature change offset, is the time taken after the task is stopped
to observe temperature change. We computed based on the time it
took between the endof the task and the temperature reaching 3Xx
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Figure 5.7: Nose Temperature Change.

standard deviation below the forehead saturation temperature or above
nose saturation temperature.

The baseline temperature for each participant was determined from the relaxing
phase. This temperature was compared to the facial temperature during and after
the task. We tested the effect of the task duration on the onset, saturation and
offset times of the temperature change both in the nose and forehead area. There
was no significant difference observed between the task duration and the three
metrics.

Latency in Nose Temperature Change The onset for the nose
temperature decrease was observed after 0.7s (£ 0.2s) after the start of the
task. It took 3.1s (& 1.2s) to reach saturation temperature . The offset for the
nose temperature was observed after 1.1s (0.5s) the end of the task.

Latency in Forehead Temperature Change The onset for the forehead
temperature increase was observed after an average of 1.2s (&£ 0.3s) after the start
of the task. It took 2.3s (& 0.9s) to reach saturation of temperature increase. The

offset for the forehead temperature was observed after 1.6s (£0.9s) after the task
was finished.
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Figure 5.8: Forehead Temperature Change.

Latency in Total Difference Temperature Change The onset for the
differential temperature change was observed after an average of 0.7 (£ 0.2s)
after the start of the task. It took 2.3s (&£ 1.2s) to reach the saturation temperature
difference The offset for forehead-nose temperature difference was observed 1.1s
(£0.5s) after the end of the task. As reported in study I, the Stroop test showed
a statistically significant difference between the levels and baseline in the three
metrics. This was confirmed in the second study.

Thermal variations due to vascular changes were consider as slow compared to
other physiological monitoring sensors [129]. Recent research reported a latency
of thermal response of 3.8 seconds after the stimuli onset using functional infrared
imaging, compared to 3 seconds of GSR [142, 170].

Our findings indicate a response latency of 0.7sec using commercially available,
far-infrared thermal imaging. One explanation for the faster response is the
camera sensitivity as well as the frame rate, where the camera we used had 0.04K
thermal sensitivity and 80 fps, as opposed to the camera used by Kang et al. [129],
which had 50 fps and operated in different spectrum. Additionally, we relied on
the temperature information of two regions of interest with a simple and real-time
ROI extraction approach, which might have influenced the latency of the observed
temperature changes.

As presented above, the onset in the forehead was longer than that of the nose
1.24+0.3 and 0.7£0.2 seconds respectively. This reflects the fact that there are
more vessels affecting the subcutaneous temperature in the nose area than the
forehead as reported by Berkovitz et al. [32]. This is also confirmed by the
temperature variations, where a temperature change of 0.09° was observed in the
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Figure 5.9: Forehead-Nose Temperature Change.

forehead as opposed to 0.33° in the nose area, for each level. Our findings from
the second study demonstrate the responsiveness of commercial thermal cameras
in estimating cognitive load.

5.1.5 Discussion and Summary

Our findings validate the correlation of cognitive load and the selected region
of interest and the measuring metrics we selected. Fernandez-Cuevas et al. and
Toannou et al. [117, 80] summarized and presented how facial temperature and
region of interest vary with different mental states. However, there were no states
(e.g. stress, guilt, joy, etc.) that correlated with an decrease in the nose and
an increase in the forehead temperature. For instance, fear was correlated with
decrease in both nose and forehead temperatures [117] and stress was correlated
with variation in the nose temperature [117, 129]. Other works identified stress
as an equation of the difference of the temperature of the nose and forehead [131]
with a specific reading values between 34 and 36 degrees, rather than the total
temperature change.

Our results show that the order of magnitude of the temperature changes are large
enough to be detected by commercial sensors. For example, the FLIR One, a
smartphone-compatible thermal camera and one of the most affordable devices
currently in the market, is capable of detecting temperature changes of 0.1 degrees
Celsius and can hence be used to detect cognitive load.
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In this work we described our approach to unobtrusively derive users’ cognitive
load based on thermal imaging. Therefore, we investigated the effects of four
different task intensity levels on facial temperature changes. We implemented a
system capable of monitoring forehead and nose temperature to estimate current
cognitive load levels through a novel metric based on the difference between
forehead and nose temperature.

Thermal imaging operating in FIR provides novel avenues for studying users’
cognitive states. We observed substantial changes in facial temperatures upon the
activation of the ANS due to a stimulus. While the nose temperature—reflecting
the vasoconstriction limiting the blood flow to the surface i.e. skin—decreases
with rising workloads, in parallel, the temperature on the forehead increases
as muscular activity leads to metabolic increases and increased blood flow in
the underlying vessels. Based on these observations, we proposed a novel
unobtrusive technique for estimating and quantifying cognitive load and possibly
other affective states. In addition, we investigated the latency of temperature
change and the ability of thermal cameras to capture those changes. We found an
average latency of 0.7 0.2 seconds.

Therefore, our system was able to unobtrusively estimate changes in cognitive
load in close to real-time. The exploration of content types gives rise to
thermal-based activity tracking, which can empower new applications in the
field of cognition-aware computing. Thermal imaging techniques, for example,
can be applied in classroom settings with multiple students being monitored in
real-time to estimate cognitive load levels and assess current difficulty of content.
It could also be used in assistive systems in a production environment, where
the worker is monitored unobtrusively without interrupting their work flow to
estimate the current difficulty of the task in hand. Additionally, our proposed
system could be utilized in usability testing to help identify user interface features
that increase cognitive load. Awareness of cognitive demand allows systems
to dynamically adapt to users’ current cognitive capacities and either reduce
task difficulty to prevent frustration or add complexity to sustain interest and
productivity.
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5.2 AttenTCam: Classifying Attention Type

This section is based on the following publication:

* Y. Abdelrahman, A. Khan, J. Newn, E. Velloso, S. Safwat, J. Bailey,
A. Bulling, F. Vetere, and A. Schmidt. Classifying attention types with
thermal imaging and eye tracking. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technology, Sept. 2019

Building on our findings from the previous section, we further utilize thermal
imaging augmented with other unobtrusive sensors, in particular an eye tracker,
to classify attention types. Our approach exploits the fact that each attention
type requires different cognitive resources [164]. This, in turn, influences how
the blood flows through the face, which is then reflected in variations in the
skin temperature [191, 12]) as a reflection of the activation of the ANS [73]. In
short, we are investigating the leverage of the correlation between cognitive state
and facial temperature combined with eye movements to differentiate between
attention types.

A common, though often incorrect, hidden assumption underlying how we
currently design interactive systems is that, during the interaction, the user
focuses all of their attention on the interaction with the system. As a consequence,
considerable effort in the research and development of ubiquitous computing
systems has been placed on supporting users while they perform single-focus
tasks (e.g., [84]). However, given the multitude of devices and applications
constantly fighting for users’ attention through interruptions and notifications,
single-focus interactions are the exception rather than the rule [249, 263].

This phenomenon has led economists to frame the problem in terms of an
attention economy, where attentional resources are the currency and actors are
competing for consumers’ attention [76, 55]. A fundamental concept in this
idea is that, similar to other economic resources, attention is a limited resource.
Further, attention is strongly influenced both by internal stimuli (e.g. remembering
where you left your keys causes your attention to shift, or feeling motivated to
read a book leads to a more focused reading experience) and external stimuli
(e.g. hearing a dog bark behind you causes you to turn around or writing an essay
while being observed by your teacher keeps your eyes on the exercise at hand).
Therefore, the context around the interface affects how much attention is paid to
the interaction.
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To further complicate matters, attention itself is a complex concept, one that
even psychologists struggle to conceptualize [238]. Early studies suggested that
there are several levels of attention instead of a unitary one, due to its complex
nature involving memory, behavior and consciousness [132, 171, 237, 164, 200].
One model that emerged from this literature is Sohlberg and Mateer’s Clinical
Model of Attention [230]. This hierarchical model discriminates between people’s
ability to maintain attention towards a single stimulus (sustained and focused
attention); to switch attention between different stimuli (alternating attention);
to pay attention to one stimulus while inhibiting others (selective attention), and
to pay attention to multiple stimuli simultaneously (divided attention). This
model highlights two challenges: quantifying attention (how much attention) and
qualifying the nature of attention (what type of attention).

Prior work on attention has shown that our well-being is tied strongly to our ability
to manage our attention successfully, for example, we know that multitasking
hinders performance [152]. Such known issues create opportunities to design
interactive systems that monitor and actively help users to manage their attention.
The vision of pervasive attentive user interfaces encapsulates this well, stating
that interfaces could “adapt the amount and type of information based on [users’]
current attentional capacity, thereby simultaneously optimizing for information
throughput and subtlety. Future interfaces could trade-off information importance
with users’ current interruptibility level and time the delivery of information
appropriately” [40].

To realize this vision, interfaces that attempt to leverage the users’ attention must
accomplish two tasks: (1) identify the locus of attention and (2) characterize the
nature of the current attentional state. While the locus of attention is typically
considered to be equivalent to gaze direction, this is not always the case due to the
diverse nature of attention orienting, which is classified as overt or covert [285].
In overt attention, the person selectively attends to a source of information by
moving their eyes to point in that direction [199]. However, humans do not
necessarily direct their eyes towards their area of focus. During covert attention,
a corresponding shift in attention is not followed by a corresponding shift in
gaze direction [74], e.g., when a person has a conversation with a friend while
looking at their mobile phone [164], or when eavesdropping on a conversation
while typing up an email in an open office environment. Therefore, even though
eye-tracking data can be very informative, it is essential to understand the limits
of the gaze point as a sole representation of the locus of attention.
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In this work, we address the limits of eye-tracking for attention detection by
proposing its combination with thermal imaging in order to classify the various
attention types by stated in Sohlberg and Matter’s Clinical Model of Attention.
The Clinical Model describes attention as a model based on the degree of focus,
consisting of lower fundamental levels and higher levels [230]. The lower level
includes focused and sustained attention, while the higher levels includes selective,
alternating, and divided attention [230, 132, 164]. The Clinical Model further
describes attention as a multidimensional cognitive capacity, which means that
attentive tasks need different levels of cognitive load to be achieved [164]. The
findings of recent work in HCI demonstrated the ability to unobtrusively quantify
cognitive load using thermal imaging and temperature sensors [13, 240, 289]. Our
work, therefore, builds on the ability to use thermal input as a method of measuring
different levels of cognitive loads and the knowledge that these different attention
types require different cognitive capacities. By combining this concept with the
ability to detect overt attention reliably well through eye-tracking, we explore the
novel combination of eye-tracking and thermal imaging for attention classification.
To explore this combination, we collected a dataset in a user study designed to
elicit different attention types using different stimulus modalities, in controlled
and (semi-)naturalistic tasks. We build on the opportunity that eye-tracking
can reveal the locus of attention, and thermal imaging can give us an estimate
of cognitive load. Together, this allows us to paint a better picture of users’
attentional state. We hypothesize that by combining these modalities, we are able
to classify different attention types according to the Clinical Model.

5.2.1 Related Work

In the past decades, many scientific fields have been interested in understanding
the processes behind human attention, from its measurement to its modeling. A
pre-condition for this is the ability to sense and characterize attentional states
in near real-time, and prior work has explored the use of various sensors and
algorithms in attempts to achieve this. In this section, we discuss the background
theory of attention, technology-based approaches for sensing attention, and
existing algorithms for classifying attention.

The vast body of research on theories of attention can be split loosely into
theories of focused attention and theories of divided attention, with few studies
attempting to bridge the gap between the two (e.g., [182]). Whereas theories of
focused attention are grounded on visual selection and unintentional processing,
theories of divided attention revolve around the issue of capacity limits [77, 126].
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These differences in theoretical grounding have led to the evolution of different
attention models in the field of psychology. In our work, we employ Sohlberg
and Mateer’s Clinical Model of Attention [230] as it has been deemed to be one
of the most comprehensive models [25]. The Clinical Model describes attention
as a model based on the degree of focus, consisting of lower fundamental
levels and higher levels [230]. The lower level includes focused and sustained
attention, while the higher levels includes selective, alternating, and divided
attention [230, 132, 164]. In other words, attentive tasks need different levels of
cognitive load to be achieved [164]. The attention types introduced in the model
are:

Focused attention. The ability to respond discretely to specific visual, auditory,
or tactile stimuli.

Sustained Attention. The brain can discretely respond to specific auditory,
tactile, or visual stimuli for a prolonged period. Reading a book in a deeply
focused state is an example of sustained attention.

Alternating Attention. Happens when we switch focus from one task to another
or from one part of the task to another, regardless of different cognitive demands
between them. Examples include: listening to a lecture while taking notes, or
reading a recipe while cooking.

Selective Attention. The ability of the brain to focus on a specific stimulus while
inhibiting others. A prime example of selective attention is called the Cocktail
Party Effect [144], which describes our ability to selectively attend to the voice of
one person while minimizing other voices and noise.

Divided Attention. The brain divides its attention between different stimuli
simultaneously. Examples include: playing a mobile game while having a
conversation or, one that we do not recommend, texting while driving.

Current Approaches to Classify Attention

A crucial step in building attentive systems lies in the ability to quantify users’
attentional states. However, as changes in these states happen inside users’
minds, we can only measure attention indirectly through users’ behaviors and
physiological signals, leading to the development of technologies potentially
offering insights about the users’ attention states. These technologies vary in their
levels of obtrusiveness.
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Previous works have explored a variety of sensors for measuring attentional states,
including electroencephalography (EEG) [2, 158, 154, 140], electrooculography
(EOQG) [140], electrocardiography (ECG) [46], and electromyography (EMG)
[204]. These sensors have been shown to provide high accuracy in recognizing
states but are obtrusive in nature (requiring users to wear a device or have
electrodes attached to their skin), and therefore cumbersome for daily use. For
instance, Liu et al. [158] were able to distinguish between attentive and inattentive
states with an accuracy of 76.82% using EEG but required the placement of
electrodes on participants’ heads. On the other hand, researchers have employed
less unobtrusive approaches such as functional Magnetic Resonance Imaging
(fMRI), commonly used to reveal aberrant brain activity, to measure attentional
states [160, 108, 173]. For example, Moisala et al. [173] measured human brain
activity during single-tasking and dual-tasking using fMRI, looking for activation
in the medial and lateral frontal regions of the brain. Their results highlight the
relationship between different attentional demands and levels of brain activity
associated with sustained and divided attention. Though able to show differences
in attention states, fMRI remains impractical for daily use, in terms of costs and
practicality.

Recent work has explored unobtrusive contactless sensing approaches, including
eye tracking and temperature sensors. Eye tracking is a common technique
to investigate visual attention as we tend to fixate on objects that have drawn
our attention or relevant to the task that we are attending to [164, 179, 178].
Through our visual attention, we only ‘see’ what we are paying attention to,
as our cognitive system allocates sufficient resources for visual processing
to avoid overloading. Because we receive a large amount of information
through our eyes, this mechanism helps us to manage what gets processed. Eye
movements are an important part of visual attention and are primarily comprised
of fixations (stationary phase) and saccades (rapid, ballistic eye movements
phase). Previous works have long explored how eye movement features can help
uncover psychological states and recognize activities [246, 233]. Eye tracking
is a powerful tool for understanding human attention as it can measure both the
frequency of eye movements and the location of the gaze point [164]. While
researchers often use gaze point as a proxy for the locus of attention, this is
not always the case due to the diverse nature of attention orienting—classified
as overt or covert [285]. Therefore, even though eye tracking data can be very
informative, it is essential to understand the limits of the gaze point as a sole
representation of the locus of attention.

Thermal imaging and temperature sensors have been explored as a means
of understanding users’ mental states [13, 240, 116, 151, 211], for instance,
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thermal imaging has been used to detect several states including stress, guilt,
fear [117]. Our work, however, builds specifically on Cognitive Heat [13]
and Zhou et al.’s Cognitive Aid [289], which demonstrate the relationship
between facial temperature and cognitive load estimation, in which the authors
employ the use of thermal imaging as a way to unobtrusively detect changes in
cognitive load in real-time. To elaborate, the authors found substantial changes
in facial temperatures upon the activation of the ANS when exposed to the
stimulus, specifically between the nose and forehead regions. This seminal
work gave rise to developing thermal-based activity tracking, which further
facilitates new applications in the field of cognition-aware computing. Wearable
variations have also been developed using the same concept. For example, Tag
et al. [240] presented early work on the use of facial temperature to measure
attention; demonstrating the ability to measure attention using IR temperature
sensors. However, their focus was attention level rather than type. Similarly,
Zhou2019cognitiveaid explored the use of thermal sensors to detect mental
workload, demonstrating the ability of such sensors to detect when a user is
currently performing a task.

The variety of sensors discussed above opened the opportunity to use machine
learning techniques to classify users’ mental states and to build systems that
adapt to these states [221]. Whereas there have been initial efforts to use machine
learning to classify attention primarily into attentive and non-attentive states with
a maximum accuracy of 93.10%, no work has attempted to classify attention
according to the four types of attention outlined in Sohlberg and Mateer’s Clinical
Model of Attention [230].

Summary & Research Direction

In summary, there are two clear limitations from the existing literature on
recognizing attention types. First, the sensors employed for measuring attention
tend to be obtrusive and therefore not appropriate for the development of
interactive systems. Second, works to date employed models that oversimplify
attentional processes, as a binary variable or as a one-dimension continuous
signal.

In this work, we address this research gap by using the combination of two
unobtrusive sensors—thermal imaging and remote eye tracking, from which
we can build classifiers for recognizing the four types of attention outlined in
Sohlberg and Mateer’s Clinical Model of Attention [230]. To our knowledge, this
is the first work that has attempted to differentiate between four attention types
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(sustained, alternating, selective, divided). Our combined approach exploits the
fact that each attention type requires different cognitive resources [164] and visual
direction [82].

To elaborate, our novel approach leverage two ways in which attentive states are
manifested in our physiology to measure and classify attention effectively. First,
attention is related to the allocation of cognitive resources [164]. This process
strongly correlates with changes in the blood flow, which is reflected in changes
in the temperature distribution in our skin [229, 223, 13]. In a earlier work, we
explored the use of thermal imaging to measure cognitive load, in which we
relied on how the activation in the ANS due to an increase in cognitive load is
reflected in the facial temperature. Using the same ideology, we hypothesize that
changes in attentive states will also lead to a change in cognitive load levels that
are observable in facial temperature patterns measured with a thermal camera.
Our hypothesis is built upon the fact that different attentive states require different
levels of cognitive load [164]. Informed by the literature, we estimate cognitive
load using the nose-forehead differential [117, 13]. Also, we explored the effect of
different attentive states on the user’s cheeks, as previous work [117] highlighted
the usage of cheeks as state indicator. Second, when engaging in overt attention,
the gaze point—which we can easily measure with eye-tracking—is a reasonable
estimate of the locus of attention [82]. Further, low-level statistical features of
eye movements are also indicative of cognitive load levels, which can be useful
for an attention classifier (e.g. [287]).

These physiological properties present an opportunity for the design of pervasive
attentive user interfaces. Both eye movements and facial temperature patterns can
be unobtrusively captured with remote eye trackers and thermal imaging cameras,
particularly considering that the face is the most often exposed part of the user’s
body. Moreover, recent advances in both eye-tracking and thermal imaging have
made it cheaper and more accessible than ever to capture this information without
the need to augment the user, but rather the environment.

In the following sections, we present the data collection with a detailed description
of the tasks used for attention elicitation (Section 5.2.2). We hypothesize that
the higher-level attention types (selective and divided) will result in a more
significant temperature difference. To explore this hypothesis, we conducted
a user study to elicit attention types using the combination of audio and video
stimuli, while recording the gaze and thermal data (Section 5.2.2). We then present
our methodological approach to analyze the collected data set, including statistical
analysis, feature extraction, and classification. In Section 5.2.3, we report the
results from different classification approaches (user-dependent, user-independent
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(condition dependent) and user-independent (condition independent), showing
the applicability of thermal cameras and eye tracker as unobtrusive sensors to
classify attention. Lastly, we discuss how the findings of our work can be applied
and present directions in the future work section.

5.2.2 Attention Type Classification

Our goal is to build a classifier that is able to distinguish between attention types
based on facial thermal imaging and eye-tracking data. To train and evaluate this
classifier, we collected a dataset in which we recorded the eye movements and
the temperature of facial features (nose, forehead, left cheek, and right cheek) of
22 participants as they completed tasks designed to elicit four types of attentional
states. The tasks were inspired by the literature on attention in psychology. We
used a repeated-measures design, where all participants performed four sets of
tasks with different stimuli. We counterbalanced the order of the tasks. We
created variations of each stimulus to elicit four types of attention in the Clinical
Model of Attention — sustained, selective, alternating and divided, for a total
of 16 tasks (4 attention types X 4 types of stimuli). We did not include focused
attention, as we are interested in the attention over prolonged periods. Further,
we included a baseline task at the beginning of the experiment.

Tasks

We used a combination of tasks from the attention elicitation literature and
developed a series of tasks to elicit different attention types starting with Stroop
conditions as a reference task, followed by more naturalistic tasks that involved a
combination of visual- and audio-based stimuli. For the baseline task, we asked
the participants to relax while listening to white noise. We used the baseline task
to capture and record the participants’ temperatures at rest, which serves as a point
of comparison with the other tasks [13]. Figure 5.10 illustrates the remaining
tasks used in the study. We published a playlist with the stimuli online3, for
reproducibility purposes. We displayed the tasks in full screen for 3 minutes,
and conditions without a visual stimulus contained a white background. For
consistency, we primarily used selected TED Talks>* for the content of the tasks.
In audio-based tasks, we extracted the audio from the videos, while in the visual
tasks, we used the transcripts of the talks.

3 nttps://bit.ly/2LyZWay

3 https://www.ted.com/talks
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Figure 5.10: Conditions to stimulate the four different attention types.
Stroop Tasks

The Stroop test is a classic Psychology task for eliciting selective attention [236,
147]. In the typical test, users are asked to name the color of the font in which
words are written. The difficulty of the task lies in the fact that the words displayed
correspond to a different color to the one in which they are colored while the
user selectively attends to the color of the font. For example, in the classic
experimental task, the word ‘RED’ would be colored in blue, and the participant
must reply ‘Blue’ while ignoring the fact that the word itself corresponds to a
different color. For our study, we created three variations of the Stroop test to
elicit the remaining attention types, described below:

Sustained Stroop: We first created a simplified variation of the Stroop test to elicit
sustained attention, where we retained a single source of information. We showed
color names written in their own color and asked participants to read it aloud. For
example, the word ‘green’ would appear colored in green, and participants were
asked to say ‘green’. This effectively removed the challenge of the task allowing
the participant to focus on reading the words, therefore maintaining sustained
attention.
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Alternating Stroop: In this variation of the Stroop test, the display was split into
two halves. Each half had a sustained Stroop test variation, and participants had
to alternate between the two halves, spending 45 seconds in each half.

Selective Stroop: We used the original Stroop test [236] as the selective Stroop
test where text and color are presented differently. For example, the word ‘green’
would appear colored in blue, and the participant had to say ‘blue.” Participants,
therefore, have to ‘selectively’ choose between the two.

Divided Stroop: We reused the Stroop test variation introduced by Eidels et
al. [68] to elicit divided attention where participants are directed to attend to both
word and color. The task included all four combinations of the words, RED and
GREEN, and the ink colors, red and green. The participants are asked to respond
to ‘redness’ in the Stroop stimulus, regardless of whether the ‘redness’ comes in
the word (RED), the color (red), or both (RED in red). Hence, the participant
must attend to the color and to the word (i.e. divide attention across the Stroop
stimulus components).

Audio Tasks

Sustained Audio: This task used a single audio file of a TED talk speech to which
participants were asked to listen attentively.

Alternating Audio: To simulate a group conversation, we used two audio sources,
which alternated between being on and off every 45 sec. We used the same topic
to mimic the real-life example of a group conversation.

Selective Audio: We simulated the Cocktail Party effect [144], where we
combined audio of a speaker with the audio of a cocktail party. Participants
were asked to attend to the speaker selectively.

Divided Audio: Inspired by Gardiner et al. [87] to elicit divided attention,
participants were asked to listen to a presentation talk while listening to and
reporting high, low, or medium tone sequences by saying the tone level out loud.

Visual Tasks

Sustained Visual: A single panel of text was displayed, and participants were
asked to read the text as it appeared.

Alternating Visual: We divided the screen into two panels, which we further
subdivided into two parts. The text first appeared in the left panel for 45 sec and
then alternated to the right panel, the text then alternated back to the bottom half
of the first panel and lastly alternated to the bottom half of right panel. Participants
are asked to read the text displayed in the active panel.
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Selective Visual: A stream of text was displayed in a highlighted region in the
middle section of the screen from left to right. A stream of text also flowed
upwards in the background. Participants were asked to read the text in the
highlighted region selectively. This task was inspired by a news ticker (also called
slide) that typically appears at the bottom of TV channels.

Divided Visual: In this task, we augmented numbers into a text transcript.
We asked participants to read the text while performing mental addition on the
numeric values that appeared in the text, e.g. twenty, five, etc. This forced
the participants to divide their attention between the text itself and the mental
arithmetic task.

Audio-Visual Tasks

Sustained Audio-Visual: For this task, we had a single video running from a
selected top TED talk.

Alternating Audio-Visual: Similar to the Alternating Visual task, the screen was
divided into two panels and two videos played alternatively in the two panels.
The first video played for 45 seconds and alternated to the second panel. This
alternating process repeats twice.

Selective Audio-Visual: Two videos were displayed, one embedded in the other,
as shown in Figure 5.10. Participants were asked to selectively attend to the video
with the talk that was displayed in the middle of the screen. The larger video
acted as a cocktail party like noise [87].

Divided Audio-Visual: Inspired by Gardiner et al. [87] to elicit divided attention
and similar to the Divided Audio task, participants were asked to watch a
video while listening to and reporting high, low, or medium tone sequences.
Additionally, we added an appearing “X” in Red, and the user was asked to say
"X" out loud when the symbol appears to elicit attention on divided audio-visual
type stimuli.
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Figure 5.11: Study setup.

Experimental Setup

Figure 5.11-Left illustrates our experimental setup, consisting of a commercial
Tobii EyeX eye tracker® operating with frequency of approximately 55 Hz,
connected via USB. The eye tracker provided the gaze x- and y-coordinates on
the screen. We attached the eye tracker to a 24" screen and placed an Optris
PI450 thermal camera®® mounted on a tripod 1m away from the participant
behind the screen. The camera has an optical resolution of 382 <288 pixels, has
a frame rate of 80 Hz, and measures temperatures between -20°C and 900°C,
with a thermal sensitivity of 0.04°C. Further, the camera captured wavelengths
in the spectral range between 7.5um and 13um with a 38°x 29° field of view.
The output of the camera encodes temperature information with 16-bit color
values. Further, we developed a system to display the stimuli (tasks) for each
test in a counterbalanced order using Latin square that records both streams of
data. The Optris PI connect software 3’ used with the camera has a built-in
annotation function, using the so-called measure areas of 10x20 pixels. We
annotated the regions of interest including forehead, nose and cheeks, as depicted
in Figure 5.11-Right. Additionally, the Optris PI connect has a built-in save
option, that stores the mean temperature values of the annotated regions in CSV
files.

Farticipants & Procedure

We recruited a total of 24 participants, and discarded 2 participants due problem
with eye-tracking calibration. The remaining 22 participants in our final data

35 https://tobiigaming.com (recent firmware upgrade enabled increased frequency to 70Hz)
3 http://www.optris.com/thermal- imager-pi450

3 https://www.optris.com/
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set consisted of 14 Males and 8 Females with an average age of 20.45 years
(8D = 1.14), recruited through university mailing lists. Upon arrival, participants
were asked to sign a consent form and were informed about the aim of the
study. We first asked participants to relax for 5 minutes while listening to white
noise (relaxing sound of ocean waves) as the baseline task. This allowed us to
collect their physiological data in a state of relaxation. Following, we presented
the different tasks, 16 tasks in total for 3 minutes each. We explained each
task to the participants before starting the task. The order of the tasks was
counterbalanced using Latin squares. After each task, we asked participants to
complete a NASA-TLX [101] questionnaire to assess the perceived cognitive
load. The study lasted approximately 85 minutes (SD = 10.25). During the
entire experiment, we recorded the facial temperature and eye gaze coordinates
of the participant. The study was recorded using an RGB video camera (further
described in the next section). We maintained the room temperature at 23°C, and
participants were compensated with 10 EUR upon completion.

Method

In this section, we describe our step-by-step process in which we use to evaluate
the combination of thermal imaging and eye-tracking for attention classification.
First, we statistically analyzed the results to evaluate objective and subjective
measures. Second, we extracted the features required for classification. Third, we
built and tested different classifiers based on these features. We then measured
the best performing classification model on our different classifiers before diving
down into the performance of the combination.

Statistical Analysis

To validate our attention elicitation, we analyzed the effect of the attention types
on both the subjective cognitive load from the NASA-TLX reported by the
participants and the cognitive load inferred from the recorded facial temperature.
We used three metrics as our dependent variables: the NASA-TLX score,
forehead-nasal temperature, and cheeks temperature (detailed in Section 5.2.3).
We statistically analyzed the data using a repeated measures ANOVA (with
Greenhouse-Geisser correction if sphericity was violated). This was followed by
posthoc pairwise comparisons using Bonferroni-corrected t-tests.

Feature Extraction To train our classifiers, we derived a feature set (14 features)
that best describe the various attention types from both the gaze and thermal data
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Type Subcategory Feature

Gaze Stimulus-dependent Number of gaze transitions between pairs of Area of Interest (AOI).
AOI where maximum fixation lies in a window of 45 sec.

Gaze Stimulus-independent  Number of fixations.Mean fixation duration.

Thermal Both Mean forehead and nose temperature difference from the baseline.

Mean temperature change in the cheeks from the baseline.

Table 5.4: Selected feature set used for classification.

(see Table 5.2.2 below). Below, we explain our reasoning behind our choices of
features. The details of how we trained our classifier can be found in Section 5.2.2.

Gaze Features Stimulus-dependent features are those that involve the knowledge
of the AOI of the interface, whereas stimulus-independent features are statistical
measures computed from eye movements. We pre-processed the gaze data by
removing outliers and by clustering gaze points into fixations. We identified
fixations using the Dispersion-Threshold Identification algorithm [214], as it
produces accurate results in real-time using only two parameters, dispersion, and
duration threshold (set to 20 and 100, respectively). From this data, we computed
low-level statistical features, such as the number of fixations and mean fixation
duration, as shown in Table 5.2.2.

As arepresentative example, Figure 5.15 shows the gaze plots for all combinations
of task and attention type for one participant. For our purposes, the meaning of
the area under the gaze point in regards to the task at hand is an important factor
in determining the attention state. For example, consider a system that monitors a
student while they watch a video lecture. Two similar fixation patterns will be
indicative of attentive or inattentive states depending on whether it falls inside or
outside the video player. Therefore, as suggested by Toker:2013, in addition to the
stimulus-independent features, it is important also to compute stimulus-dependent
features that encode the meaning behind different AOIL Hence, we divided the task
interface into different numbers of AOI depending on the stimuli (see Figure 5.12).
The stimuli-dependent features extracted were the number of fixations in an AOI
for every 45 seconds and the number of gaze transitions between pairs of AOL.
To compute the gaze pattern, we used the number of fixations in each AOI to
identify the area with the highest number of fixations fixation every 45 seconds.
Though in our experimental setup, we manually created the AOI, in a real system
implementation, they could be set by the UI implementation framework used for
its development.
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Figure 5.12: Area of Interest (AOI).

Thermal Features

Previous works on thermal imaging for users’ mental state detection [13, 116,
240], build upon the fact that changes in the internal states influence the blood
flow [229]. Because our blood carries heat, changes in the blood flow influence
our skin temperature [116, 117, 223, 229]. Therefore, monitoring changes in
facial temperature can give us an insight into the changes in mental states.
Researchers explored multiple regions of interest in the human body e.g., mouth,
nose, and hand [117]. In particular, the face showed potential in detecting changes
in states, as it is exposed and easy to capture by thermal cameras. Furthermore, it
has a thin tissue layer, making temperature changes more observable. Therefore,
in this work we explore how facial temperature fluctuations can give us an insight
into changes in cognitive load caused by the experienced different attention types.
We computed the temperature difference of the cheeks, forehead, and nose from
their mean baseline temperature, similar to previous works [13, 116, 240].

Classification Approach

The goal of our classifier is to map a feature vector computed from a window
of data to one of four classes corresponding to the type of attention the
user was engaged as per the Clinical Model of Attention. To do this, we
first built a user-dependent, condition- independent classifier, which was
trained on the data from the same participant but different condition on
which it was evaluated. This was followed by a user-independent classifier
which was trained on the data from different participants on which it was
evaluated. We then further evaluated the user-independent classifier in two
ways—condition-dependent and condition-independent. To put simply, we
trained the condition dependent variant on the data from other participants in
the same condition (leave-one-out-cross-validation on participant), while the
condition-independent classifier is trained on a different set of conditions and
users to the dataset on which it was evaluated, e.g., trained on the Stroop, Audio
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and Visual datasets and evaluated on the Audio-Visual (leave-one-out-cross
validation on participant and task). We provide more details on the three distinct
classifiers in the remainder of this section. As different classification models will
generate different levels of performance, we compared three different classifiers
for all three classifiers: Support Vector Machines (SVM), K-Nearest Neighbour
(KNN) and Logistic Regression (LR). For the SVM classification model, we
used the two hyper-parameters C=5 and gamma=0.01 with RBF kernel, while
the KNN model was trained with k=5 neighbours. We used the scikit-learn
package’® for machine learning in Python for feature extraction and classification
and PyCharm>® as a development environment.

User-Dependent Classifier

We built a user-dependent, condition-independent classifier by training the data
on the same participant but different condition for the four tasks. This allows us
to evaluate the performance of our approach of a system that is trained on its own
user (e.g. by having a calibration phase). To do this, we trained and evaluated the
classifier 22 times, using all 14 features, each time for a specific participant for
the remaining conditions. For example, we trained the classifier on the data of a
participant of Stroop, Visual and Audio task and evaluated the classifier on the
data of the same participant but the Audio-Visual task).

User-Independent Classifiers

User-dependent classifier can potentially be optimistic, we next built a
user-independent classifier. Being independent of the user, we can obtain a
more robust and generalized classifier. We further split the user independent
classifier in condition-dependent and condition-independent variants.

Condition-Dependent

We evaluated the classification performance of the condition-dependent classifier
on the data from the same condition on which it was trained, but from a
different participant. We conducted separate evaluations for each task (Stroop,
Audio, Audio-Visual, Visual), building and evaluating the classifiers using
leave-one-participant-out cross-validation. We trained the classifier 22 times,
each time training on the data of 21 participants and evaluating it on the remaining
one participant.

3 nttps://scikit-learn.org/stable/

¥ https://www.jetbrains.com/pycharm/
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Figure 5.13: The average cognitive load perceived by the participants.

Condition-Independent

We evaluated the condition independent classifier by training it 22 times using
leave-one-participant-out cross-validation four times, one for each condition.
Each time, we trained it on the data of the 21 participants for three conditions
and evaluated it on the data of the fourth condition from the last participant. The
reported results, in the next sections, are averaged by participant but split by the
task on which it was evaluated.

5.2.3 Results

Statistical Analysis

Below we present the effect of the attention types of the different conditions on
the facial temperature as opposed to the baseline.

Cognitive Load: NASA-TLX

To confirm that each attention type requires different cognitive resources [164], we
first analyzed the effect of the different attention types on the reported cognitive
load via the NASA-TLX. We tested the effect of the different attention types from
different conditions on the overall cognitive load.

Condition-Independent NASA-TLX: We first analyzed the mean NASA-TLX
SCORE from all conditions (Stroop, Audio, Visual, and Audio-visual) for the
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four ATTENTION TYPES. As depicted in Figure 5.13, the sustained attention had
the lowest load with an average score of 23.50 (SD = 12.22), followed by the
alternating attention with an average of 27.81 (SD = 14.59), selective attention
with an average of 39.17 (SD = 15.88) and the highest was divided attention with
an average score of 52.72 (SD = 18.49). We tested the effect of the ATTENTION
TYPE (4 types) on the overall NASA-TLX SCORE with a one-way ANOVA.
Mauchly’s test showed a violation of sphericity against difficulty (0.29, p < .05),
so we report Greenhouse-Geisser-corrected (GGe = 0.65) values. We found
a significant large effect of ATTENTION TYPE on the NASA-TLX SCORE
(F2.09.41.72 = 72.29,p < .001, ges = 0.38). Bonferroni-corrected post-hoc tests
found a statistically significant difference between all attention types (p < .05).

Stroop NASA-TLX: We further analyzed the NASA-TLX score from the
Stroop condition. The sustained attention had the lowest load with an average
score of 24.32 (SD = 18.23), followed by the alternating attention with
an average of 27.84 (SD = 22.51), selective attention with an average of
56.70 (SD = 24.03) and the highest was divided attention with an average
score of 57.01 (SD = 22.16). We tested the effect of the attention Type (4
types) on the NASA-TLX Score with a one-way ANOVA. Mauchly’s test
showed a violation of sphericity against difficulty (0.45, p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.73) values. We found a significant
large effect of attention type on the NASA-TLX score (£330 46.02 = 30.16,p <
.001,ges = 0.34). Bonferroni-corrected post-hoc tests found a statistically
significant difference between all attention types (p < .05), except between the
sustained and the alternating, and between the selective and the divided attention.

Audio NASA-TLX: In the audio condition, the sustained attention had the lowest
load with an average score of 24.89 (SD = 18.23), followed by the alternating
attention with an average of 29.78 (SD = 17.03), selective attention with an
average of 40.45 (SD = 16.63) and the highest was divided attention with an
average score of 48.45 (SD = 20.57). ANOVA revealed a significant effect
of attention type on the NASA-TLX score (F3 g9 = 13.04, p < .001, ges = .21).
Bonferroni-corrected post-hoc tests found a statistically significant difference
between all attention types (p < .05), except between the sustained and the
alternating, and between the selective and the divided attention.

Visual NASA-TLX: Again, the sustained attention had the lowest load with an
average score of 23.77 (SD = 13.24), followed by the alternating attention with
an average of 28.48 (SD = 17.56), selective attention with an average of 28.55
(SD = 15.72) and the highest was divided attention with an average score of 57.34
(SD = 18.18). Mauchly’s test showed a violation of sphericity against difficulty
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(0.51, p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.75) values.
ANOVA revealed a significant effect of attention type on the NASA-TLX score
(F3,60 = 57.96, p < .001, ges = .41). However, Bonferroni-corrected post-hoc
tests found a statistically significant difference between all attention types (p <
.05), except between the sustained and the alternating, between the sustained and
the selective, and between the alternating and the selective attention.

Audio Visual NASA-TLX: Lastly, for the audio-visual condition, the sustained
attention had the lowest load with an average score of 21.02 (SD = 13.29),
followed by the alternating attention with an average of 25.15 (SD = 14.78),
selective attention with an average of 30.98 (SD = 19.88) and the highest
was divided attention with an average score of 48.07 (SD = 19.80). ANOVA
revealed a significant effect of ATTENTIO TYPE on the NASA-TLX SCORE
(F3,60 = 24.88, p < .001, ges = .27). Bonferroni-corrected post-hoc tests found a
statistically significant difference between all attention types (p < .05), except
between the sustained and the alternating, and between the alternating and the
selective attention.

In summary, the different attention types exhibited different NASA-TLX, where
sustained attention showed the lowest NASA-TLX score, followed by the
alternating, then selective, and the highest score was observed in the divided
attention. Additionally, we found a significant difference in the NASA-TLX.

Cognitive Load: Facial Temperature

Informed by the literature, cognitive load could be assessed by monitoring the
facial temperature [13, 289], namely the difference between forehead and nose
temperature (difference to the baseline). Other work [117], also investigated the
temperature of the cheeks. In this work, we analyzed the effect of the attention
type on the Forehead-Nasal temperature and the Cheeks temperatures.

Effect of Stroop tasks on Facial Temperature

Forehead-Nose We tested the effect on the total change in the forehead
and nose temperature. Mauchly’s test showed a violation of sphericity against
attention type (0.47,p < .05), so we report Greenhouse-Geisser-corrected
(GGe = 0.55) values. A large significant effect of attention type on the
Forehead-Nose difference (/23464 = 39.22,p < .001,ges = 0.63) was found.
Bonferroni-corrected post-hoc tests shows significant differences between all
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Figure 5.14: Mean temperature change.

types of attention (p < .05), except between the sustained and the alternating, and
between the selective and divided attention.

Cheeks For the cheeks temperature, Mauchly’s test showed a
violation of sphericity against attention type (0.10,p < .05), so we
report Greenhouse-Geisser-corrected (GGe = 0.54) values. A large
significant effect of attention type on the cheeks temperature increase
(F16339 = 50.36,p < .001,ges = 0.49) was found. Bonferroni-corrected
post-hoc tests found significant differences between all types of attention, except
between the sustained and alternating attention.

Effect of Audio task on Facial Temperature

Forehead-Nose Mauchly’s test showed a violation of sphericity against
attention type (0.24,p < .05), so we report Greenhouse-Geisser-corrected
(GGe = 0.53) values. A large significant effect of attention type on the
Forehead-Nose difference (F 6347 = 29.08,p < .001,ges = 0.85) was found.
Bonferroni-corrected post-hoc tests found a statistically significant difference
between all attention types (p < .05), except between the sustained and the
alternating attention, and between the selective and divided attention.

Cheeks Mauchly’s test showed a violation of sphericity against attention
type (0.31, p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.57)
values. A large significant effect of attention type on the cheeks temperature
increase (F1.7,36.1 = 25.59, p <.001, ges = 0.64) was found. Bonferroni-corrected
post-hoc tests found a statistically significant difference between all attention
types (p < .05), except between the sustained and the alternating, and between
the alternating and the selective attention.
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Effect of Visual task on Facial Temperature

Forehead-Nasal Temperature we tested the effect of different attention
type of visual tasks on the temperature metrics. Mauchly’s test showed a
violation of sphericity against attention type (0.36,p < .05), so we report
Greenhouse-Geisser-corrected (GGe = 0.51) values. A large significant effect of
attention type on the Forehead-Nose difference (Fj.933.9 = 50.5,p < .001, ges =
0.78) was found. Bonferroni-corrected post-hoc tests found significant differences
between all types of attention.

Cheeks Mauchly’s test showed a violation of sphericity against attention
type (0.30, p < .05), so we report Greenhouse-Geisser-corrected (GGe = 0.58)
values. A large significant effect of attention type on the cheeks temperature
increase (F7 8 36.7 = 30.05, p < .001, ges = 0.67) was found. Bonferroni-corrected
post-hoc tests found significant differences between all types of attention, except
between the sustained and the alternating, and between the alternating and the
selective attention.

Effect of Audio-Visual task on Facial Temperature

Forehead-Nasal Temperature Lastly, we tested the effect of different
attention type of combination of audio-visual tasks on the temperature metrics.
Mauchly’s test showed a violation of sphericity against attention type (0.39, p <
.05), so we report Greenhouse-Geisser-corrected (GGe = 0.39) values. A large
significant effect of attention type on the Forehead-Nose difference (Fi ¢33.9 =
56.15,p < .001, ges = 0.88) was found. Bonferroni-corrected post-hoc tests
found significant differences between all types of attention, except between the
alternating and the selective attention.

Cheeks Temperature We tested the effect on the cheeks temperature
with a one-way ANOVA. A large significant effect of attention type on the
cheeks temperature increase (.5 46.9 = 20.00, p < .001, ges = 0.59) was found.
Bonferroni-corrected post-hoc tests found significant differences between all
types of attention, except between the sustained and the alternating, and between
the alternating and the selective attention.

In summary, our findings from the statistical analysis validate the correlation
between attention types and cognitive load, deduced from the temperature changes
in the selected region of interest. However, not all tasks exhibited significant
difference between the alternating and selective attention types. Further, these
findings are also aligned with the results from our subjective measure of perceived
workload (NASA-TLX).
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Classifier Classification Model Gaze Features ~ Thermal Features =~ Gaze+Thermal Features
User Dependent SVM 572 +3.1% 68.8 + 3.8% 52.4+2.5%
(Condition Independent) KNN 584+ 1.7% 66.6 + 3.4% 522+ 1.3%
Logistic Regression  58.9 + 2.0% 70.7 £+ 2.3% 774 + 2.6%
User Independent SVM 59.6 £2.2% 70.6 £ 2.7% 61.1 £1.8%
(Condition Dependent) KNN 61.3 £2.4% 71.0 £3.7% 61.3 £2.4%
Logistic Regression  76.5 + 2.2% 69.7 + 3.1% 86.9 + 1.8%
User Independent SVM 53.1+1.9% 723+ 4.1% 54.5+2.5%
(Condition Independent) KNN 54.1+2.1% 72.5 +3.4% 59.9 +£2.2%
Logistic Regression  56.9 + 0.9% 72.7 £+ 2.6% 75.7 + 1.8%

Table 5.5: Classification results.

Classification Performance

To measure the performance of the classifiers, we computed the accuracy and
Area Under the Curve (AUC), which aggregates precision and recall into one
metric. We investigated the effect of the features used (gaze-only, thermal-only
and gaze+thermal) as well as the usage of user-dependent and user-independent
classifiers (condition-dependent and condition-independent) on the classification
of attention types.

Comparison of Different Classification Models

We first compared the performance of the classifiers for the attention types on the
three different models: SVM, KNN and Logistic Regression. Table 5.5 shows
the performance of the user-dependent and user-independent classifiers using the
AUC score for the three classification models. The AUC score reported in the
table is the average AUC for all the four task. As shown, overall the Logistic
Regression model outperforms both SVM and KNN for all three feature sets
(gaze-only, thermal-only and gaze+thermal). The reason being that KNN is an
example of a lazy learner [18] classifier which memorizes the training data rather
than learning discriminative function and its performance is highly dependent
on the selection of k values passed as an input parameter [97]. Similarly, SVM
classification results highly depend on the kernel and hyper parameters chosen.
As for the Logistic Regression model, it has less generalization error than KNN
and is easier to build compared to an SVM model [64], and for our purpose,
it gives the best classification performance overall. Due to this reason, for the
remainder of our analysis we have chosen to explore our results using the Logistic
Regression Classification model.
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Gaze Features Thermal Features Gaze+Thermal Features

Classifier Task Accuracy AUC Accuracy AUC Accuracy AUC

User Stroop 443+28% 628+1.5% 5794+35% 71.9+3.1% 683+3.1% 78.8+3.3%
Dependent Audio 252+1.8% 51.1+£1.0% 573+£3.1% 71.4+£33% 582+12% 71.8+12%
(Condition Visual 462+29% 521+£28% 548+25% 68.1+13% 704+35% 803+23%
Independent)  Audio Visual 544 +42% 69.7+28% 579+12% 714+13% 688+27% 788+3.8%
User Stroop 63.6+4.6% 758+3.0% 545+45% 69.7+3.0% 81.8+3.5% 87.9+22%
Independent Audio 261+ 1.1% 508+0.8% 534+47% 69.74+3.0% 489+3.0% 659 +2.0%
(Condition Visual 784+ 4.1% 85.6+2.8% 544+24% 69.7+3.8% 955+27% 97.0+ 1.8%
Dependent) Audio Visual 909 £3.1% 939+2.1% 545+42% 69.7+28% 955+21% 97.0+1.4%
User Stroop 455+41% 63.6+£1.0% 59.1+32% 72.7+21% 67.8+1.6% 7188+ 1.1%
Independent Audio 250+£0.0% 500+0.0% 59.1+55% 727+37% 541+27% 69.4+1.8%
(Condition Visual 40.1+1.7% 587+ 1.1% 59.14+42% 72.7+33% 70.1 +2.8% 804+ 1.0%

Independent) Audio Visual ~ 36.0+1.7% 553+ 14% 582+50% 727+13% 61.8+28% 740+3.1%

Table 5.6: Logistic regression classification performance (all Stimuli).

Comparison of Different Classifiers (using Logistic Regression)

Table 5.6 shows the overall performance for classification according to tasks
for all classifiers. Overall, the user-independent, condition-dependent classifier
performs the best compared to the other two classifiers with an average AUC
score of 86.9%. In practice, this would be a classifier that is built-into the
application, working for only for that application, but for any user. The high
performance in this condition is expected due to the fact that this classifier is
trained and evaluated on the same condition hence giving a higher performance
for the same condition but not necessarily generalizing to other conditions.
To build a more generalized classifier we built two other classifiers which
are independent of the condition — user-dependent (condition independent)
and user-independent (condition independent). We found the performance
results to be comparable, obtained an average AUC score of 77.4% and 75.7%
respectively. We note that these scores only decreased slightly when compared to
the condition-dependent classifier, suggesting the validity of the general approach
of using gaze and thermal imaging for attention classification. The user-dependent
(condition-dependent) classifier is expected to perform slightly better as it will be
trained and evaluated on the same user in the same condition. However, in the
context of this work, we did not have enough data to train such a classifier.

Further, the results show that the accuracy of thermal-based classifier remained
almost the same across all tasks. This means that the performance of the
thermal-based classifier is largely independent of the task being performed by
the user. Moreover, our findings showed that sustained attention required the
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Gaze Features Thermal Features Gaze+Thermal Features
Classifier Task Accuracy AUC Accuracy AUC Accuracy AUC
User Stroop 465+31% 652+27% 489+3.0% 682+435% 77.3+4.0% 848+2.7%
Independent Visual 441+3.6% 629+24% 59.1+42% 727+£33% 79.5+35% 86.4 £2.0%

(Condition Audio Visual 37.5+£27% 583+18% 57.9+50% 71.9+£33% 62.5+3.10% 750+23%
Independent)

User Stroop 480£2.5% 683+1.6% 625+32% 750£3.8% 778+3.6% 85.1+24%
Dependent Visual 489 £19% 659+13% 603+42% 735+£35% 80.7+32% 87.1%+21%
(Condition Audio Visual 579 £3.8% 719+25% 68.1+49% 788+33% 76.1+4.1% 84.1%1.7%
Independent)

Table 5.7: Logistic regression classifier performance without audio task.

least cognitive load followed by alternating, selective and divided attention, as
reflected in the thermal features, and as suggested by our subjective measures. One
important finding we observed was that the attention types are most accurately
classified with an accuracy of (95.45%) when the participant is performing
the visual and least accurately classified when the task being performed is
audio. We also observed the same trend when comparing the performance of
the user-independent (condition-dependent) classifier trained on just the gaze
features. From our results, we observe that when classifying audio-only tasks,
the thermal features alone worked as a better predictor than the classifiers that
both gaze and thermal features. The reason being that the audio-only tasks lacks
any visual stimuli, hence, the gaze features does not hold any significance for
classifying attention in audio-only task—effectively working as noise. With
reference to Figure 5.15, we can see that all tasks in each attention type have a
distinct pattern, for example, in the alternating attention tasks, we can see a clear
pattern the left and right AOIs. As for the audio-only tasks, the gaze patterns
appear to be random with the participant, either focusing randomly around the
screen or at a focused point with random saccades around the screen. Due to this
reason, the average for the condition-independent classifiers for all tasks does not
perform as well compared to the condition-dependent classifier as their training
set includes the insignificant gaze features of the audio-only task, which decrease
the classification accuracy for the gaze-only and gaze+thermal feature sets.

To measure the effect of removing the task which lacks visual stimuli
(i.e. audio-only tasks) on the condition-independent and user-dependent classifier,
we retrained our classifiers by only considering the task with visual stimuli (Audio
Visual, Visual and Stroop). This is so the gaze features in the training data set
would remain meaningful in the classification process.
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Figure 5.15: Gaze Plots, highlighting the patterns in each task.

We evaluated the user-independent, condition-independent classifier by training
it 22 times using leave-one-out-cross-validation (LOOCYV) three times, one for
each condition. Each time, we trained it on the data of the 21 participants for
two conditions and evaluated it on the data of the third condition from the last
participant. As for the user-dependent, condition-independent, classification, we
trained the classifier 22 times using cross-validation three times, one for each
condition. Each time, we trained it on the data of the single participant for two
conditions and evaluated it on the data of the third condition from the same
participant. The results of the user-independent, condition-independent and the
user-dependent, condition-independent classification that only considers tasks
with visual stimuli shows an increased classification accuracy (see Table 5.7).
Hence, observing a better classification accuracy for each task for both type of
classifier has increased as now the gaze feature plays a significant role in attention
classification. In practice, this means that eye-tracking only helps the classifier
when the task involves a visual stimulus. Otherwise (i.e. as in audio-only tasks),
it tends to harm the classification results.
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5.2.4 Discussion and Summary

The results of our study and a review of prior work revealed that different attentive
states could be distinguished by the locus of visual attention and estimated
cognitive load. On this basis, in the previous sections, we presented the results
from collecting, analyzing and classifying gaze and thermal data of different
attention types, which we summarize and discuss grouped by the most important
observations in the following.

On Performance

In this work, we discuss a first attempt of combining thermal imaging and eye
tracking to discriminate between four types of user attention. Our results show
that attention classification is feasible, achieving an accuracy of up to 95.45%
when using a condition-dependent prediction (see Table 5.6). This result is
promising as it paves the way for new applications in which classification can
be tailored to a particular known condition or task. For example, this could be
embedded into an e-learning system to measure student attention during a lecture.

In contrast, the condition-independent classification is more challenging. When
comparing the performance with the condition-dependent classifier, we observed
a decrease in the accuracy between 62.5% and 79.50% while considering only
the tasks with visuals stimuli. Though this performance might be sufficient for
some applications and is well-above the 25% baseline, further work is needed
to bring performance up to the same level as for condition-dependent prediction.
This means that this approach is not yet quite feasible for distinguishing attention
types in unknown tasks.

However, in all of our experiments, our user-independent results were strong,
suggesting that by training the classifier on one specific task, the classification
generalizes well to unseen users.

On Discriminating Different Attention Types

Based on our review of the literature, we hypothesized that different attention
types require different cognitive load levels, which would lead to a change in
the participants’ facial temperature patterns. From previous work, we know that
regions on the face such as forehead, nose, and cheeks are often visible points
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Attention Types  Gaze  Thermal Gaze & Thermal

Alternating 100%  27.27% 100%
Sustained 13.0% 86.36% 90.9%
Selective 27.0% 36.36% 18.18%
Divided 50.0%  69.7% 81.81%

Table 5.8: Recognition accuracy of each attention type.

and are feasible for temperature measurement [13, 117] We tested the effects of
different tasks and their attention types on temperature changes in these points.
We elicited different attention types through set of tasks with different stimuli and
found a significant difference in the metrics used across the different attention
types. We confirmed the validity of our findings, where the same pattern of facial
temperature changes was observed across the different conditions (Stroop, Audio,
Visual, and Audio-Visual). Our findings from the statistical analysis validate the
correlation of cognitive load, deduced from the selected region of interest, and
the different attention types. Although it was not significant across all attention
types (e.g. sustained and alternating attention), it could give a hint about the
experienced attention type. Furthermore, this highlights the role of gaze data to
complement thermal data.

For discriminating attention types using a classifier, we investigated the
performance when classifying each attention type separately. Our results show
that alternating attention achieved the highest accuracy for the thermal and the
eye feature set because the alternating gaze pattern of participants from one AOI
to another is a strong indicator of alternating attentional state. For this task, the
thermal features do not capture much information of participant attention state as
indicated by low performance of the classifier trained on just the thermal features
set (see Table 5.8).

For sustained and divided attention, gaze features did not work as well but
we found that thermal features performed well. Temperature variation was
considerably different compared to other attentional states as shown in Figure 5.14.
For selective attention, the performance of the classifier was the lowest. This
attention type was mostly confused with divided attention, as can be seen from the
confusion matrix (see Figure 5.16). One likely reason is that the thermal features
(forehead-nasal and cheeks) change across all attention types. For instance, the
change in facial temperature for selective attention overlaps the most with the
divided attention (Figure 5.14).
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On Combining Thermal Imaging and Eye Tracking

Additionally, we found that combining both gaze and thermal features boosted
the performance of the classifier as compared to using gaze or thermal only
(Figure 5.16 and Table 5.7) for the visual tasks. This is because each modality
complements the other for the classification of attentional types. For instance,
Figure 5.15 shows that divided and sustained attention present very similar gaze
patterns but elicit very different levels of cognitive load, which is reflected in
the thermal features (Figure 5.14). In contrast, alternating attention presents
itself somewhere in between sustained and selective attention in terms of facial
temperature but exhibits very distinct eye movement patterns as reflected in the
figure. This highlights the importance and potential of using thermal imaging and
eye tracking in combination to classify attention types. Interestingly, we observed
that thermal features exhibit the same performance for different conditions. This
validates that different attention types allocate different cognitive load, regardless
of the stimuli (see Table 5.6). In contrast to the gaze features, because we rely on
the AOI, the features are influenced by the task and stimuli. This is reflected in
classification accuracy using only the gaze features. For instance, as shown in
Table 5.6 the fixations obtained in the audio task for various attention types were
arbitrary (see Figure 5.15), and we did not observe any unique patterns of gaze
transition for different attention type as the participant was asked to just attend to
the playing audio.

On Different Conditions

We observed a decrease in classification accuracy for the audio condition when
using gaze and thermal as opposed to using thermal features only. This is because
in the audio condition, participants’ eye movements were arbitrary, due to the
lack of visual stimuli. Hence, training the classifier with the audio task gaze data,
would mean training the classifier with confusing data. In other words, including
gaze data of the audio only condition, would then yield to reduced performance.
Further exploring the confusion matrix (see Figure 5.18) of the classifiers trained
on the thermal feature only, we can conclude that for an audio-only task attention
could be classified into sustained and divided attention more accurately then the
selective and alternating type. Based on this observation, we suggest using only
thermal features to classify attention types for audio-only tasks.



176 S Amplified Perception of Cognitive Load

AVERAGE CONFUSION MATRICES FOR USER INDEPENDENT CLASSIFIERS
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Figure 5.16: User Independent Average Confusion Matrices.
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Figure 5.17: User Dependent Average Confusion Matrices.

On Attention Type-Aware System Development

We observed that the average classification accuracy for the user-dependent,
condition independent classifier in all four tasks and three feature sets is higher
than the user-independent classifiers (see Table 5.6 and Table 5.7). This means
that the user-dependent classifier was able to predict the attention type of a specific
user more accurately when trained on the data of the same user (user-dependent)
rather than training it on features of all users (user-independent). Similar results
on discriminating attention types were achieved for a user-dependent classifier
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Figure 5.18: Average confusion matrices for all classifiers for audio only
task.

(see Figure 5.17) with alternating attention achieving the highest accuracy, and
selective attention achieving the lowest accuracy for thermal and gaze feature set.
We found that similar to the results obtained for user-independent classifier, the
performance of user-dependent classifier is also boosted by combining both gaze
and thermal feature set for the Stroop, Visual and Audio-Visual task. One obvious
limitation of user-dependent classifier would be that it would not be generalized
for different users. In practical terms, this means that if the system requires user
calibration prior to use. However, if a real-time attention classification system is
required, which could classify attention of any user without being trained every
time for a new user, then a user-independent classification approach would be
more suited. Therefore, the types of classification approach taken would highly
dependent on the type of application the system is used in.

Example Use Cases

Our findings show that the proposed classifier was able to classify attention
types unobtrusively. Applications that take into account the attention type can
be applied to a broad range of applications ranging from education [102, 212],
performance management in the workplace, distraction management [27, 139],
to quantified-self applications [62]. Educational applications could monitor
students’ attention type and adapt accordingly, e.g. assessing if the presented
material is “attention-grabbing" so that the students would show sustained
attention rather than divided or alternating attention, aiming to better design
learning systems [102]. Furthermore, workplaces could benefit from our approach
by helping workers manage their attention if he/she are experiencing divided
attention during safety-critical task, and to avoid divided attention in dangerous
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situations (e.g. operating trains) [156, 284]. Additionally, if a user should focus to
finish a task, an attentive user interface could help the user to keep their attention
sustained on the task [234].

Online distractions are a controversial aspect of our current technology-mediated
workplaces. Our approach could be used to manage distractions, especially with
users that are more susceptible to social distraction [167]. An interface could
block the distraction source (e.g. social media, smartphone) when alternating
or divided attention between the task in hand and the distraction source is
detected [27]. We also can deploy attention-type detection for quantified-self
applications as proposed by Dingler et al. [62]. The system could monitor the
attention type patterns throughout the day, aiming to assist users with tracking and
managing their attention distribution to enhance their well-being. For instance,
stress and frustration occur when there is a mismatch between the accomplished
tasks and the planned ones [244] due to the lack of sustained attention on the
planned tasks. Furthermore, the high frequency of divided attention may lead to
burnout and memory distortion [177].

Limitations and Future Work

This work proposes the first steps towards classifying attention using unobtrusive
sensors. As such, we required a dataset with clearly labeled attention types for
training our classifier.

Despite these promising results, our work has several limitations that we plan
to address in future work. First, the controlled task is likely to lead to behavior
changes. Similar to studies in Affective Computing, there is a trade-off between
the quality of the labels and the naturalness of user behavior. We opted for a
controlled setup to increase the quality of the labels at the expense of natural
behavior. By demonstrating the feasibility of the approach, our next steps will
involve collecting a more naturalistic in-the-wild dataset. Second, we labeled the
data according to the elicited attentional state. While these tasks were informed
by previous work in psychology, it is difficult to guarantee that users were in
those states at all times during the tasks. For example, during sustained attention,
we cannot guarantee that participants did not momentarily “mind-wandered”. We
tried to minimize these effects by keeping our tasks time reasonably short. Third,
users’ eye movements are highly dependent on the stimuli used. We attempted
to minimize the effects of the particular stimulus by abstracting from the visual
layout of the interface , instead, computing features based on Areas of Interest
(AOI). This tends to minimize the overfitting due to the visual design of the
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interface as compared to low-level features only. For example, in our design,
the two pieces of text in the alternating attention condition were side-by-side. If
we had trained a classifier using saccade directions, a high proportion of large
sideways saccades would likely be indicative of alternating attention. However,
if the same classifier were applied in an interface where the two texts were
displayed one on top of each other, the approach would no longer work. Using
AQISs allows us to abstract from the specifics of the interface, but also introduces a
new challenge—how to determine which areas are of interest. This limitation can
be addressed in many ways. For example, a learning system could specify that the
video player is an AOI. A system like RescueTime could classify the applications
that are part of productive (i.e., attentive) use of time and set it as the AOIs.

Fourth, thermal imaging is influenced by external factors, e.g. changes in room
temperature, and internal factors, e.g. changes in affective states. These can
be confounds that might affect the performance of the system in the wild. A
more naturalistic dataset is required to explore these questions. Additionally,
we envision that running an evaluation on participants with more experience
in executing focused tasks such as seasoned workers would yield interesting
insights, as well as running this over a longer period of time. We also plan to
explore the performance of the gaze and thermal classifier by extracting more
stimulus-dependent gaze features such as saccade velocity and length from one
AOI to another and stimuli dependant feature such as the total fixation rate and
mean saccade rate and angle for the individual task. Lastly, our findings open
up further research question—how to distinguish between selective and divided
attention. This can be explored by augmenting another bio-data e.g., GSR, heart
rate, aiming to investigate if they differ in terms of other physiological responses.

Summary

Through our review of related work, we concluded that no prior work explored
the use of thermal imaging combined with eye tracking to classify attention
types. Consequently, in this work, we began our exploration by identifying gaze
and features that could potentially reveal the four attention types—sustained,
selective, alternating and divided attention. We investigated the effects of
using different feature sets (gaze, thermal and the combination of thermal and
gaze features) in classifying the four attention types. We used the extracted
features to train two categories of classifiers: (1) condition-dependent and (2)
condition-independent classifiers. Our classifiers achieved AUC up to 95.45%
and 79.5% respectively. Furthermore, we investigated the performance of user
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dependent and independent classifiers, we had AUC up to 75.7% for the user
independent-condition independent, 87% user-independent-condition dependent,
and 77.4% for the user-dependent classifier). We additionally found that there
is an increase in the classification accuracy when using the combination of gaze
and thermal features as opposed to using gaze or thermal features alone. In this
work, we were able to classify attention types unobtrusively, using a thermal
camera and a remote eye tracker. This enables novel opportunities in the field of
attention-aware computing: our approach, for example, can be applied in different
research areas, e.g., education, adaptive and assistive systems. It could also be
used to track and give feedback to the user, to increase the user’s awareness of
their attention patterns.

In summary, our results reveal the feasibility of building an attention classifier
based on facial temperature and eye movements. Hence, we envision that our work
can serve as an initial building block to understanding the human mind and the
influence of different attention types. We hope that developers of attention-aware
and adaptive systems can use our results to build enhanced adaptive systems with
a diverse set of application to benefit users in everyday usage.
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Chapter

Implications and Design

Recommendations

This thesis contains ten in-depth research probes informing the design of systems
using thermal imaging, particularity to amplify perception. In this chapter, we
present design recommendations distilled from the previous chapters, to address
both social and technological perspectives to support using thermal cameras
in diverse setups, and to inform researchers and designers. We derive a set of
implications for designing future thermal camera based systems and tools that
will consider the challenges and recommendations identified in our findings. In
addition to the individual recommendations in each of the presented Chapters, we
highlight the following recommendations for designing thermal imaging.

6.1 Introductory Phase

Amplified perception and generally the usage of thermal cameras are influenced
by knowledge bias, in that users must have an initial understanding and knowledge
to best utilize the amplified perception. In our exploration participants intuitively
explored the different perception mode to have an impression of its capabilities.
Future design should support a "learning/introductory phase" prior to usage
or during setup to ensure full understanding of the alternative amplified mode.
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Further challenges lie in the image and information representation. Presenting
raw image data might not be intuitive for users, therefore, designing such tools
should consider processing the raw image data and try to present the users with
more meaningful information. The thermal images are considered to be straight
forward.

6.2 Application Specific Form Factor

Systems should use the appropriate form factor for the use case for which they are
designing their system. Where it is a monitoring use case, participants preferred
the mounted stationary form e.g. for continuous health monitoring or object state
detection. On the other hand, our findings also recommended the mobile form
factor for on-demand explicit usage of vision extension and thermal cameras e.g.
checking a baby.

6.3 Context Awareness and Social Context

Designers should consider the context of use and offer information related to
the context (e.g. highlighting the hottest cup, or automatically detecting and
displaying someone’s emotional state). This context awareness would enhance
the understanding and usage of thermal camera based systems, as it would help
novice users learn about the capabilities of the camera and hence be able to best
utilize it. Our findings suggest the need of including an information layer in the
thermal user interface.

6.4 Privacy and Social Consideration

Participants exhibited an awareness of the privacy implications of having such
a layer of extra information at hand. This emphasizes the need to explore and
research explicit privacy management in HCI for thermal cameras or any imaging
system that displays non-visible information. For instance, designers should
consider camera state notification e.g. an indicator when the camera is on.

Additionally, users displayed a high level of awareness on the social aspects and
privacy implications of having such a layer of extra information at hand and
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commented on how it could be a potential means of discrimination (for example
detecting and avoiding a peer with a fever, based on their temperature). This opens
an HCI challenge in designing such tools, as privacy and ethical considerations
are raised by using such a tool.

Naturally, there are many ethical concerns when considering collecting and
viewing data about humans’ normally don not perceive. As the captured
information could be revealing internal and private information e.g., smartphone
PIN or affect state. Thus, protecting the privacy of individuals is a major concern
and important field of investigation when utilizing thermal imaging as a sensing
technology. The minimal amount of data needed for extracting the necessary
information should be determined for each use-case. Existing measures for
protecting the individuals and maintaining their privacy, should be applied. For
instance, to maintain privacy in the context of building adaptive systems based
on the facial temperature, one possibility is to analyze the data in the client
side of applications and thus storing as little information as possible about the
individuals in global databases. Depending on the applications and the accuracy
of the models representing it, the amount of data to be processed at the client side
can be determined. While there are privacy concerns associated with collecting
affect data in general, additional measures need to be investigated for thermal
imaging. Existing solutions can be be employed, but should be extended given
the needs of the current use-case and should account for the non-visible spectrum.

6.5 Ethics and Data Collection

Although utilizing thermal imaging in building novel systems is appealing, one
may not forget that its commercial application may not come without ethical
concerns. Starting from the data collection, as presented in Chapter 5, thermal
imaging could act as a window into our souls and mind, by inferring our internal
states based on our facial temperature. Hence, if privacy and ethical consideration
are not guaranteed to individuals then it is very unlikely that many participants
would be willing to take part in any experiment. Thus, we need to guarantee full
anonymity and data privacy maintenance to encourage individuals to provide us
with the needed data.
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Figure 6.1: Thermal camera technical specifications for divers applications.

6.6 Technical and Generic Conceptual
Architecture

In this thesis we built the study probes using different models of thermal cameras.
Each thermal camera has different technical specification in terms of thermal
sensitivity as well as frame rates. Figure 6.1 presents these values from the used
thermal cameras in the previous chapters. Further, we conducted an intensive
literature review, to distill the technical specifications of thermal cameras deployed
in various research fields. Our review focused on the research conducted under
the umbrella of HCI, to identify the technical requirements and specifications of
thermal imaging. We exclusively used ACM and IEEE digital libraries as our
source, using the keywords Thermal Imaging, FIR and HCI. Another review and
classification iteration was conducted on the cited papers in each retrieved paper to
ensure that we covered the related research conducted over the past twenty years.
Taking a deeper look into thermal imaging-related publications, we find that
these technical specifications vary considerably in the application domains. For
instance, the 3D reconstruction domain requires a high frame rate yet the thermal
sensitivity does not play a significant role. Interestingly, the affective computing
domain deployed thermal cameras with varying thermal sensitivity but most used
high thermal sensitivity and frame rate. While we aimed to derive technical
guidelines for developers and researchers, most of the conducted research used
the high end thermal imaging as the commercial options have been available only
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recently. Researchers should consider the values and ensure that their proposed
application is feasible with the acquired hardware.

Generic Conceptual Architecture In all the built study probes, we
followed the same processing pipeline as listed below, as well as the usage
of open source libraries e.g. OpenCV. The main aim behind this approach is to
provide a generic architecture for thermal imaging-based systems. Providing an
easy to use software is one of the key aspects to encourage the development of
systems. The system should provide possibilities for beginners to rapidly develop
small applications with low complexity but should allow a low level access to the
raw data. Hence we propose the following generic conceptual thermal imaging
processing pipeline:

1. Frame extraction: Frame extraction is the initial step to sample and extract
the frame from the camera feed, based on the camera’s frequency.

2. Image pre-processing : We apply the supported image pre-processing
techniques from OpenCV, to enhance the quality of the captured thermal
frames for further processing.

3. Feature Extraction & Recognition: In this step, features of interest are
extracted using OpenCV. The features are to be determined by the designers
and developers, for instance the hottest object in the scene or the facial
temperature of the user.

4. Data Presentation: Designers and Developers have full control over
the data presentation. This dimension should be application specific. In
particular, implicit thermal data presentation should be applied when users
are intended to visualize the heat map e.g. detect the touch traces. On the
other hand, explicit data presentation is required when the thermal features
have to be interpreted before being presented to the users e.g. cognitive
load level.

5. Temperature and Raw Data Recording: Lastly, developers and
researchers should consider recording the captured data for off line analysis
as well as the creation of novel datasets.
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Conclusion and Outlook

This chapter is based on the following publication:

* Y. Abdelrahman and A. Schmidt. Beyond the visible: sensing with
thermal imaging. Interactions, 26(1):76-78, 2019

This thesis explored the usage of thermal imaging to amplify human perception
of the environment as well as the states of others. Whether through HMDs,
stationary setups, or mobile form factor, we investigated the various opportunists
and challenges of perceiving the world in the thermal spectrum. We followed
the user-centered design process extended through a probe-based approach for
understanding the usage of thermal imaging, requirements and constraints, aiming
to derive system and design requirements. In this chapter we summarize our
research contributions, and provide a conclusion and future outlook for thermal
imaging-based interactive systems that enables users to amplify their perception.

7.1 Summary of Contribution

Overall, this thesis provides five main contributions. First, we apply and extend
the user-centered design process to explore the opportunities and challenges of
designing amplified perception using thermal imaging. Second, we present study
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probes and prototypes increasing the understanding of the opportunities of thermal
imaging and how they should be deployed. Third, we provide a set of design
recommendations helping to design and deploy thermal imaging into interactive
systems. We present a summary of our findings in light of our research questions
on the user and technical levels, synthesized through our findings. Fourth, we
present a reference recommendation for technical decisions. Additionally, we
present a conceptual generic platform architecture that aims to help developers
of thermal imaging-based applications, to gain a better understanding of the
requirements and design aspects they need to consider. Finally, we release the
generic algorithm for thermal imaging analysis, as well as the collected dataset
throughout the conducted research in this thesis, for future researchers and the
community to utilize and build upon.

7.1.1 Understanding Thermal Imaging

We applied the user-centered design process to the field of thermal imaging.
We investigated and analyzed how diverse users understand and perceive the
thermal spectrum to highlight the opportunities and challenges of thermal
imaging, as well as to identify the capabilities of amplifying perception. In
a first step, we highlighted the specific context of use and its characteristics. To
specify the requirements from a technical and user point of view, we extended
the user-centered design process with a probe-based research approach. By
designing, implementing, and evaluating research probes tackling different
amplified perception possibilities, we learned fundamental aspects that resulted
in design recommendations.

We undertook a research probe approach, where a prototype was developed to
evaluate a certain opportunity. We presented ten probes; six probes investigating
the amplified environmental perception, along with two probes exploring
amplifying our perception of cognitive load.

7.1.2  Amplified Perception of the Environment

Effective user understanding of the thermal spectrum was the focus of our
first three presented probes. We looked into presenting a thermal view using
HMDs and on demand mobile application. While both means presented thermal
information back to the users, we learned different lessons from each evaluation.
From the HMDs, we found that users appreciate the hands-free amplified
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perception and envisioned a futuristic form factor for amplified perception.
However, from the mobile probe we discovered that users prefer having it on
demand with an explicit action to view the environment in an amplified form.

The developed research probes provide insights into how the perception and
awareness can be enriched with thermal imaging. Nowadays tools enhancing our
visual perception rely on the visible light enhancement. In contrast, we outline
possibilities currently not explored using thermal imaging. While technical
challenges with regards to miniaturization and robustness still need to be tackled,
we show the generalfeasibility of the amplified perception.

7.1.3 Amplified Perception of Cognitive Load

Including the hidden internal states in our perception was explored through
two probes. In one probe we explored the usage of thermal imaging to
reveal the cognitive load level. In the second probe we complemented current
technologies namely eye trackers to reveal the experienced attention type. The
two probes showing the utilizing thermal imaging to capture and interpret our
facial temperature outperformed existing technologies. Using thermal imaging
was shown to be unobtrusive and operated in almost real time, giving it an edge
over existing technologies to reveal insights about others’ internal hidden states.

7.1.4 Design Implications and Guidelines

Grouping and analyzing the outcomes from our study probes and prototypes,
we charted a set of design implications and guidelines concerning both user and
technical perspectives. The outcomes of our research probes paved the path
towards a deep understanding of the technology in hand and uncovered the set of
design recommendations and conceptual generic architecture for thermal imaging
based systems. Finally, we contributed a set of design recommendations derived
from our findings and evaluations of all the study and prototype probes. The
recommendations were then used to structure a conceptual architecture that can
inform researchers, designers, and developers interested in the usage of thermal
imaging to build novel interactive systems.

In summary, the contributions of this thesis could be classified into two main
strands: 1) empirical, and 2) technical contribution.
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Empirical Contribution

The empirical contribution of this thesis contributes a body of knowledge
that augments our understanding of thermal imaging and amplified perception.
First, our work has identified opportunities brought forth by utilizing thermal
imaging. Second, we explore core challenges that are unique to thermal imaging
based systems. Accordingly, this thesis proposes systems that leverage said
opportunities, and systems and studies that address and deepen our understanding
of the challenges. At the same time, this work lays a foundation on which
future studies and systems can build on: 1) Many of the identified opportunities
are waiting to be explored and leveraged by researchers and practitioners. 2)
Our exploration of unique aspects of thermal imaging has set the scene for the
upcoming research challenges for integrating thermal imaging in novel interactive
systems.

Technical Contribution

We have designed various systems that leverage thermal imaging to build novel
applications or to enhance existing ones. In this thesis, We provide a technical
contribution by showing how a generic thermal image processing algorithm
could be realized. We developed and released a set of prototypical open source
systems e.g. ThermalAnalyzer, ThermalMirror, CognitiveHeat, AttentCam,
VID, along with the corresponding dataset. The applications consist of a C#
Windows Forms Application service and an openCV. The service handles the
connection to the Optris thermal camera irrespective of its model, extracts areas
of interest, interprets the data and provides visualizations of the thermal data for
the developers.
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7.2 Future Work

This thesis provides a common ground for future research in the area of thermal
imaging based interactive systems. However, during the course of this thesis,
several additional research challenges have arisen which could provide the basis
of future research. This chapter explains these research challenges in detail and
highlights the main directions suggested for future work.

Long Term Studies of Thermal Imaging Usage

Through our work, we evaluated the temporary usage of thermal imaging as a
perception amplifying tool. The studies were all limited to two weeks at most.
Long term usage and investigations would strengthen our findings and help
uncover technical and social effects of having amplified perception via thermal
imaging on the private and public level. Furthermore, they would yield deeper
insights into the usage behavior as well as the users’ understanding of the thermal
spectrum, revealing future opportunities. Users of our probes envisioned the
usage of thermal imaging on a daily basis. However, social and privacy concerns
were raised. Exploring social acceptability of viewing scenes in the thermal
spectrum uncovering non-visible information in different contexts, environments,
and spaces in long term studies would lead to a better understanding of the social
and usage aspects.

Exploring Thermal Images Visualizations

In our work, we explored only the color mapping of the thermal feed as
the visualization technique. Additionally, we evaluated different visualization
techniques, however these were limited to the firefighters perception, and included
sensor fusion data from the depth and RGB cameras. A systematic and in-depth
investigation of the overlay and different visualizations of the thermal data is
complex and an opportunity for future work.
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Thermal Imaging and States Co-founds

Our work highlighted the ability of thermal imaging to unobtrusively estimate and
classify affective states. However, systems using thermal imaging for affective or
cognitive computing always include a factor of uncertainty: On the one hand, due
to their dependence on other external factors (e.g. room temperature, time of day,
hours of sleep, stress, food intake etc.), as well as internal factors, e.g. changes in
other affective or emotional states. These can lead to have complications such as
stress and cognitive load, and might affect the performance of the system, and
might affect the accuracy of the system outcomes and introduce uncertainties.
However, most of the systems aim to give a glimpse into users’ affect states rather
than exact accuracy. We believe that investigating the accuracy and uncertainty
is a great opportunity for future work. This would lead to the development of
more robust, state deterministic systems to enhance the perception of others’
internal states to achieve the goal of revealing hidden inner states efficiently and
unobtrusively.

Validation of The Estimated Users’ State

One challenge we have been faced with during our explorations of thermal
imaging for amplified perception of others internal states, especially with non
trained users, is validating the classified user data. Researchers proposed the
usage of subjective measures and ratings (e.g. using existing questionnaires
from psychology) to validate the classified state. However, this compromises the
unobtrusiveness and real time operation offered by thermal imaging. Furthermore,
not all classified states have precise questionnaires that aim to validate them, for
example user attention type. While in our work and generally in HCI we often
utilize these questionnaires from Psychology, it is currently becoming more and
more inevitable that HCI researchers must develop their own standardized ways
of validating information. This is a much needed opportunity for future work,
for the gap is currently widening with new forms of sensing and inferring users’
states, especially that it operates in an unobtrusive, remote and real time. Our
work highlights the need of the tight collaboration of HCI and Psychology to
design methods for validating sensed and interpreted information that is suitable
for the current status of affective computing and HCI research.
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Evaluation In The Wild

Despite the promising results of the ability of thermal imaging to unobtrusively
estimate and classify affective states, it opens the room for future work to address
the raised challenges and limitations. Current evaluation methods are mainly
limited to feasibility studies in the lab. While these evaluations include a high
internal validity and show the general feasibility of the envisioned approaches,
moving from the lab to field is the necessary next step. Additionally, the
controlled task used is likely to lead to behavior changes. Similar to studies
in Affective Computing, there is a trade-off between the quality of the labels
and the naturalness of user behavior. In our work, we opted for a controlled
setup to increase the quality of the labels at the expense of natural behavior.
By demonstrating the feasibility of the approaches, future steps will involve
collecting a more naturalistic in-the-wild dataset. Second, we labeled the data
according to the elicited states. While these tasks were informed by previous
work in Psychology, it is unclear how effective this elicitation was. These can
influence the performance of the built systems in the wild. A more naturalistic in
the wild evaluation is required to explore these questions and to investigate the
ecologic validity.

Future of Thermal Imaging

Zooming out to the bigger picture, over the past 10 years thermal imaging has
penetrated the commercial market by its reduced price and size. We envision
that thermal imaging will take even further leaps in the next 20 years, not only
by the availability of the technology, but rather by the deep understanding of the
users’ perception of thermal imaging as well as the novel opportunities raised
by the technology. In this thesis we explored how thermal imaging could be
deployed to amplify our perception by revealing the temperature information of
our vicinity. However, thermal imaging offers enhanced and novel opportunities
in vast and diverse research fields. In our exploration we mostly used the Optris
thermal camera. Although this is considered as a commercial thermal camera,
yet it is a high end one. This might impact upon its feasibility and affordability.
We envision that in the near future, the low end thermal cameras would have the
same capabilities as the high end relatively more expensive commercial thermal
cameras.

However, we believe that the more prominent challenge is not the feasibility
of acquiring the technology, but rather how we deal with this new available
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information, what it reveals about us, and how it affects the way we see our
environment, ourselves, and others. On one hand, thermal Imaging shows high
potential in building novel systems, exploiting the thermal spectrum and making
the invisible visible in a remote and contact-less manner. Yet, along with the
opportunities it raises challenges and risks as well. We can imagine a future where
technology misuse is exercised by revealing private information like the affect
state of bystanders without their consent, or even making people more prone to
authentication attacks, as generally, cameras have been widely known for their
high level of social intrusiveness. This raises the challenges of data ownership
and the lack of power of choice of self representation.

On the other hand, one can envision a more optimistic future, where the usage of
such technology is governed and the positives and negatives of such a technology
come into play. We believe that in 10 years a balance can be reached between
the potential negative effects and the whole opportunities of such technology
to change the way we perceive and interact with the world. Addressing the
data ownership and privacy concerns, advanced algorithms would allow for data
protection and ensuring that full control would be given to the user.

We believe that our exploration is merely the tip of the iceberg in a whole new
wave of thermal imaging applications to hit the research field. Amplifying our
visual perception is only one step towards utilizing thermal imaging for more
contextual sensing and interpretation of our environment via thermal information,
by empowering users to extend their perception.

Concluding Remarks

This thesis investigates how thermal imaging can be used to enrich and amplify
our perception concerning both the environment and our hidden internal states,
in particular cognitive load. It addresses fundamental challenges designers and
developers of such systems will face in the future, when we reach the point where
thermal imaging is integrated in our daily devices e.g. laptop web-cameras and
smart-phone integrated cameras for about the same price as the currently available
devices. We saw the first steps made when CAT released a smart-phone with
built in thermal cameras. However, development has not progressed far enough
to penetrate the market and reach a competitive market sector with existing
technology. We envision that eventually, research and developers especially with
the vast move of the DIY, will be able to meet market requirements with regard to
price and quality. From then on, understanding how this development influences
the interaction and design of thermal imaging based systems becomes crucial.
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